JP4017401B2 - Metal recovery method in ash - Google Patents

Metal recovery method in ash Download PDF

Info

Publication number
JP4017401B2
JP4017401B2 JP2002003276A JP2002003276A JP4017401B2 JP 4017401 B2 JP4017401 B2 JP 4017401B2 JP 2002003276 A JP2002003276 A JP 2002003276A JP 2002003276 A JP2002003276 A JP 2002003276A JP 4017401 B2 JP4017401 B2 JP 4017401B2
Authority
JP
Japan
Prior art keywords
metal
metal components
specific
ash
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002003276A
Other languages
Japanese (ja)
Other versions
JP2003201589A (en
Inventor
宗治 藤川
智久 太田
弘次 三嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2002003276A priority Critical patent/JP4017401B2/en
Publication of JP2003201589A publication Critical patent/JP2003201589A/en
Application granted granted Critical
Publication of JP4017401B2 publication Critical patent/JP4017401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、灰中の金属回収方法に関し、具体的には、例えば燃料、廃棄物等の焼却灰、焼却飛灰、溶融飛灰等の複数の金属成分を含有する灰を処理して、目的の金属成分を回収すると共に灰を無害化するための灰中の金属回収方法に関する。
【0002】
【従来の技術】
上記灰中の金属回収方法及び装置の従来技術(例えば特開2000−5722号公報参照)について、図6及び図7に基づいて説明する。
灰中の金属回収方法は以下の各工程からなる。先ず、上記焼却灰、焼却飛灰、溶融飛灰などを酸又はアルカリで溶解する溶解工程を行う。この際、懸濁液から固形分を除去するために固液分離して金属成分が溶解した金属溶解液を得る。次に、得られた金属溶解液をその液中の回収目的の金属成分と選択的に結合し得る金属吸着材が充填されたカラムに通液させて、その金属成分を金属吸着材に結合させる吸着工程を行う。次に、上記金属吸着材に溶離液を接触させて、金属吸着材に結合している金属成分を溶離液(溶離回収液)中に溶離させる溶離工程を行う。次に、この溶離液(溶離回収液)にアルカリ剤などの沈殿剤を添加して液中の金属成分を不溶化して沈殿させて、目的の金属成分を金属化合物として回収する沈殿工程を行う。そして、複数の金属成分が溶解した上記金属溶解液から各金属成分を回収するために、各金属成分の吸着に適するように金属吸着材の種類を変えて上記吸着工程と溶離工程を行う。
【0003】
溶解工程では、供給される灰1とHClなどの薬品2を溶解槽3に投入して攪拌し溶解液を作成する。さらに、その溶解液を脱水機4により固液分離して、溶解残渣5を除去し、金属溶解液は槽6に貯める。吸着工程では、金属溶解液はポンプ7により金属吸着材が充填されたカラム8に通液されて液中の金属イオンが金属吸着材に吸着する。この後、カラム8内に残存している金属溶解液を追い出すためにエアーブロー9による前洗浄を行う。溶離工程では、上記前洗浄後、溶離液槽10からポンプ11によって溶離液がカラム8に通液され、吸着していた金属イオンが溶離液に溶離し、この後、カラム8内に残存している溶離液を追い出すために洗浄液12による後洗浄を行う。尚、図7には、カラム8を4個備えた装置が示されており、吸着工程では、4個のカラム8に金属溶解液を直列に通液させて吸着させ、溶離工程では、4個のカラム8のうちの1つのカラム8についてだけ、そのカラム位置を順次ずらしながら溶離液を通液させる。
【0004】
沈殿工程では、沈殿槽15に回収された溶離液に沈殿剤(NaOHやNaHS等)を加えることにより金属イオンが沈殿した懸濁液を得る。そして、その懸濁液を脱水機13により固液分離し、鉛などの金属回収物14をPb(OH)2やPbSのような化合物の形で得るとともに、排水は排水槽20に貯留する。一方、カラム8を通過して上記金属成分が除去された液は沈殿槽16に貯留され、沈殿剤を添加して上記金属成分以外の別の金属イオンを沈殿させ、脱水機17により固液分離し別の金属回収物18を得る。尚、ここで分離された液は循環路19によって溶解槽3に戻され溶解液として再利用される。
【0005】
【発明が解決しようとする課題】
しかし、従来の灰中の金属回収方法及び装置では、以下の問題点があった。
(1)沈殿工程において沈殿剤を用いて金属成分を化合物の形で沈殿回収しているために、回収物の純度を高くすることができなかった。例えば、鉛を回収したときの鉛純度は80数%までしか上げることができなかった。
また、金属回収物に塩素が2〜4%程度含まれ、回収物を山元還元する際にペナルティとなる不利があった。塩素混入の原因としては、溶離液中に酸に溶け難いPbCl2が析出し、沈殿物と混じることなどが考えられる。尚、一般的に塩素が1%以上含まれていると、山元還元する際のペナルティとなる。さらに、沈殿工程で使用する沈殿剤の費用が高くついていた。
(2)灰中に含まれる複数の金属成分のうち含有率が高い金属成分を、吸着工程と溶離工程により金属吸着材に吸着させて回収すると、金属吸着材の使用量が多くなり、処理コストが高くなっていた。
【0006】
ここで、特開平11−335748号公報に、灰中の金属成分を電解採取により回収する技術が開示されている。具体的には、焼却灰からスケール付着の原因となる物質(Na,Caなど)を除去した後、灰に含まれる重金属類を酸溶解して抽出し、その溶解液について電極電位を各金属ごとに変化させて多段式に電気分解することで各種の重金属を分別して回収する内容である。しかし、この技術では、複数の金属成分が混合溶解している液から単一の金属成分だけを電解析出させるため、電極電位の設定がシビアであり、純度の高い金属回収物を得ることが容易でないという問題点がある。
【0007】
本発明は、上記実情に鑑みてなされたものであり、その目的は、純度が高く塩素を含まない金属回収物を容易に得るようにしながら、処理コストを極力安くすることが可能となる灰中の金属回収方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明に係る灰中の金属回収方法の特徴構成は、請求項1に記載した如く、回収目的の複数の金属成分を含有する灰を、酸又はアルカリを用いて溶解させて、前記複数の金属成分が溶解した金属溶解液を生成する溶解工程と、前記溶解工程で得られた前記金属溶解液を前記複数の金属成分のうちの一つ又は複数の特定の金属成分の夫々と選択的に結合し得る金属吸着材の夫々に接触させて、前記特定の金属成分の夫々を前記特定の金属成分別の金属吸着材に結合させる吸着工程と、前記吸着工程で前記特定の金属成分の夫々が結合した前記特定の金属成分別の金属吸着材に溶離液を接触させて、前記特定の金属成分の夫々を前記特定の金属成分別の溶離液に溶離させる溶離工程と、前記溶離工程で得られた前記特定の金属成分別の溶離液の夫々を電気分解して、その各溶離液中の前記特定の金属成分の夫々を電解析出させる主電解採取工程と、前記特定の金属成分の全てについて前記吸着工程を行った後の前記金属溶解液を電気分解して、その金属溶解液中の前記特定の金属成分以外の金属成分を電解析出させる副電解採取工程とからなり、前記主電解採取工程及び前記副電解採取工程の少なくとも一方において回収した電解ガスから生成した酸を前記溶解工程で用いる点にある。
【0012】
以下に作用並びに効果を説明する。
本発明に係る灰中の金属回収方法の特徴構成によれば、溶解工程では、回収目的の複数の金属成分を含有する灰を酸又はアルカリを用いて溶解させて、複数の金属成分が溶解した金属溶解液を生成し、吸着工程では、溶解工程で得られた金属溶解液を上記複数の金属成分のうちの一つ又は複数の特定の金属成分の夫々と選択的に結合し得る金属吸着材の夫々に接触させて、特定の金属成分の夫々を特定の金属成分別の金属吸着材に吸着させ、溶離工程では、前記特定の金属成分の夫々が結合した特定の金属成分別の金属吸着材に溶離液を接触させて、特定の金属成分の夫々を特定の金属成分別の溶離液に溶離させ、主電解採取工程では、溶離工程で得られた特定の金属成分別の溶離液の夫々を電気分解して、その各溶離液中の特定の金属成分の夫々を電解析出させ、副電解採取工程では、前記特定の金属成分の全てについて前記吸着工程を行った後の前記金属溶解液を電気分解して、その金属溶解液中の前記特定の金属成分以外の金属成分を電解析出させる。
【0013】
すなわち、金属溶解液中の複数の金属成分のうちの特定の金属成分については、吸着工程と溶離工程を経て特定の金属成分の夫々が溶離した特定の金属成分別の溶離液から、主電解採取工程により特定の金属成分の夫々を電解析出させて回収し、特定の金属成分以外の金属成分については、吸着工程と溶離工程を行わず、上記特定の金属成分について吸着工程を行った後の残りの金属溶解液から副電解採取工程により電解析出させて回収する。
そのため、主電解採取工程では、電解対象の溶離液は特定の金属成分だけを含み、副電解採取工程では、電解対象の金属溶解液は特定の金属成分が除去された残りの金属成分だけを含むので、両電解採取工程共に、電解対象の金属が限定され、電極電位などの電解条件の許容範囲が広くなり、シビアな電解条件の設定が不要となる。
【0014】
従って、回収目的の複数の金属成分のうち、特定の金属成分についてはその特定の金属成分の夫々が溶離した各溶離液から電解析出させ、又、特定の金属成分以外の金属成分については、特定の金属成分が除かれた後の残りの金属溶解液から電解析出させて回収することで、許容範囲の広い電解条件で容易な電解操作を行いながら、純度が高く塩素を含まない金属回収物を得ることができ、さらに、従来の沈殿工程の代わりに電解採取工程を行うので、電気代に比べて高価な沈殿剤が不要となり、また、特定の金属成分以外の金属成分については吸着工程と溶離工程を行わないので、全ての金属成分について吸着工程と溶離工程を行う場合に比べて、金属吸着材の使用量が減少して金属吸着材の費用が少なくて済む。もって、純度が高く塩素を含まない金属回収物を容易に得るようにしながら、処理コストを極力安くすることが可能となる灰中の金属回収方法が得られる。
【0015】
更に、同特徴構成によれば、前記主電解採取工程及び前記副電解採取工程の少なくとも一方において発生する電解ガスを回収し、その電解ガスから生成した酸を前記溶解工程で用いる。
すなわち、上記電解採取工程においてプラス電極とマイナス電極から夫々電気分解により電解ガスが発生するので、その電解ガスを回収して反応させて、溶解工程で用いる酸を生成することができる。
従って、溶解工程で必要になる酸を新たに購入する量が少なくて済むので、処理コストの一層の低減が可能となる灰中の金属回収方法の好適な実施形態が得られる。
【0020】
【発明の実施の形態】
本発明に係る灰中の金属回収方法及び金属回収装置の実施形態を図面に基づいて説明する。
灰中の金属回収方法は、図1に示すように、回収目的の複数の金属成分(鉛、銅、亜鉛)を含有する灰を、酸又はアルカリを用いて溶解させて、前記複数の金属成分が溶解した金属溶解液を生成する溶解工程と、前記溶解工程で得られた金属溶解液を複数の金属成分のうちの一つ又は複数の特定の金属成分(鉛と銅)の夫々と選択的に結合し得る金属吸着材(鉛用の金属吸着材と銅用の金属吸着材)の夫々に接触させて、前記特定の金属成分の夫々を前記特定の金属成分別の金属吸着材に結合させる吸着工程(鉛吸着工程と銅吸着工程)と、前記吸着工程で前記特定の金属成分の夫々が結合した前記特定の金属成分別の金属吸着材に溶離液を接触させて、前記特定の金属成分の夫々を前記特定の金属成分別の溶離液に溶離させる溶離工程(鉛溶離工程と銅溶離工程)と、前記溶離工程で得られた前記特定の金属成分別の溶離液の夫々を電気分解して、その各溶離液中の前記特定の金属成分の夫々を電解析出させる主電解採取工程(鉛電解採取工程と銅電解採取工程)と、前記特定の金属成分の全てについて前記吸着工程を行った後の前記金属溶解液を電気分解して、その金属溶解液中の前記特定の金属成分以外の金属成分(亜鉛)を電解析出させる副電解採取工程(亜鉛電解採取工程)とからなる。
【0021】
尚、上記溶解工程を行う際、懸濁液から固形分を除去するために固液分離している。また、鉛吸着工程を通過した後の金属溶解液にNaOHなどのアルカリを添加してpHを2〜3に調整し、次の銅吸着工程で銅吸着の阻害物質となるFeやAlを沈殿させて事前に除去している。
【0022】
また、灰中の金属回収装置は、図2に示すように、回収目的の複数の金属成分(鉛、銅、亜鉛)を含有する灰を、酸又はアルカリを用いて溶解させて、前記複数の金属成分が溶解した金属溶解液を生成する溶解部YBと、溶解部YBで得られる金属溶解液中の複数の特定の金属成分(鉛と銅)の夫々と選択的に結合し得る金属吸着材kk(鉛用の金属吸着材と銅用の金属吸着材)を有して、その金属吸着材kkに前記金属溶解液を接触させてその金属溶解液中の特定の金属成分の夫々を金属吸着材kkに結合させ、さらに、前記特定の金属成分の夫々が結合した金属吸着材kkに溶離液を接触させて、金属吸着材kkに結合した前記特定の金属成分の夫々を前記溶離液中に溶離させるように、前記特定の金属成分別に設けた吸着処理部KS(鉛用吸着処理部K1と銅用吸着処理部K2)と、前記特定の金属成分別の吸着処理部KSにて得られる前記溶離液を電気分解して、前記溶離液中の前記特定の金属成分の夫々を電解析出させるように、前記特定の金属成分別に設けた主電解部SD(鉛用電解部と銅用電解部)と、前記吸着処理部KSによって前記特定の金属成分の全てを金属吸着材kkに吸着させた後の前記金属溶解液を電気分解して、その金属溶解液中の前記特定の金属成分以外の金属成分(亜鉛)を電解析出させる副電解部FD(亜鉛用電解部)とを備えている。
【0023】
具体的には、回収目的の金属成分を含有する灰1と、酸又はアルカリ等の薬品2が、溶解槽3に投入されて溶解処理され、次に、溶解槽3から排出される懸濁液が脱水機4(固液分離装置)によって溶解残渣5(固形分)を除去され、得られた分離液が溶解液槽6に貯められる。すなわち、前記溶解部YBが、上記溶解槽3や脱水機4によって構成されている。
【0024】
上記溶解処理される灰の種類としては、各種の燃料、廃棄物等の焼却灰、焼却飛灰、溶融飛灰等が挙げられる。かかる灰は、複数の金属成分を含有し、金属成分を構成する金属元素としては、例えば、図3に灰中の金属含有率の一例を示すように、本実施形態で回収する鉛、亜鉛、銅の他に、鉄、アルミニウム、ナトリウム、カリウム、カルシウム、マンガン、珪素、カドミウム、マグネシウム等が含まれている。図3より、亜鉛の含有率が最も高いので、亜鉛については多量の金属吸着材kkを使用することを避けるために、前述のように、吸着工程及び溶離工程を行わず、副電解採取工程により金属溶解液から直接電解採取する。なお、かかる金属元素を有する金属成分としては、これら金属元素単体に加え、その酸化物、水酸化物、硫化物、塩化物等の種々の形で含まれる。さらに、灰中には多量の塩素Clが含まれている。尚、T−Pは全リン量を示す。
【0025】
溶解に用いられる酸としては、上記の金属成分を可溶化して液側に移行できるものであればいずれでもよいが、典型的なものとして、硝酸、硫酸、塩酸、りん酸、しゅう酸等が挙げられる。また、溶解に用いられるアルカリとしては、上記の金属成分を可溶化して液側に移行できるものであればいずれでもよいが、典型的なものとして、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ金属、水酸化カルシウム等の水酸化アルカリ土類金属、アルカリ金属炭酸塩、りん酸塩、アンモニア等が挙げられる。
【0026】
また、上記の酸又はアルカリに加えて、金属成分の溶解性を高めるために、各種塩類や溶解促進剤を添加してもよい。特に、塩酸を用いる場合、鉛成分が過剰の塩素イオンの存在下で高い溶解性が得られるので、塩化ナトリウム、塩化カルシウム等が適量添加される。具体的には、塩酸に対して塩素イオン濃度で、好ましくは0.5〜10モル倍、より好ましくは1〜3モル倍となるように用いられる。上記のうち、本発明では、塩酸水溶液を塩素イオンの共存下で用いることが好ましい。
尚、金属成分の溶解を容易にするため、適宜、水溶液の濃度を調整したり、加熱や攪拌を行うことができる。そして、使用する酸の好ましい濃度は、灰の濃度によって異なるが、最終pHが1以下となる濃度が特に有効である。得られた懸濁液には、金属成分が金属イオン、金属化合物イオン(錯イオンを含む)等の形で溶解した液体成分と、不溶性の残渣が存在することになる。本実施形態では、溶融飛灰を0.7M塩酸と1.35M塩化ナトリウム水溶液に溶解している。
【0027】
固液分離に用いる脱水機4としては、懸濁液から固形分を除去できるものであればいずれの方法も採用できるが、濾過、遠心分離、沈降分離などが挙げられる。なお、金属成分の回収率を高めるには、除去した固形分に液体成分の付着量が少ない方法をとることが好ましい。
【0028】
次に、溶解液槽6内の金属溶解液はポンプ7により鉛用の金属吸着材kkが充填されたカラム8に向けて送出可能に構成され、さらに、カラム8に対して、溶離液槽10からの溶離液と、洗浄液槽12からの後洗浄液と、エアーブロー9による前洗浄用ガスが夫々供給可能に構成され、前記溶離液と洗浄液を送出するためのポンプ11が設けられている。そして、上記カラム8に、前記複数の金属成分(鉛、銅、亜鉛)が溶解した金属溶解液を通液させることで、その金属溶解液中の特定の金属成分(鉛)が鉛用の金属吸着材kkに選択的に結合される。この後、カラム8内に残存している金属溶解液を追い出すためにエアーブロー9による前洗浄を行う。前洗浄後、溶離液槽10から溶離液がカラム8に通液され、鉛用の金属吸着材kkに吸着していた特定の金属成分(鉛)が溶離液に溶離し、この後、カラム8内に残存している溶離液を追い出すために洗浄液槽12から後洗浄液を供給する。
【0029】
従って、上記カラム8、エアーブロー9、溶離液槽10、洗浄液槽12及びポンプ7,11等によって、前記吸着処理部KSとしての鉛用吸着処理部K1が構成されている。図4に上記鉛用吸着処理部K1によって得られた溶離液(溶離回収液)の組成の一例を示すが、図3の灰中の金属含有率データと比較して、鉛成分の比率が高いことは当然として、塩素Clの比率が高いことが判る。
【0030】
鉛用の金属吸着材kkとして、具体的には、大環状化合物を固定化した担体が使用される。大環状化合物を固定化した担体は、クラウン化合物等の大環状化合物をスぺーサーを介して、シリカ等の担体に共有結合させたものであり、その環径と結合対象物の径との関係や両者の化学的親和性等に基づき、鉛成分と選択的に結合し得る鉛用の担体が得られる。例えば、鉛成分を鉛イオン又は含鉛塩化物イオンとして結合するPb用担体の場合には、18−クラウン−6エーテル、又はこれに類する化合物からなる群より選ばれる1種以上のものを用いる。
尚、銅用の金属吸着材kkも、同様に、銅成分と選択的に結合し得るように環径等が設定された大環状化合物を固定化した担体が使用される。
上記担体の形態としては、微粒子状、ビーズ状(多孔質、無孔質)、膜状(多孔質、無孔質)のものが挙げられるが、多孔質ビーズが接触効率や取扱いが容易であることから好ましい。担体の材料としては、シリカゲルの他、ガラス、砂、アルミナ、チタン、ジルコニア等が挙げられる。
【0031】
上記溶離液としては、結合した各種金属成分や溶解処理で用いた酸等に応じて適宜選択することができるが、金属イオンを再び可溶化させる酸や、溶解処理で用いた酸等の濃度を低下させることにより金属イオンを離脱させる水等の溶媒を用いることができる。
具体的には、金属イオンを再び可溶化させる酸としては、硫酸等が挙げられる。本実施形態では、鉛の溶離液には水(特に蒸留水)、銅の溶離液には硫酸を用いる。
【0032】
前記後洗浄液としては、結合した各種金属成分や溶解処理で用いた酸等に応じて適宜選択することができるが、本実施形態では、酸またはアルカリが用いられ、具体的には塩酸を用いる。
【0033】
前記鉛用吸着処理部K1から得られる溶離回収液は、鉛電解槽21において、Pt等を電極として電解分解され、鉛回収物22が得られる。すなわち、鉛電解槽21が前記主電解部SDの一つを構成する。この鉛電解採取では、溶離液中に含まれる金属成分がほぼ単一成分(鉛)であり、他の金属成分をほとんど含んでいないので、電極電圧を幅広い電圧範囲内に設定することができる。因みに、電極電圧の一例をあげると、電極電圧6.5Vで高純度の鉛回収物を得ている。
【0034】
図5(イ)に上記電解採取により回収された鉛回収物22の組成例を示し、図5(ロ)に比較例として従来の沈殿法による鉛回収物の組成例を示す。両データを比較すると、沈殿法による鉛回収物では鉛の純度が81.7%と低いのに比べて、電解採取による鉛回収物では鉛成分の純度が91.6%と高かった。更に得られたスポンジ状の鉛回収物を還元処理することで更に高い純度の鉛回収物を得ることができる。また、沈殿法による鉛回収物では塩素残存率が4.3%と非常に大きいのに対して、電解採取による鉛回収物の塩素残存率は0.032%と非常に小さいことが判る。さらに、電解採取による鉛回収物では、鉛以外の金属(例えば、亜鉛や銅)の混入率が低いことも判る。
【0035】
一方、前記鉛用吸着処理部K1を通液して鉛成分が除去された金属溶解液は、調整槽23において前述のようにpH調整されてFeやAlを除去した後、前記吸着処理部KSとしての銅用吸着処理部K2に供給される。尚、銅用吸着処理部K2は、前記カラム8に銅用の金属吸着材kkが充填される点、溶離液に硫酸を用いる点を除いて、前記鉛用吸着処理部K1と同様に構成されている。
上記銅用吸着処理部K2によって得られた溶離液(溶離回収液)は銅電解槽24において電解採取されて、銅回収物25が得られる。すなわち、銅電解槽24が前記主電解部SDの一つを構成する。この銅電解採取においても、溶離液中に含まれる金属成分がほぼ単一成分(銅)であり、他の金属成分をほとんど含んでいないので、鉛電解採取と同様に、電極電圧を幅広い電圧範囲内に設定することができる。
【0036】
前記銅用吸着処理部K2を通液し、鉛成分と銅成分が除去された金属溶解液は、亜鉛電解槽26において電解採取されて、亜鉛回収物27が得られる。すなわち、亜鉛電解槽26が前記副電解部FDを構成する。この亜鉛電解採取においては、鉛,銅、鉄、アルミニウムなどのイオン化傾向が亜鉛よりも小さいか、近い金属成分は前工程で除かれているので、電極電圧を幅広い電圧範囲内に設定して、高純度の亜鉛回収物を得ることができる。
尚、上記亜鉛電解採取を行った後の金属溶解液は、カルシウムなどの残存物質をNaOHなどのアルカリ剤で沈殿させ固液分離した後、循環路28によって溶解槽3に戻され溶解液の原料として再利用される。
【0037】
さらに、前記主電解部SDで実行される前記主電解採取工程及び前記副電解部FDで実行される前記副電解採取工程の少なくとも一方において回収した電解ガスから生成した酸を前記溶解工程で用いている。
具体的には、主電解採取工程である鉛電解採取工程と銅電解採取工程の夫々において、プラス電極からは塩素ガスが発生し、マイナス電極からは水素ガスが発生するので、両ガスを回収して、塩素ガスと水素ガスから塩酸を製造する方法として一般的に用いられている例えばタイラー式合成塩酸製造法により、溶解工程で用いる塩酸を作る。
【0038】
また、本金属回収装置は、清掃工場等の廃棄物処理設備に隣接設置されて、その廃棄物処理設備において発電される電力を前記主電解部SD及び前記副電解部FDにおける電解用電力として利用している。
具体的には、清掃工場等では、ゴミ(廃棄物)を燃焼させて処理するときに熱が発生し、その熱によって発電機を稼動させて安価な電力が得られるので、この安価な電力を前記電解用の電力として使用することで処理コストが低くなる。
例えば、従来の沈殿法で用いる沈殿剤とのコスト比較をしてみると、1トンの溶融飛灰当たり、鉛の沈殿に必要なNaOHの使用量は約215kgで、薬品代は約4300円(48%濃度NaOH:20円/kgで計算)であるのに対し、鉛の電解採取に要する電気量は約65kWh(前記実験値一例より算出)で、電気代は約520円(清掃工場内発電電力:8円/kWhで計算)とかなり安くなる。
【0039】
〔別実施形態〕
次に、本発明に係る灰中の金属回収方法及び金属回収装置の別実施形態について説明する。
上記実施形態では、灰中に含まれる複数の金属成分のうち、吸着工程及び溶離工程を行って得た溶離液から主電解採取工程により回収する特定の金属成分が、複数の金属成分(具体的には、鉛と銅)であり、この複数の特定の金属成分を吸着工程によって除去した後の金属溶解液から残りの金属成分(亜鉛)を副電解採取工程により回収するように構成したが、これ以外に、上記特定の金属成分が一つの金属成分であって、この一つの特定の金属成分を吸着工程によって除去した後の金属溶解液から残りの金属成分を電解採取する構成でもよい。
【0040】
上記実施形態では、溶融飛灰中における含有率、金属の利用価値などから、灰中の複数の金属成分のうち、鉛、銅、亜鉛を回収目的の金属成分とするとともに、主電解採取工程により回収する金属を鉛及び銅とし、副電解採取工程により回収する金属成分を灰中の含有率が最も高い金属(亜鉛)に選定したが、必ずしも、副電解採取工程により回収する金属成分を含有率が最も高い金属に選定する必要はない。灰の種類により、複数の金属成分の特性も異なるので、要求される各金属回収物の純度や、設備面及びコスト面で有利になるように、主電解採取工程によって回収する金属成分と、副電解採取工程によって回収する金属成分を選定することが望ましい。
【図面の簡単な説明】
【図1】本発明に係る灰中の金属回収方法を示すフロー図
【図2】本発明に係る灰中の金属回収装置の構成を示すブロック図
【図3】灰中の金属成分の組成についての一例を示す図
【図4】溶離液に溶離した金属成分の組成の一例を示す図
【図5】電解採取工程と沈殿工程により得られる金属回収物の組成の比較例を示す図
【図6】従来の灰中の金属回収方法を示すフロー図
【図7】従来の灰中の金属回収装置の構成を示すブロック図
【符号の説明】
FD 副電解部
kk 金属吸着材
KS 吸着処理部
SD 主電解部
YB 溶解部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recovering metal in ash. To the law Specifically, for example, ash containing a plurality of metal components such as incineration ash such as fuel and waste, incineration fly ash, and molten fly ash is processed to recover the target metal component and harm the ash. To recover metal in ash for conversion To the law Related.
[0002]
[Prior art]
The conventional technique (for example, refer to Unexamined-Japanese-Patent No. 2000-5722) of the said metal recovery method and apparatus in ash is demonstrated based on FIG.6 and FIG.7.
The metal recovery method in ash consists of the following steps. First, a melting step of dissolving the above incineration ash, incineration fly ash, molten fly ash, etc. with an acid or alkali is performed. At this time, in order to remove the solid content from the suspension, a metal solution in which the metal component is dissolved by solid-liquid separation is obtained. Next, the obtained metal solution is passed through a column packed with a metal adsorbent that can selectively bind to the metal component to be recovered in the liquid, and the metal component is bonded to the metal adsorbent. An adsorption process is performed. Next, an elution step is performed in which an eluent is brought into contact with the metal adsorbent to elute the metal component bonded to the metal adsorbent into the eluent (elution recovery liquid). Next, a precipitation step is performed in which a precipitating agent such as an alkaline agent is added to the eluent (elution recovery solution) to insolubilize and precipitate the metal component in the solution, and the target metal component is recovered as a metal compound. And in order to collect | recover each metal component from the said metal solution in which the some metal component melt | dissolved, the kind of metal adsorbent is changed so that it may be suitable for adsorption | suction of each metal component, and the said adsorption process and elution process are performed.
[0003]
In the dissolution process, the supplied ash 1 and chemicals 2 such as HCl are charged into the dissolution tank 3 and stirred to create a solution. Further, the solution is solid-liquid separated by the dehydrator 4 to remove the dissolution residue 5 and the metal solution is stored in the tank 6. In the adsorption step, the metal solution is passed through the column 8 filled with the metal adsorbent by the pump 7 and the metal ions in the liquid are adsorbed on the metal adsorbent. Thereafter, pre-cleaning with an air blow 9 is performed in order to drive off the metal solution remaining in the column 8. In the elution step, after the above pre-washing, the eluent is passed from the eluent tank 10 to the column 8 by the pump 11 and the adsorbed metal ions are eluted into the eluent, and then remain in the column 8. In order to drive off the eluent, post-cleaning with the cleaning liquid 12 is performed. 7 shows an apparatus including four columns 8. In the adsorption process, a metal solution is passed through four columns 8 in series to adsorb, and in the elution process, four columns are used. The eluent is passed through only one of the columns 8 while sequentially shifting the column position.
[0004]
In the precipitation step, a suspension in which metal ions are precipitated is obtained by adding a precipitant (NaOH, NaHS, etc.) to the eluent collected in the precipitation tank 15. Then, the suspension is solid-liquid separated by the dehydrator 13, and the recovered metal 14 such as lead is converted into Pb (OH). 2 As well as being obtained in the form of a compound such as PbS, the waste water is stored in the drain 20. On the other hand, the liquid from which the metal component has been removed after passing through the column 8 is stored in the precipitation tank 16, and another metal ion other than the metal component is precipitated by adding a precipitating agent. Then, another metal recovery 18 is obtained. The liquid separated here is returned to the dissolution tank 3 by the circulation path 19 and reused as the dissolution liquid.
[0005]
[Problems to be solved by the invention]
However, the conventional method and apparatus for recovering metal in ash have the following problems.
(1) Since the metal component is precipitated and recovered in the form of a compound using a precipitant in the precipitation step, the purity of the recovered product could not be increased. For example, the lead purity when lead was recovered could only be increased to 80% or more.
Moreover, about 2 to 4% of chlorine was contained in the metal recovered material, and there was a disadvantage that caused a penalty when the recovered material was reduced to the base. The cause of chlorine contamination is PbCl, which is difficult to dissolve in acid in the eluent. 2 May be precipitated and mixed with the precipitate. In general, when chlorine is contained in an amount of 1% or more, it becomes a penalty for reducing the Yamamoto. In addition, the cost of the precipitating agent used in the precipitation process high I was on.
(2) If a metal component having a high content ratio among a plurality of metal components contained in ash is adsorbed and recovered by the adsorption step and the elution step, the amount of the metal adsorbent used increases and the processing cost increases. Was high.
[0006]
Here, Japanese Patent Application Laid-Open No. 11-335748 discloses a technique for recovering metal components in ash by electrowinning. Specifically, after removing substances (Na, Ca, etc.) that cause scale adhesion from the incinerated ash, heavy metals contained in the ash are extracted by acid dissolution, and the electrode potential of the dissolved solution is set for each metal. The contents are classified into various heavy metals and recovered by electrolysis in a multistage manner. However, in this technique, since only a single metal component is electrolytically deposited from a solution in which a plurality of metal components are mixed and dissolved, the electrode potential is severely set and a highly purified metal recovery product can be obtained. There is a problem that it is not easy.
[0007]
The present invention has been made in view of the above circumstances, and its purpose is to make it possible to easily obtain a metal recovery product that is high in purity and does not contain chlorine, and can reduce the processing cost as much as possible. Metal recovery The law It is to provide.
[0008]
[Means for Solving the Problems]
Method for recovering metal in ash according to the present invention Special According to the present invention, as described in claim 1, ash containing a plurality of metal components for recovery purposes is dissolved using an acid or alkali to produce a metal solution in which the plurality of metal components are dissolved. And a metal adsorbent that can selectively bind to one or a plurality of specific metal components of the plurality of metal components, and a metal adsorbent obtained in the dissolution step. An adsorption step for binding each of the specific metal components to a metal adsorbent for each of the specific metal components; and a metal adsorbent for each of the specific metal components to which each of the specific metal components is bonded in the adsorption step An elution step in which the eluent is brought into contact with the eluent for each of the specific metal components, and an eluent for each of the specific metal components obtained in the elution step. In each eluent The main electrowinning step for electrolytically depositing each of the specific metal components, and electrolyzing the metal solution after performing the adsorption step for all of the specific metal components, in the metal solution A secondary electrowinning step of electrolytically depositing metal components other than the specific metal component. The acid generated from the electrolytic gas recovered in at least one of the main electrowinning step and the secondary electrowinning step is used in the dissolving step. In the point.
[0012]
The operation and effect will be described below.
Method for recovering metal in ash according to the present invention Special According to the general configuration, in the dissolution step, ash containing a plurality of metal components for recovery purposes is dissolved using an acid or alkali to generate a metal solution in which the plurality of metal components are dissolved, and in the adsorption step, The metal solution obtained in the dissolution step is brought into contact with each of the metal adsorbents that can selectively bind to one or more of the plurality of metal components, and the specific metal component In the elution step, the eluent is brought into contact with the specific metal component-specific metal adsorbent to which each of the specific metal components is bonded, and the specific metal component is adsorbed to the specific metal component. Each of the components is eluted in an eluent for each specific metal component, and in the main electrowinning step, each eluent for each specific metal component obtained in the elution step is electrolyzed, Each of the specific metal components is electrolytically deposited, and sub-electrolytic extraction In the said metal solution after subjecting to the adsorption step for all the specific metal components by electrolyzing the metal components other than the specific metal component of the metal lysate to electrolytic deposition.
[0013]
That is, for a specific metal component of a plurality of metal components in the metal solution, the main electrolytic collection is performed from the eluent for each specific metal component that has been eluted through the adsorption step and the elution step. Each of the specific metal components is electrodeposited and recovered by the process, and the metal component other than the specific metal component is not subjected to the adsorption step and the elution step, but after the adsorption step is performed on the specific metal component. The remaining metal solution is recovered by electrolytic deposition in the sub-electrolytic collection process.
Therefore, in the main electrowinning process, the eluent to be electrolyzed contains only a specific metal component, and in the secondary electrowinning process, the metal solution to be electrolyzed contains only the remaining metal component from which the specific metal component has been removed. Therefore, in both electrowinning steps, the metal to be electrolyzed is limited, the allowable range of electrolysis conditions such as electrode potential is widened, and severe electrolysis conditions need not be set.
[0014]
Accordingly, among a plurality of metal components for recovery purposes, a specific metal component is electrolytically deposited from each eluent eluted from each of the specific metal components, and for metal components other than the specific metal component, Highly pure and chlorine-free metals can be recovered from the remaining metal solution after the specific metal component has been removed by performing electrolytic deposition under a wide allowable range of electrolysis conditions. In addition, since the electrolytic collection process is performed instead of the conventional precipitation process, an expensive precipitant is not required compared to the electricity bill, and the adsorption process is performed for metal components other than specific metal components. Therefore, the amount of the metal adsorbent used is reduced and the cost of the metal adsorbent can be reduced as compared with the case where the adsorption step and the elution step are performed for all the metal components. Thus, a method for recovering metal in ash that makes it possible to reduce the processing cost as much as possible while easily obtaining a metal recovery product having high purity and no chlorine is obtained.
[0015]
In addition, the same According to the general configuration, the electrolytic gas generated in at least one of the main electrolytic collection step and the secondary electrolytic collection step is recovered, and the acid generated from the electrolytic gas is used in the dissolution step.
That is, in the electrowinning step, an electrolytic gas is generated by electrolysis from the positive electrode and the negative electrode, respectively, so that the electrolytic gas can be recovered and reacted to generate an acid used in the dissolving step.
Therefore, since the amount of newly purchased acid required in the dissolution step can be reduced, a preferred embodiment of the method for recovering metal in ash that can further reduce the processing cost can be obtained.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Embodiments of a method for recovering metal in ash and a metal recovery apparatus according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, the method for recovering metal in ash comprises dissolving the ash containing a plurality of metal components (lead, copper, zinc) for recovery purposes using an acid or an alkali, and A dissolving step for producing a metal solution in which the metal is dissolved, and the metal dissolving solution obtained in the dissolving step is selectively selected from one or more specific metal components (lead and copper) of a plurality of metal components, respectively. Each of the specific metal components is bonded to the specific metal component-specific metal adsorbent by contacting with each of the metal adsorbents (lead metal adsorbent and copper metal adsorbent) that can be bonded to each other. An eluent is brought into contact with an adsorption process (lead adsorption process and copper adsorption process) and a metal adsorbent for each of the specific metal components to which the specific metal components are combined in the adsorption process, and the specific metal components Elution step (lead) Separation step and copper elution step), and electrolysis of each of the specific metal component eluents obtained in the elution step, and electrolytic deposition of each of the specific metal components in each eluate Electrolysis of the metal solution after performing the adsorption step for all of the specific metal components and the main electrowinning step (lead electrowinning step and copper electrowinning step) It comprises a sub-electrolytic collection step (zinc electrowinning step) in which a metal component (zinc) other than the specific metal component is electrolytically deposited.
[0021]
In addition, when performing the said melt | dissolution process, in order to remove solid content from suspension, solid-liquid separation is carried out. Moreover, an alkali such as NaOH is added to the metal solution after passing through the lead adsorption process to adjust the pH to 2 to 3, and the next copper adsorption process precipitates Fe and Al that become copper adsorption inhibitors. Removed in advance.
[0022]
In addition, as shown in FIG. 2, the metal recovery device in ash dissolves ash containing a plurality of metal components (lead, copper, zinc) for recovery purposes using an acid or an alkali, A dissolution part YB that generates a metal solution in which a metal component is dissolved, and a metal adsorbent that can selectively bind to each of a plurality of specific metal components (lead and copper) in the metal solution obtained in the dissolution part YB It has kk (metal adsorbent for lead and metal adsorbent for copper), and the metal solution is brought into contact with the metal adsorbent kk to adsorb each of the specific metal components in the metal solution. Further, an eluent is brought into contact with the metal adsorbent kk to which each of the specific metal components is bonded, and each of the specific metal components bonded to the metal adsorbent kk is put into the eluent. The adsorption processing unit KS (for each specific metal component so as to be eluted) Electrolysis of the eluent obtained in the adsorption processor K1 for copper and the adsorption processor K2 for copper and the adsorption processor KS for each specific metal component so that the specific metal component in the eluent The main electrolysis part SD (electrolysis part for lead and copper electrolysis part) provided for each specific metal component so that each of them is electrolytically deposited and the adsorption process part KS absorb all the specific metal components. Sub-electrolysis part FD (electrolysis part for zinc) which electrolyzes the said metal solution after making it adsorb | suck to material kk, and electroprecipitates metal components (zinc) other than the said specific metal component in the metal solution ).
[0023]
Specifically, the ash 1 containing the metal component to be recovered and the chemical 2 such as acid or alkali are put into the dissolution tank 3 for dissolution treatment, and then the suspension discharged from the dissolution tank 3 However, the dissolution residue 5 (solid content) is removed by the dehydrator 4 (solid-liquid separation device), and the obtained separation liquid is stored in the dissolution liquid tank 6. That is, the melting part YB is constituted by the melting tank 3 and the dehydrator 4.
[0024]
Examples of the ash to be dissolved include various fuels, incineration ash such as waste, incineration fly ash, molten fly ash, and the like. Such ash contains a plurality of metal components, and as a metal element constituting the metal component, for example, as shown in FIG. 3 as an example of the metal content in the ash, lead, zinc, In addition to copper, iron, aluminum, sodium, potassium, calcium, manganese, silicon, cadmium, magnesium and the like are included. As shown in FIG. 3, since the zinc content is the highest, in order to avoid using a large amount of the metal adsorbent kk for zinc, as described above, the adsorption step and the elution step are not performed, and the sub-electrolytic collection step is performed. Electrolyze directly from the metal solution. The metal component having such a metal element is included in various forms such as oxides, hydroxides, sulfides and chlorides in addition to these metal elements alone. Further, the ash contains a large amount of chlorine Cl. Note that TP represents the total amount of phosphorus.
[0025]
As the acid used for dissolution, any acid can be used as long as it can solubilize the above-mentioned metal components and transfer to the liquid side. Typical examples include nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, oxalic acid, and the like. Can be mentioned. The alkali used for dissolution may be any alkali as long as it can solubilize the above metal components and migrate to the liquid side. Typical examples include hydroxides such as sodium hydroxide and potassium hydroxide. Examples thereof include alkaline earth metals such as alkali metals and calcium hydroxide, alkali metal carbonates, phosphates and ammonia.
[0026]
In addition to the above acid or alkali, various salts and dissolution accelerators may be added in order to increase the solubility of the metal component. In particular, when hydrochloric acid is used, high solubility is obtained in the presence of excessive chlorine ions in the lead component, so that sodium chloride, calcium chloride, and the like are added in appropriate amounts. Specifically, it is used so that the chlorine ion concentration is preferably 0.5 to 10 mol times, more preferably 1 to 3 mol times relative to hydrochloric acid. Among the above, in the present invention, it is preferable to use an aqueous hydrochloric acid solution in the presence of chlorine ions.
In addition, in order to make melt | dissolution of a metal component easy, the density | concentration of aqueous solution can be adjusted suitably, or heating and stirring can be performed. And although the preferable density | concentration of the acid to be used changes with the density | concentrations of ash, the density | concentration in which final pH becomes 1 or less is especially effective. In the obtained suspension, a liquid component in which the metal component is dissolved in the form of metal ions, metal compound ions (including complex ions), and the like, and an insoluble residue are present. In the present embodiment, molten fly ash is dissolved in 0.7M hydrochloric acid and 1.35M sodium chloride aqueous solution.
[0027]
As the dehydrator 4 used for the solid-liquid separation, any method can be adopted as long as the solid content can be removed from the suspension, and examples thereof include filtration, centrifugation, and sedimentation separation. In order to increase the recovery rate of the metal component, it is preferable to take a method in which the amount of liquid component adhering to the removed solid content is small.
[0028]
Next, the metal solution in the solution tank 6 can be sent out by the pump 7 toward the column 8 filled with the metal adsorbent kk for lead. Further, the eluent tank 10 is supplied to the column 8. The eluent from the cleaning liquid tank, the post-cleaning liquid from the cleaning liquid tank 12, and the pre-cleaning gas by the air blow 9 can be supplied, respectively, and a pump 11 is provided for delivering the eluent and the cleaning liquid. Then, by passing a metal solution in which the plurality of metal components (lead, copper, zinc) are dissolved through the column 8, the specific metal component (lead) in the metal solution is a metal for lead. It is selectively bonded to the adsorbent kk. Thereafter, pre-cleaning with an air blow 9 is performed in order to drive off the metal solution remaining in the column 8. After pre-cleaning, the eluent is passed through the column 8 from the eluent tank 10, and the specific metal component (lead) adsorbed on the lead metal adsorbent kk is eluted into the eluent. A post-cleaning liquid is supplied from the cleaning liquid tank 12 in order to drive out the eluent remaining in the liquid.
[0029]
Therefore, the column 8, the air blow 9, the eluent tank 10, the cleaning liquid tank 12, the pumps 7 and 11, etc. constitute the lead adsorption processing section K 1 as the adsorption processing section KS. FIG. 4 shows an example of the composition of the eluent (elution recovery liquid) obtained by the lead adsorption processing unit K1, but the ratio of the lead component is higher than the metal content data in the ash of FIG. Of course, it can be seen that the ratio of chlorine Cl is high.
[0030]
Specifically, a carrier on which a macrocyclic compound is immobilized is used as the metal adsorbent kk for lead. The carrier on which the macrocyclic compound is immobilized is obtained by covalently bonding a macrocyclic compound such as a crown compound to a carrier such as silica via a spacer, and the relationship between the ring diameter and the diameter of the binding target. And a lead carrier capable of selectively binding to the lead component based on the chemical affinity of the two. For example, in the case of a support for Pb in which a lead component is bound as lead ion or lead-containing chloride ion, one or more selected from the group consisting of 18-crown-6 ether or a similar compound is used.
Similarly, the metal adsorbent kk for copper uses a carrier on which a macrocyclic compound having a ring diameter or the like set so that it can selectively bind with a copper component is immobilized.
Examples of the form of the carrier include fine particles, beads (porous and nonporous), and membranes (porous and nonporous), but the porous beads are easy to contact and handle. This is preferable. Examples of the carrier material include silica gel, glass, sand, alumina, titanium, zirconia, and the like.
[0031]
The eluent can be appropriately selected depending on the various metal components bound and the acid used in the dissolution treatment, but the concentration of the acid used to resolubilize the metal ions and the acid used in the dissolution treatment can be selected. A solvent such as water that releases metal ions by lowering can be used.
Specifically, sulfuric acid etc. are mentioned as an acid which solubilizes a metal ion again. In this embodiment, water (particularly distilled water) is used as the lead eluent, and sulfuric acid is used as the copper eluent.
[0032]
The post-cleaning liquid can be appropriately selected according to the various metal components bonded and the acid used in the dissolution treatment, but in this embodiment, acid or alkali is used, and specifically hydrochloric acid is used.
[0033]
The elution recovery liquid obtained from the lead adsorption processing unit K1 is electrolytically decomposed in the lead electrolysis tank 21 using Pt or the like as an electrode, and a lead recovery product 22 is obtained. That is, the lead electrolysis tank 21 constitutes one of the main electrolysis parts SD. In this lead electrowinning, the metal component contained in the eluent is almost a single component (lead) and hardly contains other metal components, so that the electrode voltage can be set within a wide voltage range. Incidentally, as an example of the electrode voltage, a highly purified lead recovery product is obtained at an electrode voltage of 6.5V.
[0034]
FIG. 5 (a) shows an example of the composition of the lead recovered material 22 recovered by the above electrowinning, and FIG. 5 (b) shows an example of the composition of the lead recovered by the conventional precipitation method as a comparative example. Comparing the two data, the purity of the lead component in the lead collection by electrowinning was as high as 91.6%, compared with the lead purity of 81.7% in the lead collection by the precipitation method. Furthermore, a lead recovery product with higher purity can be obtained by reducing the sponge-like lead recovery product obtained. It can also be seen that the lead recovery by the precipitation method has a very high chlorine residual rate of 4.3%, whereas the lead recovery by electrowinning has a very low chlorine residual rate of 0.032%. Furthermore, it can also be seen that lead collection by electrowinning has a low mixing rate of metals other than lead (for example, zinc and copper).
[0035]
On the other hand, the metal solution from which the lead component has been removed by passing through the lead adsorption treatment unit K1 is adjusted in pH as described above in the adjustment tank 23 to remove Fe and Al, and then the adsorption treatment unit KS. Is supplied to the copper adsorption processing unit K2. The copper adsorption processing unit K2 is configured in the same manner as the lead adsorption processing unit K1 except that the column 8 is filled with a copper metal adsorbent kk and sulfuric acid is used as an eluent. ing.
The eluent (elution recovery liquid) obtained by the copper adsorption treatment unit K2 is electrolytically collected in the copper electrolysis tank 24 to obtain a copper recovery product 25. That is, the copper electrolytic cell 24 constitutes one of the main electrolysis parts SD. Even in this copper electrowinning, the metal component contained in the eluent is almost a single component (copper) and contains almost no other metal components. Can be set within.
[0036]
The metal solution from which the lead adsorption component and copper component have been removed through the copper adsorption treatment unit K2 is electrolyzed in the zinc electrolytic cell 26 to obtain a zinc recovery product 27. That is, the zinc electrolytic cell 26 constitutes the sub-electrolysis unit FD. In this zinc electrowinning, the ionization tendency of lead, copper, iron, aluminum, etc. is smaller than or close to that of zinc, so the metal components are removed in the previous process, so set the electrode voltage within a wide voltage range, A highly purified zinc recovery product can be obtained.
The metal solution after the zinc electrowinning is performed by precipitating a residual substance such as calcium with an alkaline agent such as NaOH and solid-liquid separation, and then returning the solution to the dissolution tank 3 by a circulation path 28. As reused.
[0037]
Furthermore, the acid generated from the electrolytic gas recovered in at least one of the main electrowinning step executed in the main electrolyzing part SD and the subelectrolyte taking step executed in the subelectrolytic part FD is used in the dissolving step. Yes.
Specifically, in each of the lead electrowinning and copper electrowinning steps, which are the main electrowinning steps, chlorine gas is generated from the positive electrode and hydrogen gas is generated from the negative electrode. Then, hydrochloric acid to be used in the dissolving step is produced by, for example, a Tyler type synthetic hydrochloric acid production method which is generally used as a method for producing hydrochloric acid from chlorine gas and hydrogen gas.
[0038]
In addition, the metal recovery apparatus is installed adjacent to a waste treatment facility such as a cleaning factory, and uses electric power generated in the waste treatment facility as electric power for electrolysis in the main electrolysis unit SD and the sub electrolysis unit FD. is doing.
Specifically, in a cleaning factory or the like, heat is generated when garbage (waste) is burned and processed, and the generator is operated by the heat to obtain cheap power. By using it as electric power for the electrolysis, the processing cost is lowered.
For example, when comparing the cost with the precipitating agent used in the conventional precipitation method, the amount of NaOH required for precipitation of lead per ton of molten fly ash is about 215 kg, and the chemical cost is about 4300 yen ( 48% concentration NaOH: Calculated at 20 yen / kg), while the amount of electricity required for lead electrowinning is approximately 65 kWh (calculated from the above experimental value example), and the electricity bill is approximately 520 yen (power generation in the cleaning plant) (Electric power: calculated at 8 yen / kWh).
[0039]
[Another embodiment]
Next, another embodiment of the metal recovery method and metal recovery apparatus according to the present invention will be described.
In the above embodiment, among the plurality of metal components contained in ash, the specific metal component recovered by the main electrowinning step from the eluent obtained by performing the adsorption step and the elution step is a plurality of metal components (specifically In this case, the remaining metal component (zinc) is recovered from the metal solution after the plurality of specific metal components are removed by the adsorption process by the sub-electrolytic collection process. In addition to this, the specific metal component may be a single metal component, and the remaining metal component may be electrolytically collected from the metal solution after the single specific metal component is removed by the adsorption process.
[0040]
In the above-described embodiment, lead, copper, and zinc are used as the recovery metal components among the plurality of metal components in the ash from the content rate in the molten fly ash, the utility value of the metal, etc. The metal to be recovered is lead and copper, and the metal component recovered by the secondary electrowinning process is selected as the metal (zinc) having the highest content in the ash, but the content of the metal component to be recovered by the secondary electrowinning process is not necessarily included It is not necessary to select the metal with the highest value. Depending on the type of ash, the characteristics of the multiple metal components also differ. It is desirable to select the metal component to be recovered by the electrowinning process.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a method for recovering metal in ash according to the present invention.
FIG. 2 is a block diagram showing the configuration of a metal recovery device in ash according to the present invention.
FIG. 3 is a diagram showing an example of the composition of metal components in ash
FIG. 4 is a diagram showing an example of the composition of metal components eluted in the eluent
FIG. 5 is a diagram showing a comparative example of the composition of a metal recovery product obtained by an electrowinning process and a precipitation process.
FIG. 6 is a flowchart showing a conventional method for recovering metal in ash.
FIG. 7 is a block diagram showing the configuration of a conventional metal recovery device for ash
[Explanation of symbols]
FD sub-electrolysis unit
kk metal adsorbent
KS adsorption processing unit
SD Main electrolysis unit
YB melting part

Claims (1)

回収目的の複数の金属成分を含有する灰を、酸又はアルカリを用いて溶解させて、前記複数の金属成分が溶解した金属溶解液を生成する溶解工程と、
前記溶解工程で得られた前記金属溶解液を前記複数の金属成分のうちの一つ又は複数の特定の金属成分の夫々と選択的に結合し得る金属吸着材の夫々に接触させて、前記特定の金属成分の夫々を前記特定の金属成分別の金属吸着材に結合させる吸着工程と、
前記吸着工程で前記特定の金属成分の夫々が結合した前記特定の金属成分別の金属吸着材に溶離液を接触させて、前記特定の金属成分の夫々を前記特定の金属成分別の溶離液に溶離させる溶離工程と、
前記溶離工程で得られた前記特定の金属成分別の溶離液の夫々を電気分解して、その各溶離液中の前記特定の金属成分の夫々を電解析出させる主電解採取工程と、
前記特定の金属成分の全てについて前記吸着工程を行った後の前記金属溶解液を電気分解して、その金属溶解液中の前記特定の金属成分以外の金属成分を電解析出させる副電解採取工程とからなり、
前記主電解採取工程及び前記副電解採取工程の少なくとも一方において回収した電解ガスから生成した酸を前記溶解工程で用いる灰中の金属回収方法。
A dissolution step of dissolving a ash containing a plurality of metal components for recovery purposes using an acid or an alkali to produce a metal solution in which the plurality of metal components are dissolved;
The metal dissolving liquid obtained in the dissolving step is brought into contact with each of the metal adsorbents that can selectively bind to one or more specific metal components of the plurality of metal components, and the specific An adsorption step of binding each of the metal components to the metal adsorbent for each specific metal component;
An eluent is brought into contact with the metal adsorbent for each of the specific metal components to which each of the specific metal components is bonded in the adsorption step, and each of the specific metal components is used as the eluent for each of the specific metal components. An elution step to elute,
A main electrowinning step of electrolyzing each of the eluents for each specific metal component obtained in the elution step and electrolytically depositing each of the specific metal components in each eluent;
Sub-electrolytic collection step of electrolyzing the metal solution after performing the adsorption step for all of the specific metal components and electrolytically depositing metal components other than the specific metal components in the metal solution Ri Do not from the,
A method for recovering metal in ash, wherein an acid generated from an electrolytic gas recovered in at least one of the main electrowinning step and the secondary electrowinning step is used in the dissolving step .
JP2002003276A 2002-01-10 2002-01-10 Metal recovery method in ash Expired - Fee Related JP4017401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002003276A JP4017401B2 (en) 2002-01-10 2002-01-10 Metal recovery method in ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002003276A JP4017401B2 (en) 2002-01-10 2002-01-10 Metal recovery method in ash

Publications (2)

Publication Number Publication Date
JP2003201589A JP2003201589A (en) 2003-07-18
JP4017401B2 true JP4017401B2 (en) 2007-12-05

Family

ID=27642902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002003276A Expired - Fee Related JP4017401B2 (en) 2002-01-10 2002-01-10 Metal recovery method in ash

Country Status (1)

Country Link
JP (1) JP4017401B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20072257A1 (en) * 2007-11-30 2009-06-01 Engitec Technologies S P A PROCESS FOR PRODUCING METALLIC LEAD FROM DESOLFORATED PASTEL
NL2003595C2 (en) * 2009-10-06 2011-04-07 Elemetal Holding B V Process and apparatus for recovering metals.
CN105274565A (en) * 2014-07-18 2016-01-27 张超 Method for electrolyzing metals through wet method

Also Published As

Publication number Publication date
JP2003201589A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
JP2010040458A (en) Lithium recovery method and metal-recovering method
Su Electrochemical separations for metal recycling
US6551378B2 (en) Recovery of precious metals from low concentration sources
JP3962855B2 (en) Recovery method of heavy metals from fly ash
KR20000052340A (en) Zine collecting method from steel powder containing zinc ferrite
KR101012109B1 (en) Method for recycling indium
JPH05255772A (en) Method for recovering zinc and lead from flue dust generated in electric steelmaking, method for recirculating refined metal into furnace and apparatus for executing this method
US6264903B1 (en) Method for recycling industrial waste streams containing zinc compounds
US7285677B1 (en) System and method for recovering CTA residues and purifying/regenerating catalyst
JP2003247089A (en) Method of recovering indium
JP5403224B2 (en) How to recover bismuth
JP4017401B2 (en) Metal recovery method in ash
JP5293007B2 (en) Method and apparatus for recovering thallium and potassium nitrate
JP2010059035A (en) Method for producing aqueous arsenous acid solution of high purity from copper removal slime
JP5293005B2 (en) Method and apparatus for recovering thallium and potassium nitrate
JP2005272955A (en) Treatment method for fly ash
JP3951041B2 (en) Electrochemical recovery of heavy metals from fly ash
US20070041883A1 (en) Process for hydrometallurgical treatment of electric arc furnace dust
JP3911587B2 (en) Electrochemical recovery of heavy metals from fly ash
JP3803858B2 (en) Electrochemical recovery of heavy metals from fly ash
JP3760261B2 (en) Electrochemical recovery of heavy metals from fly ash
JP4264519B2 (en) Method for reducing metal impurities
JP4505840B2 (en) Method for recovering valuable materials from molten fly ash
JP6409683B2 (en) Arsenic recovery method
TW391986B (en) Method of recovering lead from waste battery containing lead acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

R150 Certificate of patent or registration of utility model

Ref document number: 4017401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees