JP3911587B2 - Electrochemical recovery of heavy metals from fly ash - Google Patents

Electrochemical recovery of heavy metals from fly ash Download PDF

Info

Publication number
JP3911587B2
JP3911587B2 JP2001273088A JP2001273088A JP3911587B2 JP 3911587 B2 JP3911587 B2 JP 3911587B2 JP 2001273088 A JP2001273088 A JP 2001273088A JP 2001273088 A JP2001273088 A JP 2001273088A JP 3911587 B2 JP3911587 B2 JP 3911587B2
Authority
JP
Japan
Prior art keywords
fly ash
zinc
lead
solution
electrolyzed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001273088A
Other languages
Japanese (ja)
Other versions
JP2003082489A (en
Inventor
近 稲住
淳 矢野
雅芳 近藤
浩史 辰己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2001273088A priority Critical patent/JP3911587B2/en
Publication of JP2003082489A publication Critical patent/JP2003082489A/en
Application granted granted Critical
Publication of JP3911587B2 publication Critical patent/JP3911587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物の再資源化技術として焼却飛灰、溶融飛灰から金属類、とりわけ鉛、亜鉛等の有害な金属類を電気化学的に回収する方法に関する。通常、廃自動車、廃家電製品などはシュレッダーにより破砕して金属を回収するが、その際残ったシュレッダーダストは焼却減容し、発生する焼却飛灰あるいは焼却飛灰をさらにプラズマなどで溶融処理する。本発明は、このようにシュレッダーダストの焼却の際に発生する焼却飛灰、あるいはこの焼却飛灰の溶融の際に発生する溶融飛灰から、各種金属を分離回収する方法に関する。
【0002】
【従来の技術】
ごみ焼却施設などから排出される飛灰中には有害な重金属類が高濃度で含有されている。そのため、飛灰は厚生労働省の定めるつぎの4方法▲1▼溶融法▲2▼セメント固化▲3▼薬剤処理▲4▼酸抽出のうちいずれかで中間処理することが定められている。中間処理された飛灰は最終処分地で埋め立て処分されるが、有害な金属類の除去、浸出水中の塩類による悪影響、最終処分量の減容化、あるいは金属類の再資源化の観点から、飛灰中の金属類を回収する技術の確立が望まれている。例えば、湿式処理によって金属を溶出し、次いで金属の種類ごとにこれを濃縮し、各金属を非鉄精錬用原料として使用できる程度の濃縮物として回収し、精錬する方法(特開平7−138630号公報参照)などが提案されている。
【0003】
しかし、この方法では、金属溶出用の液に高価な薬品を使用しなければならず、工程が複雑であり、加えて濃縮物が水酸化物や硫化物からなるスラッジであるため、容積が大きく、また有害物であることから運搬面上多くの問題を抱えている。
【0004】
【発明が解決しようとする課題】
本発明の課題は、シュレッダーダスト等の廃棄物を焼却した際に発生する焼却飛灰、あるいは焼却飛灰をさらにプラズマなどで溶融した際に発生する溶融飛灰から、各種金属を効率よくかつ簡単に分離回収することができる方法を提供することである。
【0005】
【課題を解決するための手段】
請求項1記載の発明は、pH7〜12のチオ硫酸塩水溶液で飛灰から鉛を溶出させ、この溶出液を電解して鉛を硫化鉛として析出回収することを特徴とする、飛灰からの重金属の電気化学的回収方法である。
【0006】
請求項2記載の発明は、請求項1記載の方法により溶出および電解を終えたチオ硫酸塩水溶液のpHを4〜6.5にして飛灰から亜鉛を溶出させ、この溶出液を電解して亜鉛を硫化亜鉛として析出回収することを特徴とする、請求項1記載の電気化学的回収方法である。
【0007】
請求項3記載の発明は、請求項2記載の方法により溶出および電解を終えたチオ硫酸塩水溶液のpHを7〜12にし、この液を請求項1の方法に循環再使用することを特徴とする、請求項1記載の電気化学的回収方法である。
【0008】
請求項4記載の発明は、pH4〜6.5のチオ硫酸塩水溶液で飛灰から鉛と亜鉛を溶出させ、この溶出液を電解して鉛を硫化鉛として、および亜鉛を硫化亜鉛として析出回収することを特徴とする、飛灰からの重金属の電気化学的回収方法である。
【0009】
請求項5記載の発明は、陽極としてはチタン電極あるいは白金めっきしたチタン電極を、陰極としてはチタン電極を使用することを特徴とする、請求項1〜4のいずれかに記載の電気化学的重金属の回収方法である。
