JPH0519096A - Decontamination method of radioactive solution - Google Patents

Decontamination method of radioactive solution

Info

Publication number
JPH0519096A
JPH0519096A JP17214691A JP17214691A JPH0519096A JP H0519096 A JPH0519096 A JP H0519096A JP 17214691 A JP17214691 A JP 17214691A JP 17214691 A JP17214691 A JP 17214691A JP H0519096 A JPH0519096 A JP H0519096A
Authority
JP
Japan
Prior art keywords
elements
metal
waste liquid
alkaline earth
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17214691A
Other languages
Japanese (ja)
Inventor
Akira Sasahira
朗 笹平
Tadahiro Hoshikawa
忠洋 星川
Tetsuo Fukazawa
哲生 深沢
Tsutomu Baba
務 馬場
Takashi Ikeda
孝志 池田
Koichi Chino
耕一 千野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17214691A priority Critical patent/JPH0519096A/en
Publication of JPH0519096A publication Critical patent/JPH0519096A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To remove a precious metal element, an alkaline earth element and an alkaline element by performing electrolysis reduction by the use of a liquid metal electrode after a precipitant is previously added and a transition metal element is deposited to remove. CONSTITUTION:Elements such as iron, copper and chromium are contained in a storage tank 1, a radioactive waste liquid containing other elements such as precious metal, alkali and alkaline earth are held and come in a deposit production tank 4. A recipitant such as hydroxide, alkaline metal and alkaline earth is supplied to the production tank 4 from a basic recipitant supply tank 2. As the result, the elements such as iron, copper and chromium are deposited from the waste liquid, the deposit is transmitted to a deposit temporary storage tank 6 and the waste liquid is sent out to an electrolytic cell 7. Liquid metal immersed in the waste liquid is made a cathod, voltage is applied and the elements such as precious metal, alkali and alkaline earth are reduced to take in the liquid metal. Next, it is separated and recovered by a liquid metal recovery tank 9. Furthermore the waste liquid purged of these elements is transmitted to a waste liquid recovery tank.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は放射性元素を含む廃液よ
り放射性元素を除去する方法に係り、特に再処理高レベ
ル廃液のような遷移金属元素,貴金属元素,アルカリ土
類元素,アルカリ元素を同時に含む溶液を処理するのに
好適な方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing radioactive elements from a waste liquid containing radioactive elements, and more particularly to a transition metal element, a noble metal element, an alkaline earth element and an alkali element such as reprocessing high level waste liquid at the same time. A method suitable for treating the containing solution.

【0002】[0002]

【従来の技術】放射性廃液よりアルカリ金属を除去する
方法は、溶液に浸漬した水銀陰極を用いて電気化学的に
ナトリウムを除去する方法が、特開昭64−50998 号公報
に開示されている。
2. Description of the Related Art As a method for removing an alkali metal from a radioactive waste liquid, a method for electrochemically removing sodium using a mercury cathode immersed in a solution is disclosed in JP-A-64-50998.

【0003】即ち、ナトリウム化合物を含む放射性廃液
を水銀を陰極として電気分解し、ナトリウムを含む金属
をアマルガムの形で分離し、アマルガムからナトリウム
を含む金属を分離,精製すると共に水銀は電解槽にリサ
イクルする方法によってナトリウムをアマルガムの形で
回収する原理による。
That is, a radioactive waste liquid containing a sodium compound is electrolyzed with mercury as a cathode, a metal containing sodium is separated in the form of an amalgam, a metal containing sodium is separated and purified from the amalgam, and mercury is recycled to an electrolytic cell. According to the principle of recovering sodium in the form of amalgam by the method described above.

【0004】[0004]

【発明が解決しようとする課題】再処理プラントの高レ
ベル廃液のような遷移金属を含む溶液で水銀陰極を用い
た電解を行うと、三価の鉄イオンのような高酸化数遷移
金属イオンは水銀上で還元されて二価の鉄イオンのよう
な可溶性の低酸化数イオンに転化されるが、これは溶液
中で酸化され高酸化数イオンに戻る。このため水銀陰極
の電位を貴金属元素,アルカリ土類元素,アルカリ元素
を還元するのに必要な電位に保てないという問題があっ
た。
When electrolysis using a mercury cathode is performed in a solution containing a transition metal such as a high-level waste liquid of a reprocessing plant, a high oxidation number transition metal ion such as trivalent iron ion is generated. It is reduced on mercury and converted to soluble low-oxidation ions such as divalent iron ions, which are oxidized in solution back to high-oxidation ions. Therefore, there is a problem that the potential of the mercury cathode cannot be maintained at a potential required for reducing the precious metal element, the alkaline earth element, and the alkaline element.

【0005】本発明の目的は遷移金属元素を含む一般産
業廃液(特に再処理プラントの放射性廃液を代表とする
ような)より貴金属元素,アルカリ土類元素,アルカリ
元素を除去処理することにある。
An object of the present invention is to remove noble metal elements, alkaline earth elements and alkali elements from general industrial waste liquid containing transition metal elements (particularly typified by radioactive waste liquid of a reprocessing plant).

【0006】[0006]

【課題を解決するための手段】上記の水銀陰極電位を保
持できない課題については、溶液に予め沈澱剤を添加し
遷移金属元素を沈澱除去した後、液体金属電極により電
解還元することにより解決する。
The above-mentioned problem that the mercury cathode potential cannot be maintained is solved by adding a precipitant to the solution in advance to remove the transition metal element by precipitation, and then electrolytically reducing it with a liquid metal electrode.

【0007】[0007]

【作用】水溶液中に添加した水酸化物,アルカリ金属,
アルカリ土類金属,アルカリ金属の酸化物及びアルカリ
土類金属の酸化物は溶液中の遷移金属イオンを水酸化物
に転化し、沈澱させる作用をもつ。また、硫化水素及び
金属硫化物は遷移金属元素を硫化物として沈澱させる作
用を持つ。水銀をはじめとする液体金属は合金を作り易
く、水溶液中及びガラス溶融体中の貴金属元素,アルカ
リ元素,アルカリ土類元素の金属元素を還元し、金属の
状態で析出させて取り込む作用を持つ。
[Function] Hydroxide, alkali metal,
Alkaline earth metals, oxides of alkali metals and oxides of alkaline earth metals have a function of converting transition metal ions in a solution into hydroxides and precipitating them. Further, hydrogen sulfide and metal sulfide have an action of precipitating a transition metal element as a sulfide. Liquid metals such as mercury are easy to form alloys, and have the action of reducing the metal elements such as noble metal elements, alkali elements, and alkaline earth elements in the aqueous solution and the glass melt, precipitating them in the metal state, and incorporating them.

【0008】[0008]

【実施例】本発明の一実施例につき、以下、図1を用い
て説明する。1は廃液貯槽であり、鉄,銅,クロム,マ
ンガン,バナジウム,砒素,カドミウム,アンチモンの
うち一つ以上の元素を含み、かつ、ルテニウム,ロジウ
ムパラジウム,銀,イリジウム,タングステン,モリブ
デン,白金,金,アルカリ土類元素,アルカリ元素のう
ち一つ以上の元素を含む放射性廃液を保持する。この廃
液は沈澱生成槽4に送られる。2は塩基性沈澱剤供給槽
であり、水酸化物,アルカリ金属,アルカリ土類金属,
アルカリ金属酸化物,アルカリ土類金属酸化物のいずれ
か一つ以上を沈澱生成槽に供給する。沈澱生成槽におい
て廃液から鉄,銅,クロム,マンガン,バナジウム,砒
素,カドミウム,アンチモンのうち一つ以上の元素が沈
澱する。続いて、廃液及び沈澱を沈澱分離槽5に送り分
離する。分離した沈澱は沈澱一時貯槽6へ、また廃液は
電解槽7へ送る。8は液体金属貯槽で液体金属、好まし
くは水銀を保持する。液体金属は電解槽7に送る。電解
槽7では廃液中に浸漬した液体金属を陰極として電位を
印加し、ルテニウム,ロジウムパラジウム,銀,イリジ
ウム,タングステン,モリブデン,白金,金,アルカリ
土類元素,アルカリ元素のうち一つ以上の元素を還元し
て液体金属中に取り込み廃液から除去する。これら元素
を取り込ん液体金属は液体金属回収槽9に送る。また、
これら元素を除去した廃液は廃液回収槽10に送る。本
実施例によれば鉄,銅,クロム,マンガン,バナジウ
ム,砒素,カドミウム,アンチモンによる妨害無しに、
ルテニウム,ロジウムパラジウム,銀,イリジウム,タ
ングステン,モリブデン,白金,金,アルカリ土類元
素,アルカリ元素を液体金属中に取り込み廃液から除去
することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. 1 is a waste liquid storage tank containing one or more elements of iron, copper, chromium, manganese, vanadium, arsenic, cadmium and antimony, and ruthenium, rhodium palladium, silver, iridium, tungsten, molybdenum, platinum, gold , Holds radioactive waste liquid containing one or more of alkaline earth elements and alkaline elements. This waste liquid is sent to the precipitation production tank 4. Reference numeral 2 is a basic precipitant supply tank, which contains hydroxide, alkali metal, alkaline earth metal,
At least one of alkali metal oxides and alkaline earth metal oxides is supplied to the precipitation tank. At least one element of iron, copper, chromium, manganese, vanadium, arsenic, cadmium and antimony is precipitated from the waste liquid in the precipitation generation tank. Then, the waste liquid and the precipitate are sent to the separation tank 5 for separation. The separated precipitate is sent to the temporary precipitation storage tank 6, and the waste liquid is sent to the electrolytic tank 7. A liquid metal storage tank 8 holds a liquid metal, preferably mercury. The liquid metal is sent to the electrolytic cell 7. In the electrolytic cell 7, a liquid metal immersed in the waste liquid is used as a cathode to apply a potential, and one or more elements of ruthenium, rhodium palladium, silver, iridium, tungsten, molybdenum, platinum, gold, alkaline earth elements, and alkali elements are used. Is taken up in the liquid metal and removed from the waste liquid. The liquid metal that takes in these elements is sent to the liquid metal recovery tank 9. Also,
The waste liquid from which these elements have been removed is sent to the waste liquid recovery tank 10. According to this embodiment, without interference by iron, copper, chromium, manganese, vanadium, arsenic, cadmium and antimony,
Ruthenium, rhodium palladium, silver, iridium, tungsten, molybdenum, platinum, gold, alkaline earth elements and alkaline elements can be taken into the liquid metal and removed from the waste liquid.

【0009】次に、図2を用いて本発明の別の実施例に
つき説明する。1は廃液貯槽であり、鉄,銅,クロム,
マンガン,バナジウム,砒素,カドミウム,アンチモン
のうち一つ以上の元素を含み、かつ、ルテニウム,ロジ
ウムパラジウム,銀,イリジウム,タングステン,モリ
ブデン,白金,金,アルカリ土類元素,アルカリ元素の
うち一つ以上の元素を含む放射性廃液を保持する。この
廃液は沈澱生成槽4に送られる。3は硫化物沈澱剤供給
槽であり、硫化水素,金属硫化物のいずれか一つ以上を
沈澱生成槽に供給する。沈澱生成槽において廃液から
鉄,銅,クロム,マンガン,バナジウム,砒素,カドミ
ウム,アンチモンのうち一つ以上の元素が沈澱する。続
いて、廃液及び沈澱を沈澱分離槽5に送り分離する。分
離した沈澱は沈澱一時貯槽6へ、また、廃液は電解槽7
へ送る。8は液体金属貯槽で液体金属、好ましくは水銀
を保持する。液体金属は電解槽7に送る。電解槽7では
廃液中に浸漬した液体金属を陰極として電位を印加し、
ルテニウム,ロジウムパラジウム,銀,イリジウム,タ
ングステン,モリブデン,白金,金,アルカリ土類元
素,アルカリ元素のうち一つ以上の元素を還元して液体
金属中に取り込み廃液から除去する。これら元素を取り
込ん液体金属は液体金属回収槽9に送る。また、これら
元素を除去した廃液は廃液回収槽10に送る。本実施例
によれば鉄,銅,クロム,マンガン,バナジウム,砒
素,カドミウム,アンチモンによる妨害無しに、ルテニ
ウム,ロジウムパラジウム,銀,イリジウム,タングス
テン,モリブデン,白金,金,アルカリ土類元素,アル
カリ元素を液体金属中に取り込み廃液から除去できる。
Next, another embodiment of the present invention will be described with reference to FIG. 1 is a waste liquid storage tank, which contains iron, copper, chromium,
Contains one or more elements of manganese, vanadium, arsenic, cadmium, antimony, and one or more of ruthenium, rhodium palladium, silver, iridium, tungsten, molybdenum, platinum, gold, alkaline earth elements, alkali elements Retains radioactive waste liquid containing the element. This waste liquid is sent to the precipitation production tank 4. Reference numeral 3 denotes a sulfide precipitant supply tank, which supplies at least one of hydrogen sulfide and metal sulfide to the precipitation generation tank. At least one element of iron, copper, chromium, manganese, vanadium, arsenic, cadmium and antimony is precipitated from the waste liquid in the precipitation generation tank. Then, the waste liquid and the precipitate are sent to the separation tank 5 for separation. The separated precipitate is stored in the temporary sedimentation tank 6, and the waste liquid is stored in the electrolytic tank 7.
Send to. A liquid metal storage tank 8 holds a liquid metal, preferably mercury. The liquid metal is sent to the electrolytic cell 7. In the electrolytic cell 7, a potential is applied with the liquid metal immersed in the waste liquid as a cathode,
At least one element selected from ruthenium, rhodium palladium, silver, iridium, tungsten, molybdenum, platinum, gold, alkaline earth elements, and alkaline elements is reduced and taken into the liquid metal to be removed from the waste liquid. The liquid metal that takes in these elements is sent to the liquid metal recovery tank 9. The waste liquid from which these elements have been removed is sent to the waste liquid recovery tank 10. According to the present embodiment, ruthenium, rhodium palladium, silver, iridium, tungsten, molybdenum, platinum, gold, alkaline earth elements, alkali elements without interference by iron, copper, chromium, manganese, vanadium, arsenic, cadmium and antimony. Can be taken up in liquid metal and removed from the waste liquid.

【0010】次に、図3を用いて本発明の別の実施例に
つき説明する。1は廃液貯槽であり、鉄,銅,クロム,
マンガン,バナジウム,砒素,カドミウム,アンチモン
のうち一つ以上の元素を含み、かつ、ルテニウム,ロジ
ウムパラジウム,銀,イリジウム,タングステン,モリ
ブデン,白金,金,アルカリ土類元素,アルカリ元素の
うち一つ以上の元素を含む放射性廃液を保持する。この
廃液は沈澱生成槽4に送られる。3は硫化物沈澱剤供給
槽であり、硫化水素,金属硫化物のいずれか一つ以上を
沈澱生成槽に供給する。沈澱生成槽において廃液から
鉄,銅,クロム,マンガン,バナジウム,砒素,カドミ
ウム,アンチモンのうち一つ以上の元素が沈澱する。続
いて、廃液及び沈澱を沈澱分離槽5に送り分離する。分
離した沈澱は沈澱一時貯槽6へおくる。また、廃液はガ
ラス溶融槽11に送る。ガラス融解槽では、硼酸,珪
酸,燐酸のいずれかを主成分とするガラスと廃液を混合
し、加熱してガラス溶融体に転化し、電解槽7へ送る。
12は還元用電極金属貯槽で液体金属、好ましくは金を
保持する。還元用電極金属は電解槽7に送る。電解槽7
では還元用電極金属を融解して液体金属にし、ガラス溶
融体中に浸漬した液体金属を陰極として電位を印加し、
ルテニウム,ロジウムパラジウム,銀,イリジウム,タ
ングステン,モリブデン,白金,金,アルカリ土類元
素,アルカリ元素のうち一つ以上の元素を還元して液体
金属中に取り込みガラス溶融体中から除去する。該元素
を取り込ん液体金属は液体金属回収槽9に送る。また、
これら元素を除去したガラス溶融体は廃液回収槽10に
送る。本実施例によれば鉄,銅,クロム,マンガン,バ
ナジウム,砒素,カドミウム,アンチモンによる妨害無
しに、ルテニウム,ロジウムパラジウム,銀,イリジウ
ム,タングステン,モリブデン,白金,金,アルカリ土
類元素,アルカリ元素を液体金属中に取り込み廃液から
除去できる。
Next, another embodiment of the present invention will be described with reference to FIG. 1 is a waste liquid storage tank, which contains iron, copper, chromium,
Contains one or more elements of manganese, vanadium, arsenic, cadmium, antimony, and one or more of ruthenium, rhodium palladium, silver, iridium, tungsten, molybdenum, platinum, gold, alkaline earth elements, alkali elements Retains radioactive waste liquid containing the element. This waste liquid is sent to the precipitation production tank 4. Reference numeral 3 denotes a sulfide precipitant supply tank, which supplies at least one of hydrogen sulfide and metal sulfide to the precipitation generation tank. At least one element of iron, copper, chromium, manganese, vanadium, arsenic, cadmium and antimony is precipitated from the waste liquid in the precipitation generation tank. Then, the waste liquid and the precipitate are sent to the separation tank 5 for separation. The separated precipitate is sent to the temporary settling storage tank 6. The waste liquid is sent to the glass melting tank 11. In the glass melting tank, a glass containing boric acid, silicic acid, or phosphoric acid as a main component is mixed with a waste liquid, heated to be converted into a glass melt, and sent to the electrolytic tank 7.
A reduction electrode metal storage tank 12 holds a liquid metal, preferably gold. The reducing electrode metal is sent to the electrolytic cell 7. Electrolyzer 7
Then, the reducing electrode metal is melted into a liquid metal, and the liquid metal immersed in the glass melt is used as a cathode to apply a potential,
At least one element selected from ruthenium, rhodium palladium, silver, iridium, tungsten, molybdenum, platinum, gold, alkaline earth elements and alkali elements is reduced and taken into the liquid metal and removed from the glass melt. The liquid metal that takes in the element is sent to the liquid metal recovery tank 9. Also,
The glass melt from which these elements have been removed is sent to the waste liquid recovery tank 10. According to the present embodiment, ruthenium, rhodium palladium, silver, iridium, tungsten, molybdenum, platinum, gold, alkaline earth elements, alkali elements without interference by iron, copper, chromium, manganese, vanadium, arsenic, cadmium and antimony. Can be taken up in liquid metal and removed from the waste liquid.

【0011】[0011]

【発明の効果】本発明によれば沈澱剤により溶液から遷
移金属元素を除去することにより、液体金属電極上でア
ルカリ金属,アルカリ土類金属,貴金属を還元し電極上
に取り込むことにより溶液から除去できる。
According to the present invention, a transition metal element is removed from a solution by a precipitant, so that an alkali metal, an alkaline earth metal or a noble metal is reduced on a liquid metal electrode and taken up on the electrode to be removed from the solution. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】放射性廃液除染装置の一実施例のブロック図。FIG. 1 is a block diagram of an embodiment of a radioactive waste liquid decontamination apparatus.

【図2】放射性廃液除染装置の他の実施例のブロック
図。
FIG. 2 is a block diagram of another embodiment of the radioactive waste liquid decontamination device.

【図3】ガラス溶融体を用いる放射性廃液除染装置のブ
ロック図。
FIG. 3 is a block diagram of a radioactive waste liquid decontamination apparatus using a glass melt.

【符号の説明】[Explanation of symbols]

1…廃液貯槽、2…塩基性沈澱剤供給槽、4…沈澱生成
槽、5…沈澱分離槽、6…沈澱一時貯槽、7…電解槽、
8…液体金属貯槽、9…液体金属回収槽、10…廃液回
収槽。
1 ... Waste liquid storage tank, 2 ... Basic precipitant supply tank, 4 ... Precipitation generating tank, 5 ... Precipitation separation tank, 6 ... Temporary precipitation tank, 7 ... Electrolysis tank,
8 ... Liquid metal storage tank, 9 ... Liquid metal recovery tank, 10 ... Waste liquid recovery tank.

フロントページの続き (72)発明者 馬場 務 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 池田 孝志 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 千野 耕一 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内Continued front page    (72) Inventor Baba             1168 Moriyama-cho, Hitachi-shi, Ibaraki Japan             Tate Seisakusho Energy Research Institute (72) Inventor Takashi Ikeda             1168 Moriyama-cho, Hitachi-shi, Ibaraki Japan             Tate Seisakusho Energy Research Institute (72) Inventor Koichi Chino             1168 Moriyama-cho, Hitachi-shi, Ibaraki Japan             Tate Seisakusho Energy Research Institute

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】放射性溶液の電気分解による除染方法にお
いて、前記放射性溶液中に溶存する鉄,銅,クロム,マ
ンガン,バナジウム,砒素,カドミウム,アンチモンの
内一部の元素または全ての元素の量を減少させる工程と
これに続いて電解還元によりルテニウム,ロジウムパラ
ジウム,銀,イリジウム,タングステン,モリブデン,
白金,金,アルカリ土類元素,アルカリ元素の内一部の
元素または全ての元素の量を減少させることを特徴とす
る放射性溶液の除染方法。
1. A method of decontaminating a radioactive solution by electrolysis, the amount of all or some elements of iron, copper, chromium, manganese, vanadium, arsenic, cadmium and antimony dissolved in the radioactive solution. Of the ruthenium, rhodium palladium, silver, iridium, tungsten, molybdenum,
A method for decontaminating a radioactive solution, which comprises reducing the amount of some or all of platinum, gold, alkaline earth elements and alkali elements.
【請求項2】請求項1において、沈澱剤を用いて前記元
素の一部又は全元素を沈澱させる放射性溶液の除染方
法。
2. The method for decontaminating a radioactive solution according to claim 1, wherein a part or all of the elements are precipitated using a precipitating agent.
【請求項3】請求項2において、沈澱剤として水酸化
物,アルカリ金属,アルカリ土類金属,アルカリ金属の
酸化物,アルカリ土類金属の酸化物のうちいずれかまた
は全てを用いて、溶液を塩基性にすることにより鉄,
銅,クロム,マンガン,バナジウム,砒素,カドミウ
ム,アンチモンのうち一部又は全ての元素を沈澱させる
放射性溶液の除染方法。
3. The solution according to claim 2, wherein any or all of hydroxide, alkali metal, alkaline earth metal, alkali metal oxide and alkaline earth metal oxide are used as a precipitant. Iron by making it basic,
A method for decontaminating radioactive solutions by precipitating some or all of copper, chromium, manganese, vanadium, arsenic, cadmium and antimony.
【請求項4】請求項2において、沈澱剤として硫化水
素,金属硫化物のうちいずれかまたは全てを用いて、
鉄,銅,クロム,マンガン,バナジウム,砒素,カドミ
ウム,アンチモンのうち一部又は全ての元素を硫化物に
転化して沈澱させる放射性溶液の除染方法。
4. The method according to claim 2, wherein any or all of hydrogen sulfide and metal sulfide is used as a precipitant.
A method for decontaminating radioactive solutions by converting some or all of the elements of iron, copper, chromium, manganese, vanadium, arsenic, cadmium, and antimony to sulfides and precipitating them.
【請求項5】請求項1,2,3または4において、液体
金属、好ましくは水銀を電極としてこれに負電位を印加
することによりルテニウム,ロジウムパラジウム,銀,
イリジウム,タングステン,モリブデン,白金,金,ア
ルカリ土類元素,アルカリ元素のうち一部または全ての
元素を液体金属中に溶解させることによりこれらの元素
量を減少させる放射性溶液の除染方法。
5. The method according to claim 1, 2, 3 or 4, wherein a liquid metal, preferably mercury, is used as an electrode and a negative potential is applied to the electrode, ruthenium, rhodium palladium, silver,
A method for decontaminating a radioactive solution by dissolving some or all of iridium, tungsten, molybdenum, platinum, gold, alkaline earth elements, and alkaline elements in a liquid metal.
【請求項6】請求項1,2,3または4において、溶液
を硼酸,珪酸,燐酸、のいずれかを主成分とするガラス
溶融体に転換し、前記ガラス溶融体に浸漬した液体金
属、好ましくは金を電極として負電位を印加することに
よりルテニウム,ロジウムパラジウム,銀,イリジウ
ム,タングステン,モリブデン,白金,金,アルカリ土
類元素,アルカリ元素の内一部の元素または全ての元素
を前記液体金属中に溶解させることによりこれらの元素
の量を減少させる放射性溶液の除染方法。
6. The liquid metal as claimed in claim 1, 2, 3 or 4, wherein the solution is converted into a glass melt containing boric acid, silicic acid or phosphoric acid as a main component and immersed in the glass melt. Is a liquid metal containing ruthenium, rhodium palladium, silver, iridium, tungsten, molybdenum, platinum, gold, alkaline earth elements, alkali elements, or some elements of the liquid metal. A method for decontaminating radioactive solutions by reducing the amount of these elements by dissolving in them.
JP17214691A 1991-07-12 1991-07-12 Decontamination method of radioactive solution Pending JPH0519096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17214691A JPH0519096A (en) 1991-07-12 1991-07-12 Decontamination method of radioactive solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17214691A JPH0519096A (en) 1991-07-12 1991-07-12 Decontamination method of radioactive solution

Publications (1)

Publication Number Publication Date
JPH0519096A true JPH0519096A (en) 1993-01-26

Family

ID=15936419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17214691A Pending JPH0519096A (en) 1991-07-12 1991-07-12 Decontamination method of radioactive solution

Country Status (1)

Country Link
JP (1) JPH0519096A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247920A (en) * 1995-03-07 1996-09-27 Minoru Takeuchi Measuring equipment of pore distribution
JP2016109468A (en) * 2014-12-03 2016-06-20 国立研究開発法人日本原子力研究開発機構 Separation and recovery method of platinum group materials and its separation and recovery apparatus
US11309098B2 (en) 2019-02-13 2022-04-19 Korea Atomic Energy Research Institute Mineralogical method and apparatus for removal of aqueous cesium ion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247920A (en) * 1995-03-07 1996-09-27 Minoru Takeuchi Measuring equipment of pore distribution
JP2016109468A (en) * 2014-12-03 2016-06-20 国立研究開発法人日本原子力研究開発機構 Separation and recovery method of platinum group materials and its separation and recovery apparatus
US11309098B2 (en) 2019-02-13 2022-04-19 Korea Atomic Energy Research Institute Mineralogical method and apparatus for removal of aqueous cesium ion

Similar Documents

Publication Publication Date Title
US3891741A (en) Recovery of fission products from acidic waste solutions thereof
EP0535837A1 (en) Decontamination of radioactive metals
JP3962855B2 (en) Recovery method of heavy metals from fly ash
CA2027656C (en) Galvanic dezincing of galvanized steel
US4256557A (en) Copper electrowinning and Cr+6 reduction in spent etchants using porous fixed bed coke electrodes
US4445935A (en) Method for the recovery of silver from waste photographic fixer solutions
CN111826527A (en) Method for recovering copper indium gallium selenide material
JPH0519096A (en) Decontamination method of radioactive solution
EP0806047A2 (en) Method for removal of technetium from radio-contaminated metal
JP5253994B2 (en) Treatment method of radioactive metal waste
AU577173B2 (en) An electrolytic process for the simultaneous deposition of gold and replenishment of elemental iodine
JPH0975891A (en) Wet disposal method for iron manufacturing dust
JP3951041B2 (en) Electrochemical recovery of heavy metals from fly ash
KR100991229B1 (en) Separation and recycling method of gold and silver from gold and silver alloy
US4895626A (en) Process for refining and purifying gold
MX2022009618A (en) Method for recovering metal zinc from solid metallurgical wastes.
US5244777A (en) Method of recovering silver from photographic processing solutions
JP3080947B1 (en) Electric furnace dust treatment method
CA2017032C (en) Hydrometallurgical silver refining
JP3760261B2 (en) Electrochemical recovery of heavy metals from fly ash
JP3998951B2 (en) Method and apparatus for recovering valuable metals from scrap
JP3911587B2 (en) Electrochemical recovery of heavy metals from fly ash
JP3030372B2 (en) How to separate fission-generated noble metals
JP2002239553A (en) Method for electrochemical recovery of heavy metal from fly ash
US3491003A (en) Method of separating polonium from irradiated bismuth