【0010】
本発明者らは、飛灰中の金属類の分離回収を行うために鋭意研究を進めた結果、先に、各種飛灰中の重金属を塩酸酸性水溶液などで溶出した後、各種金属の電気化学的析出電位に差異がある点を利用し、陰極電位を貴な電位から卑な電位へ徐々にまたは段階的に変化させ、銅、鉛、カドミウム、亜鉛等の重金属を金属インゴットの形態で析出させることが可能であることを知見した(特願2000−370877号明細書)。また、その改良発明として、pH1以上の水溶液で飛灰中の銅、カドミウム、亜鉛などの重金属を抽出した後に、各種金属の電気化学的析出電位に差異がある点を利用し、陰極電位を貴な電位から卑な電位へ段階的に移行させ、銅、カドミウムおよび亜鉛を電解析出させた後、pHを1以下にして鉛を抽出し、抽出液の電気分解で鉛を析出させる方法を見出した(特願2001−003384号明細書)。さらに、その改良発明として、飛灰からpH12以上の水溶液で鉛と亜鉛を抽出した後に、各種金属の電気化学的析出電位に差異がある点を利用し、陰極電位を貴な電位から卑な電位へ段階的に移行させ、鉛、亜鉛を電解析出させた後、pH12以上で抽出できなかった銅、カドミウムを含む残渣をpH1〜5にして銅、カドミウムを抽出させ、貴な電位から卑な電位へ電位を段階的に移行させ、銅、カドミウムを電解析出させる方法を見出した(特願2001−037819号明細書)。
【0011】
ここで、飛灰中の重金属の内で廃棄規制の観点から重要なものは、鉛と亜鉛の回収であり、これらを分別して回収することが肝要である。
【0012】
そこで、本発明者らは、飛灰をpH4以下の硫酸水溶液で抽出処理して同液に銅、カドミウムおよび亜鉛を溶出させ、生じた飛灰含有スラリーの固液分離により得られた分離液中で陽極と陰極の間で電気分解を行い、その後、上記固液分離で残った残渣を苛性ソーダ等の抽出薬液で抽出処理して同液に鉛を溶出させ、生じた残渣含有スラリーの固液分離により得られた分離液から鉛を電解析出させる方法(特願2001−219251号明細書)、および、飛灰をpH4以下の塩酸水溶液あるいは硝酸水溶液で抽出処理して同液に銅、鉛、カドミウム、亜鉛およびカルシウムを溶出させ、生じた飛灰含有スラリーの固液分離により得られた抽出液にアルカリをpH7〜9まで添加し、銅、鉛、カドミウムおよび亜鉛を水酸化物として沈殿させ、生じた沈殿物を分離し、得られた銅、鉛、カドミウムおよび亜鉛の水酸化物を含む沈殿物に硫酸水溶液を添加して銅、カドミウムおよび亜鉛を溶解させ、鉛を硫酸鉛として沈殿させ、生じた沈殿物を分離し、得られた銅、カドミウムおよび亜鉛の硫酸溶液中で陽極と陰極の間で電気分解を行う方法(特願2001−219256号明細書)を見出した、
一番目と二番目の発明では、いずれも酸性水溶液で抽出を行うが、薬剤として硫酸を使用すると不溶性の硫酸鉛が析出するため、これを以後の電解析出へ供することができない。従ってこの場合には必然的に塩酸あるいは硝酸を使用することになるが、この場合は抽出液を電解すると有害な塩素ガスや、亜硝酸ガスが発生する問題が生ずる。また、三番目の発明では、pH12以上の水溶液で抽出をする場合に、苛性ソーダなどの薬剤がアルミニウムや鉄の抽出のためにも多量に消費されてしまいコスト高を招く上に、抽出した鉛と亜鉛を電解する場合に、陰極電圧を制御しても一部は鉛と亜鉛の合金として電解析出し、析出物の資源価値が落ちるという問題があった。
【0013】
四番目と五番目の発明においては、pH4以下の硫酸水溶液を使用するので、抽出液は鉛を含まず、電解析出した亜鉛は鉛を含まない。また、電解を硫酸水溶液で行うので、電解中には有害な塩素ガスや亜硝酸ガスが発生しない。さらに、硫酸抽出後の残渣にはPbSO、CaSO、アルミナ、シリカしか残っていないので、鉛を抽出する場合の薬剤使用量が少なくてすむ。
【0014】
ところが、四番目と五番目の発明においても、電解析出では、電解の進行により溶液中の金属イオンが低下していって10−4mol/l以下になると、電流効率が低下するという課題が残った。そこで、本発明者らは、鉛と亜鉛の電解をチオ硫酸ソーダあるいはチオ硫酸カリウムの水溶液中で行った際に、錯体の形態で溶解していた鉛イオンと亜鉛イオンがチオ硫酸中のイオウと非常に高い効率で反応を起こして硫化鉛を生じること、およびこの反応が水溶液中の鉛イオン濃度と亜鉛イオン濃度が10−5mol/l以下まで高い効率で進行することを見出し、この点に着目して本発明を完成した。
【0015】
【発明の実施の形態】
鉛と亜鉛を分離回収する場合には次のプロセスを利用する。即ち、溶出槽で飛灰を水に溶解してスラリーとし、このスラリーを攪拌しながらチオ硫酸ソーダ、チオ硫酸カリウムと苛性ソーダを添加してpHを7〜12にする。ここで、pHを7以上にするのは、鉛を溶解させて亜鉛を溶解させないためである。上記pHを維持しての攪拌時間は、好ましくは30分以上であり、温度は室温でもよいが溶解速度を促進するために50℃以上にしても良い。次いで、上記スラリーを濾過槽やフィルタープレスなどの濾過装置で濾過して固液分離し、溶出液と残渣を得る(第一工程)。
【0016】
第二工程では、第一工程で得られた溶出液において、陽極と陰極の間に直流電圧をかけて溶液中の鉛とイオウを反応させて、硫化鉛を析出させる。陽極と陰極との間で電気分解により硫化鉛として鉛を析出させるにあたり、陽極としては、チタン電極あるいは白金めっきしたチタン電極を使用し、陰極としては、チタン電極を使用する。本反応は、錯イオンであるPb(S 4+イオンが陰極上で分解反応してPbSに変化するものと考えられる。
【0017】
第三工程では、第二工程で電解を行った後の残液に硫酸を添加することにより、pHを4〜6.5にして、この液へ、第一工程で生じた残渣から亜鉛を溶出させる。
【0018】
第四工程では、第三工程で得られた溶出液において、陽極と陰極の間に直流電圧をかけて溶液中の亜鉛とイオウを反応させて、硫化亜鉛を析出させる。直流電圧をかける際に、陽極にはチタン電極あるいは白金めっきしたチタン電極を使用し、陰極にはチタン電極を使用するのが望ましい。本反応は、錯イオンであるZn(S 4+イオンが陰極上で分解反応してZnSに変化するものと考えられる。
【0019】
第五工程では、第四工程で溶出および電解を終えたチオ硫酸塩水溶液のpHを7〜12にし、この液を第1工程へ循環し再使用する。
【0020】
一方、鉛と亜鉛を分離せずに回収する場合には、チオ硫酸塩水溶液のpHを4〜6.5にし、この水溶液を用いて一段で飛灰から鉛と亜鉛を溶出させ、陽極と陰極との間でこの溶出液を電気分解することにより硫化鉛と硫化亜鉛を同時に析出回収する。
【0021】
【発明の実施の形態】
実施例1
(第一工程) 先ず、500mlビーカーに焼却飛灰20gを入れ、その中に1N−チオ硫酸ソーダ水溶液を200ml加えた後に、苛性ソーダによりpHを10に調整し、得られたスラリーを30℃で1時間攪拌後に固液分離して、溶出液と残渣を得た。
【0022】
(第二工程) その後、この溶出液中に、陽極として面積50cm の白金めっきしたチタン電極、陰極として面積50cm のチタン電極板を入れて、両極間に2.5Aの一定電流を流して溶出液を電解した。その時、液中の鉛イオン濃度は680mg/lから1mg/l以下に低下した。
【0023】
(第三工程) 第一工程で得られた残渣15.8gを500mlのビーカーに入れ、その中に、第二工程における電解後の残液である1N−チオ硫酸ソーダ水溶液に硫酸を添加してpHを4に調整したものを200ml入れて、得られたスラリーを50℃で1時間攪拌後に固液分離して、溶出液と残渣を得た。
【0024】
(第四工程) 第三工程で得た溶出液中に、陽極として面積50cm の白金めっきしたチタン電極、陰極として面積50cm のチタン電極を入れて、両極間に2.5Aの一定電流を流して溶出液を電解した。その時、液中の亜鉛イオンの濃度は、2,800(mg/l)から5(mg/l)まで低下した。
【0025】
(第五工程) 第四工程で電解を終えたチオ硫酸塩水溶液のpHを7〜12にし、この液を第一工程へ循環して再使用し、新しい飛灰を対象として第一工程〜第四工程を行った。
【0026】
実施例2
(第一工程) 先ず、500mlビーカーに焼却飛灰20gを入れ、その中に1N−チオ硫酸ソーダ水溶液を200ml加えた後に、硫酸によりpHを4〜6.5に調整し、得られたスラリーを30℃で1時間攪拌後に固液分離して、溶出液と残渣を得た。
【0027】
(第二工程) その後、この溶出液中に、陽極として面積50cm の白金めっきしたチタン電極、陰極として面積50cm のチタン電極板を入れて、両極間に2.5Aの一定電流を流して溶出液を電解した。その時、液中の鉛イオン濃度は680mg/lから1mg/l以下に、亜鉛イオン濃度は2,800(mg/l)から5(mg/l)まで低下した。
【0028】
【発明の効果】
本発明によれば、シュレッダーダスト等の廃棄物を焼却した際に発生する焼却飛灰、あるいは焼却飛灰をさらにプラズマなどで溶融した際に発生する溶融飛灰から、各種金属を効率よくかつ簡単に分離回収することができる。
【図面の簡単な説明】
【図1】 実施例1を示すフローシートである。
【図2】 実施例2を示すフローシートである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for electrochemically recovering metals, in particular harmful metals such as lead and zinc, from incinerated fly ash and molten fly ash as a waste recycling technology. Usually, scrapped automobiles and waste home appliances are shredded with a shredder to recover the metal, but the remaining shredder dust is incinerated and reduced, and the generated incinerated fly ash or incinerated fly ash is further melted with plasma. . The present invention relates to a method for separating and recovering various metals from incinerated fly ash generated during incineration of shredder dust or from molten fly ash generated during melting of the incinerated fly ash.
[0002]
[Prior art]
Harmful heavy metals are contained in high concentration in the fly ash discharged from garbage incineration facilities. For this reason, fly ash is determined to be subjected to intermediate treatment by any one of the following four methods (1) melting method (2) cement solidification (3) chemical treatment (4) acid extraction determined by the Ministry of Health, Labor and Welfare. Intermediate fly ash is landfilled at the final disposal site, but from the viewpoints of removing harmful metals, adverse effects of salts in leachate, reducing the volume of final disposal, or recycling metals. Establishment of technology to recover metals in fly ash is desired. For example, a method of eluting a metal by wet processing, then concentrating it for each type of metal, recovering and refining each metal as a concentrate that can be used as a raw material for nonferrous refining (Japanese Patent Laid-Open No. 7-138630) Have been proposed).
[0003]
However, in this method, an expensive chemical must be used for the metal elution liquid, the process is complicated, and the concentrate is a sludge composed of hydroxide and sulfide. Also, because it is a harmful substance, it has many problems on the transportation surface.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to efficiently and easily make various metals from incineration fly ash generated when incineration of wastes such as shredder dust, or molten fly ash generated when incineration fly ash is further melted with plasma or the like. It is to provide a method that can be separated and recovered.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 is characterized in that lead is eluted from fly ash with an aqueous thiosulfate solution having a pH of 7 to 12, and this eluate is electrolyzed to precipitate and recover lead as lead sulfide. This is an electrochemical recovery method for heavy metals.
[0006]
The invention according to claim 2 is to elute zinc from fly ash by adjusting the pH of the aqueous thiosulfate solution that has been eluted and electrolyzed by the method according to claim 1 to 4 to 6.5, and electrolyzing the eluate. 2. The electrochemical recovery method according to claim 1, wherein zinc is precipitated and recovered as zinc sulfide.
[0007]
The invention according to claim 3 is characterized in that the pH of the thiosulfate aqueous solution that has been eluted and electrolyzed by the method according to claim 2 is adjusted to 7 to 12, and this solution is circulated and reused in the method of claim 1. The electrochemical recovery method according to claim 1.
[0008]
In the invention according to claim 4, lead and zinc are eluted from fly ash with an aqueous thiosulfate solution having a pH of 4 to 6.5, and the eluate is electrolyzed to precipitate and recover lead as lead sulfide and zinc as zinc sulfide. This is a method for electrochemically recovering heavy metals from fly ash.
[0009]
The invention according to claim 5 is characterized in that a titanium electrode or a platinum-plated titanium electrode is used as the anode, and a titanium electrode is used as the cathode. Electrochemical heavy metal according to any one of claims 1 to 4 This is a recovery method.
[0010]
As a result of diligent research for separating and recovering metals in fly ash, the present inventors first eluted heavy metals in various fly ash with hydrochloric acid aqueous solution, etc. Utilizing the point that there is a difference in mechanical deposition potential, the cathode potential is gradually or stepwise changed from a noble potential to a base potential to deposit heavy metals such as copper, lead, cadmium, and zinc in the form of metal ingots. (Japanese Patent Application No. 2000-370877). In addition, as an improved invention, after extracting heavy metals such as copper, cadmium, and zinc in fly ash with an aqueous solution having a pH of 1 or higher, the cathode potential can be increased by utilizing the difference in electrochemical deposition potential of various metals. A method of gradually shifting from a low potential to a low potential, electrolytically depositing copper, cadmium and zinc, extracting the lead at a pH of 1 or less, and precipitating the lead by electrolysis of the extract (Japanese Patent Application No. 2001-003384). Further, as an improved invention, after extracting lead and zinc from fly ash with an aqueous solution having a pH of 12 or more, the cathode potential is changed from a noble potential to a base potential by utilizing the difference in electrochemical deposition potential of various metals. After the lead and zinc are electrolytically deposited, the residue containing copper and cadmium that could not be extracted at pH 12 or higher is adjusted to pH 1 to 5, and copper and cadmium are extracted. The present inventors have found a method in which the potential is gradually transferred to the potential and copper and cadmium are electrolytically deposited (Japanese Patent Application No. 2001-037819).
[0011]
Here, among the heavy metals in fly ash, what is important from the viewpoint of disposal regulations is the recovery of lead and zinc, and it is important to separate and recover these.
[0012]
Therefore, the present inventors extracted fly ash with a sulfuric acid aqueous solution having a pH of 4 or less to elute copper, cadmium and zinc in the same solution, and in the separated liquid obtained by solid-liquid separation of the resulting fly ash-containing slurry. Electrolysis is performed between the anode and the cathode, and then the residue remaining in the solid-liquid separation is extracted with an extraction chemical solution such as caustic soda to elute lead into the same solution, and the resulting slurry containing the residue is solid-liquid separated. And a method of electrolytically precipitating lead from the separated solution obtained by the above (Japanese Patent Application No. 2001-219251), and the fly ash is extracted with a hydrochloric acid aqueous solution or a nitric acid aqueous solution having a pH of 4 or less, and copper, lead, Cadmium, zinc and calcium are eluted, and alkali is added to pH 7-9 to the extract obtained by solid-liquid separation of the resulting fly ash-containing slurry, and copper, lead, cadmium and zinc are precipitated as hydroxides. The resulting precipitate is separated, and an aqueous sulfuric acid solution is added to the resulting precipitate containing copper, lead, cadmium and zinc hydroxide to dissolve copper, cadmium and zinc, and lead is precipitated as lead sulfate. The resulting precipitate was separated, and a method for electrolysis between the anode and the cathode in the obtained sulfuric acid solution of copper, cadmium and zinc was found (Japanese Patent Application No. 2001-219256),
In both the first and second inventions, extraction is carried out with an acidic aqueous solution. However, when sulfuric acid is used as a chemical, insoluble lead sulfate is deposited, and this cannot be used for subsequent electrolytic deposition. Therefore, in this case, hydrochloric acid or nitric acid is inevitably used. In this case, however, electrolysis of the extract causes a problem of generating harmful chlorine gas or nitrous acid gas. In addition, in the third invention, when extracting with an aqueous solution having a pH of 12 or more, a chemical such as caustic soda is consumed in a large amount for the extraction of aluminum and iron, and the cost is increased. In the case of electrolyzing zinc, there is a problem that even if the cathode voltage is controlled, a part of it is electrolytically deposited as an alloy of lead and zinc, and the resource value of the deposit is lowered.
[0013]
In the fourth and fifth inventions, since an aqueous sulfuric acid solution having a pH of 4 or less is used, the extract solution does not contain lead, and zinc that has been electrolytically deposited does not contain lead. Further, since electrolysis is performed with a sulfuric acid aqueous solution, no harmful chlorine gas or nitrous acid gas is generated during electrolysis. Furthermore, since only PbSO 4 , CaSO 4 , alumina, and silica remain in the residue after the sulfuric acid extraction, the amount of chemical used when extracting lead can be reduced.
[0014]
However, even in the fourth and fifth inventions, in the electrolytic deposition, when the metal ions in the solution are lowered by the progress of electrolysis and become 10 −4 mol / l or less, the problem that the current efficiency is lowered. The remaining. Therefore, the present inventors conducted the electrolysis of lead and zinc in an aqueous solution of sodium thiosulfate or potassium thiosulfate, and lead ions and zinc ions dissolved in the form of a complex were converted to sulfur in thiosulfate. It has been found that the reaction occurs with very high efficiency to produce lead sulfide, and that this reaction proceeds with high efficiency up to a concentration of lead ions and zinc ions in the aqueous solution of 10 −5 mol / l or less. The present invention was completed with attention.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The following process is used to separate and recover lead and zinc. That is, fly ash is dissolved in water in an elution tank to form a slurry, and while stirring the slurry, sodium thiosulfate, potassium thiosulfate and caustic soda are added to adjust the pH to 7-12. Here, the reason why the pH is set to 7 or more is to dissolve lead but not zinc. The stirring time while maintaining the pH is preferably 30 minutes or more, and the temperature may be room temperature, but may be 50 ° C. or more in order to accelerate the dissolution rate. Next, the slurry is filtered through a filtration device such as a filtration tank or a filter press to separate into solid and liquid to obtain an eluate and a residue (first step).
[0016]
In the second step, in the eluate obtained in the first step, a direct current voltage is applied between the anode and the cathode to cause the lead and sulfur in the solution to react to precipitate lead sulfide. When lead is deposited as lead sulfide by electrolysis between the anode and the cathode, a titanium electrode or a platinum-plated titanium electrode is used as the anode, and a titanium electrode is used as the cathode. In this reaction, it is considered that Pb (S 2 O 3 ) 3 4+ ions, which are complex ions, are decomposed on the cathode and changed to PbS.
[0017]
In the third step, by adding sulfuric acid to the remaining liquid after electrolysis in the second step, the pH is adjusted to 4 to 6.5, and zinc is eluted from the residue generated in the first step into this liquid. Let
[0018]
In the fourth step, in the eluate obtained in the third step, a direct current voltage is applied between the anode and the cathode to react zinc and sulfur in the solution to precipitate zinc sulfide. When applying a DC voltage, it is desirable to use a titanium electrode or a platinum-plated titanium electrode for the anode and a titanium electrode for the cathode. In this reaction, it is considered that Zn (S 2 O 3 ) 3 4+ ions, which are complex ions, are decomposed on the cathode to change to ZnS.
[0019]
In the fifth step, the pH of the aqueous thiosulfate solution that has been eluted and electrolyzed in the fourth step is set to 7 to 12, and this solution is circulated to the first step and reused.
[0020]
On the other hand, when recovering lead and zinc without separating them, the pH of the aqueous thiosulfate solution is set to 4 to 6.5, and the aqueous solution is used to elute lead and zinc from fly ash in one step, and the anode and cathode The eluate is electrolyzed between the lead and zinc sulfide and zinc sulfide are simultaneously deposited and recovered.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
(First Step) First, 20 g of incinerated fly ash was put into a 500 ml beaker, 200 ml of 1N-sodium thiosulfate aqueous solution was added thereto, pH was adjusted to 10 with caustic soda, and the resulting slurry was 1 at 30 ° C. After stirring for a period of time, solid-liquid separation was performed to obtain an eluate and a residue.
[0022]
(Second step) Thereafter, a platinum electrode having a platinum plating area of 50 cm 2 as an anode and a titanium electrode plate having an area of 50 cm 2 as a cathode were put in the eluate, and a constant current of 2.5 A was passed between both electrodes. The eluate was electrolyzed. At that time, the lead ion concentration in the liquid decreased from 680 mg / l to 1 mg / l or less.
[0023]
(Third Step) 15.8 g of the residue obtained in the first step is put in a 500 ml beaker, and sulfuric acid is added to the 1N-sodium thiosulfate aqueous solution that is the residual solution after the electrolysis in the second step. 200 ml of a solution adjusted to pH 4 was added, and the resulting slurry was stirred at 50 ° C. for 1 hour, followed by solid-liquid separation to obtain an eluate and a residue.
[0024]
(Fourth step) In the eluate obtained in the third step, a platinum electrode having a platinum plating area of 50 cm 2 as an anode and a titanium electrode having an area of 50 cm 2 as a cathode are put, and a constant current of 2.5 A is applied between both electrodes. The eluate was electrolyzed by flowing. At that time, the concentration of zinc ions in the liquid decreased from 2,800 (mg / l) to 5 (mg / l).
[0025]
(Fifth step) The pH of the thiosulfate aqueous solution that has been electrolyzed in the fourth step is adjusted to 7 to 12, and this solution is circulated and reused in the first step. Four steps were performed.
[0026]
Example 2
(First step) First, 20 g of incinerated fly ash was put into a 500 ml beaker, 200 ml of 1N-sodium thiosulfate aqueous solution was added thereto, pH was adjusted to 4 to 6.5 with sulfuric acid, and the resulting slurry was obtained. After stirring for 1 hour at 30 ° C., solid-liquid separation was performed to obtain an eluate and a residue.
[0027]
(Second step) Thereafter, a platinum electrode having a platinum plating area of 50 cm 2 as an anode and a titanium electrode plate having an area of 50 cm 2 as a cathode were put in the eluate, and a constant current of 2.5 A was passed between both electrodes. The eluate was electrolyzed. At that time, the lead ion concentration in the liquid decreased from 680 mg / l to 1 mg / l or less, and the zinc ion concentration decreased from 2,800 (mg / l) to 5 (mg / l).
[0028]
【The invention's effect】
According to the present invention, various metals can be efficiently and easily produced from incineration fly ash generated when incineration of waste such as shredder dust, or molten fly ash generated when the incineration fly ash is further melted with plasma or the like. Can be separated and recovered.
[Brief description of the drawings]
1 is a flow sheet showing Example 1. FIG.
2 is a flow sheet showing Example 2. FIG.

Claims (5)

pH7〜12のチオ硫酸塩水溶液で飛灰から鉛を溶出させ、この溶出液を電解して鉛を硫化鉛として析出回収することを特徴とする、飛灰からの重金属の電気化学的回収方法。A method for electrochemical recovery of heavy metals from fly ash, wherein lead is eluted from fly ash with an aqueous thiosulfate solution having a pH of 7 to 12, and the eluate is electrolyzed to precipitate and recover lead as lead sulfide. 請求項1記載の方法により溶出および電解を終えたチオ硫酸塩水溶液のpHを4〜6.5にして飛灰から亜鉛を溶出させ、この溶出液を電解して亜鉛を硫化亜鉛として析出回収することを特徴とする、請求項1記載の電気化学的回収方法。The pH of the thiosulfate aqueous solution that has been eluted and electrolyzed by the method according to claim 1 is adjusted to pH 4 to 6.5, and zinc is eluted from the fly ash, and the eluate is electrolyzed to precipitate and collect zinc as zinc sulfide. The electrochemical recovery method according to claim 1, wherein: 請求項2記載の方法により溶出および電解を終えたチオ硫酸塩水溶液のpHを7〜12にし、この液を請求項1の方法に循環再使用することを特徴とする、請求項1記載の電気化学的回収方法。2. The electricity according to claim 1, wherein the pH of the aqueous thiosulfate solution that has been eluted and electrolyzed by the method according to claim 2 is set to 7 to 12, and this solution is circulated and reused in the method of claim 1. Chemical recovery method. pH4〜6.5のチオ硫酸塩水溶液で飛灰から鉛と亜鉛を溶出させ、この溶出液を電解して鉛を硫化鉛として、および亜鉛を硫化亜鉛として析出回収することを特徴とする、飛灰からの重金属の電気化学的回収方法。Fe and zinc are eluted from fly ash with an aqueous thiosulfate solution having a pH of 4 to 6.5, and the eluate is electrolyzed to precipitate and recover lead as lead sulfide and zinc as zinc sulfide. Electrochemical recovery of heavy metals from ash. 陽極としてはチタン電極あるいは白金めっきしたチタン電極を、陰極としてはチタン電極を使用することを特徴とする、請求項1〜4のいずれかに記載の電気化学的重金属の回収方法。5. The method for recovering electrochemical heavy metals according to claim 1, wherein a titanium electrode or a platinum-plated titanium electrode is used as the anode, and a titanium electrode is used as the cathode.
JP2001273088A 2001-09-10 2001-09-10 Electrochemical recovery of heavy metals from fly ash Expired - Fee Related JP3911587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001273088A JP3911587B2 (en) 2001-09-10 2001-09-10 Electrochemical recovery of heavy metals from fly ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001273088A JP3911587B2 (en) 2001-09-10 2001-09-10 Electrochemical recovery of heavy metals from fly ash

Publications (2)

Publication Number Publication Date
JP2003082489A JP2003082489A (en) 2003-03-19
JP3911587B2 true JP3911587B2 (en) 2007-05-09

Family

ID=19098354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001273088A Expired - Fee Related JP3911587B2 (en) 2001-09-10 2001-09-10 Electrochemical recovery of heavy metals from fly ash

Country Status (1)

Country Link
JP (1) JP3911587B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020094232A (en) * 2001-06-04 2002-12-18 문상우 Process for manufacturing sulfate of zine fertilizer from dust in electric furnace
JP4485257B2 (en) * 2004-05-28 2010-06-16 中国電力株式会社 Oil-based combustion ash treatment method and system
FR3083224B1 (en) * 2018-06-29 2023-01-06 Centre Nat Rech Scient METHOD FOR THE DECONTAMINATION OF HEAVY METALS IN AN AQUEOUS SOLUTION

Also Published As

Publication number Publication date
JP2003082489A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
JP3962855B2 (en) Recovery method of heavy metals from fly ash
US5897685A (en) Recycling of CdTe photovoltaic waste
JP2006198448A (en) Valuable recovery method from flying ash
JP3802046B1 (en) Method for processing heavy metal-containing powder
JPH05255772A (en) Method for recovering zinc and lead from flue dust generated in electric steelmaking, method for recirculating refined metal into furnace and apparatus for executing this method
JP2003247089A (en) Method of recovering indium
US6264903B1 (en) Method for recycling industrial waste streams containing zinc compounds
HUT70991A (en) Process for decontamination of metal-polluted earth
JP5293007B2 (en) Method and apparatus for recovering thallium and potassium nitrate
JP3951041B2 (en) Electrochemical recovery of heavy metals from fly ash
JP3911587B2 (en) Electrochemical recovery of heavy metals from fly ash
JP3760261B2 (en) Electrochemical recovery of heavy metals from fly ash
JP3803858B2 (en) Electrochemical recovery of heavy metals from fly ash
JPH0975891A (en) Wet disposal method for iron manufacturing dust
JP2005270860A (en) Treatment method of flying ash
JP4017401B2 (en) Metal recovery method in ash
JP2003027272A (en) Method for electrochemically recovering heavy metal from fly ash
JP2002173790A (en) Electrochemical recovering method of metals in flying ash
KR100926238B1 (en) Zinc recovery method from dust containing zinc and chlorine
JP4505840B2 (en) Method for recovering valuable materials from molten fly ash
JP2001046996A (en) Treatment of waste
JP3608069B2 (en) Incineration ash treatment method
KR102678814B1 (en) Valuable metal recovery method using solvent extraction from zinc and copper waste
JP2001026894A (en) Treatment of salts containing heavy metal and device therefor
CN117431588A (en) Method for separating and recovering metal from fly ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees