JPH05190655A - Electrostatic attraction device - Google Patents

Electrostatic attraction device

Info

Publication number
JPH05190655A
JPH05190655A JP1844292A JP1844292A JPH05190655A JP H05190655 A JPH05190655 A JP H05190655A JP 1844292 A JP1844292 A JP 1844292A JP 1844292 A JP1844292 A JP 1844292A JP H05190655 A JPH05190655 A JP H05190655A
Authority
JP
Japan
Prior art keywords
substrate
electrode
insulator
electrostatic
electric potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1844292A
Other languages
Japanese (ja)
Inventor
Takeshi Ichikawa
武史 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1844292A priority Critical patent/JPH05190655A/en
Publication of JPH05190655A publication Critical patent/JPH05190655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To control electric potential of a substrate freely while showing normal attraction function by providing a substrate of a conductor or a semiconductor substance on a first electrode with an insulator between and by burying a second electrode which provides it with an electric potential in the insulator. CONSTITUTION:An Mo-made first electrode 61 has an outer diameter and an inner diameter of a large circle of 9cm and 6cm, respectively and a diameter of a small circle of 3cm and a space part of an Mo-made second electrode 63 which provides an electric potential to a substrate 64 is about 1mm. An insulator 62 is formed of 250mum-thick alumina, separated from the second electrode 63 and a periphery is enclosed. When 1kV is applied in air and a 4 inch wafer is attracted, it is attracted completely by a force of 0.2N/cm or more. It becomes possible to control an electric potential of a substrate surface while making a large current flow through a substrate and to attract the substrate by electrostatic force. It is also resistant to thermal stress and is useful when controlling an electric potential at a positive side from self-bias by plasma and when a substrate of a large area is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、種々の物体を静電的な
吸着によって所定の位置に保持もしくは固定するための
静電吸着装置に関し、とくにドライエッチング装置、ス
パッタリング装置、プラズマCVD装置などの真空装置
内で、処理すべき基体を保持するのに適した静電吸着装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chucking device for holding or fixing various objects at a predetermined position by electrostatic chucking, and more particularly to a dry etching device, a sputtering device, a plasma CVD device and the like. The present invention relates to an electrostatic adsorption device suitable for holding a substrate to be processed in a vacuum device.

【0002】[0002]

【従来の技術】従来物体を保持、固定する方法として
は、機械的方法によるメカニカルチャックや真空チャッ
ク、及び静電力を原理とする静電チャックなどの方法が
ある。しかし通常の半導体製造装置、特にプラズマを用
いる製造装置内での基体保持の場合、メカニカルチャッ
クは 1.基体表面を機械的チャックの一部が覆うために、基
体のその部分には所望の処理を行なうことが不可能であ
る。 2.基体表面に機械的チャックの一部が露出するため
に、プラズマにさらされ不純物汚染の要因となるうえ
に、プラズマの空間分布を不均一なものにしてしまう。 3.チャッキングの力が基体の一部に不均一にかかるた
め、ストレスを生じる。一方基体を均一にチャックし、
反りを矯正することができない。
2. Description of the Related Art Conventional methods for holding and fixing objects include mechanical chucks and vacuum chucks by mechanical methods, and electrostatic chucks based on the principle of electrostatic force. However, in the case of holding a substrate in an ordinary semiconductor manufacturing apparatus, particularly in a manufacturing apparatus using plasma, the mechanical chuck is 1. Due to the fact that a part of the mechanical chuck covers the surface of the substrate, that part of the substrate cannot be subjected to the desired treatment. 2. Since a part of the mechanical chuck is exposed on the surface of the substrate, the mechanical chuck is exposed to the plasma, which causes contamination of impurities, and also makes the spatial distribution of the plasma uneven. 3. Since the chucking force is unevenly applied to a part of the substrate, stress is generated. On the other hand, chuck the substrate evenly,
The warp cannot be corrected.

【0003】等の問題点があり、一方真空チャックは、
真空の装置内で使用不可能であるという大問題がある。
これらのチャック法にたいして静電チャックは真空中で
の使用はもちろんのこと、基体を均一な力で全面吸着す
ることができ、基体表面全体を均一なプラズマにさらす
ことが可能なため半導体製造装置の基体保持法としては
非常に有利である。
However, the vacuum chuck has the following problems.
The major problem is that it cannot be used in a vacuum device.
In contrast to these chuck methods, the electrostatic chuck can be used not only in a vacuum but also can adsorb the entire surface of the substrate with a uniform force and expose the entire surface of the substrate to a uniform plasma. It is very advantageous as a substrate holding method.

【0004】静電チャックの原理を簡単に説明する。図
8に示すように平面上の電極31上に誘電率ε膜厚dの
絶縁物32を介して基体33を設置し、平面電極31と
基体33間に電圧Vを印加し静電力により基体を吸着さ
せる。このときの吸着力Fは、 F=1/2・ε・S・(V/d)2 で表わされる。ここでSは電極面積、Vは印加電圧をあ
らわす。例えばSとして直径2インチの電極を用い、絶
縁物として比誘電率10、膜厚100μmのアルミナを
用いV=1kVとするとその値は理想的にはおよそ8.
7Nとかなり強い力となり、例えばSiウエハなどは問
題なく吸着されることになる。
The principle of the electrostatic chuck will be briefly described. As shown in FIG. 8, a substrate 33 is placed on an electrode 31 on a plane via an insulator 32 having a dielectric constant ε film thickness d, a voltage V is applied between the plane electrode 31 and the substrate 33, and the substrate is moved by electrostatic force. Adsorb. The attracting force F at this time is represented by F = 1/2 · ε · S · (V / d) 2 . Here, S represents an electrode area, and V represents an applied voltage. For example, if an electrode having a diameter of 2 inches is used as S, and an insulator having a relative dielectric constant of 10 and a film thickness of 100 μm is used and V = 1 kV, the value is ideally about 8.
It has a considerably strong force of 7 N and, for example, a Si wafer or the like can be adsorbed without any problem.

【0005】この静電吸着装置において、基板電位を与
える電極に関しては次のような方法が一般的である。1
つは図9に示すようにピン電極41で基体42の電位を
与える方法であり、絶縁物を介した下地電極43との間
に電圧をかけ基体を吸着させる。この場合基体電位は接
地させる場合や、図10に示すような回路構成にするこ
とにより基体42に直流電位を与えることも可能であ
る。また、プラズマの電気伝導性を利用し、プラズマに
よる自己バイアス値に設定された基体と絶縁物を介した
下地電極との間の電位差によって静電吸着を行なう方法
も提案されている。(特開昭55−90228号)
In this electrostatic attraction device, the following method is generally used for the electrodes that apply the substrate potential. 1
One is a method of applying a potential of the base 42 by the pin electrode 41 as shown in FIG. 9, and a voltage is applied between the base electrode 43 and an insulating material to adsorb the base. In this case, the substrate potential can be grounded, or a direct current potential can be applied to the substrate 42 by the circuit configuration shown in FIG. Further, a method has also been proposed in which the electrostatic conductivity is utilized by utilizing the electric conductivity of plasma and by the potential difference between a base body set to a self-bias value by plasma and a base electrode via an insulator. (JP-A-55-90228)

【0006】[0006]

【発明が解決しようとしている課題】しかしながら上記
静電チャックに関してはまだ問題点も数多く存在する。
先ずピン電極をもちいた場合の問題点を示す。 1.基体と電極とが点接触であるために、接触不良を起
こしやすい。 2.ピンに静電チャックとの平行性が要求されるため、
バネを用いることが一般的であるが、温度変化によりバ
ネ性が変化してしまい静電チャックの力とのバランスが
くずれる。 3.基体と電極の接触面積が小さいため基体から電極に
大電流が流れたときにジュール熱によりピン電極が融解
してしまう。これは特に基体の直流電位をプラズマに対
する自己バイアスよりも正側に持ち上げたときや大面積
基体を用いた際におこることで、大量の電子電流がこの
ピン電極を通して流れてしまう。等の問題点がある。
However, there are still many problems with the above electrostatic chuck.
First, the problem when using a pin electrode is shown. 1. Since the base and the electrode are in point contact with each other, poor contact is likely to occur. 2. Since the pin must be parallel to the electrostatic chuck,
It is common to use a spring, but the spring property changes due to temperature changes, and the balance with the force of the electrostatic chuck is lost. 3. Since the contact area between the base and the electrode is small, the Joule heat causes the pin electrode to melt when a large current flows from the base to the electrode. This happens especially when the DC potential of the substrate is raised to the positive side of the self-bias with respect to the plasma or when a large-area substrate is used, and a large amount of electron current flows through this pin electrode. There are problems such as.

【0007】また、基体の電位をプラズマによる自己バ
イアスの値にし、積極的に直流電位を与えない方法で
は、 1.基体の電位を制御することが非常に難しく、電位制
御のためには、高周波プラズマにおいて、装置内圧力、
高周波電力、高周波周波数、ガス種等を変化させて所望
の状態にプラズマ状態を設定しなければならない。 2.プラズマが存在しないと吸着力が働かないために横
向き電極や下向き電極上には、基体を設置することがで
きない。 等の問題点があり、実用化にはなかなか難しいものがあ
った。
Further, in the method in which the potential of the substrate is set to the value of the self-bias due to plasma and the DC potential is not positively applied, It is very difficult to control the electric potential of the substrate.
The plasma state must be set to a desired state by changing the high frequency power, the high frequency frequency, the gas type, and the like. 2. When plasma is not present, the adsorption force does not work, so that the substrate cannot be placed on the lateral electrodes or the downward electrodes. However, there were some problems, and it was difficult to put them into practical use.

【0008】[0008]

【課題を解決するための手段(及び作用)】本発明によ
れば、第1の電極上に、絶縁物を介して導電性物質もし
くは半導体物質をもつ基体を設置し、前記第1の電極と
前記基体間に電圧を印加し、前記基体を前記第1の電極
上に静電吸着力により保持する静電吸着装置において、
基体に電位を与える第2の電極が前記絶縁物に埋め込ま
れ、かつ前記基体に面接触させることにより、プラズマ
の自己バイアス以上に正側に基体の電位を設定したり、
大面積基体を用いた際の、大量の電流が前記第2電極に
流れる状態でも正常に吸着機能を示し、基体の電位を自
由に制御できるような静電吸着装置を提供するものであ
る。本発明の原理を図面に基づいて詳細に説明する。図
6は本発明の静電吸着装置の原理を説明するための概略
的断面図、図7はその概略的平面図である。11で示す
第1電極上に絶縁性材料である12がドーナツ状に形成
されている。基体に電位を与える第2電極は絶縁材料1
2に周囲を囲まれ、かつ空間的に分離され形成されてい
る。この図では第2電極は円筒上のものが1つ示されて
いるが形状、個数は特に限定するものでない。第2電極
を流れる電流密度が小さくなるように、電流経路の断面
積が大きく、電流が1か所に集中しないような構成が要
求される。
According to the present invention, a substrate having a conductive substance or a semiconductor substance is placed on an insulating material on the first electrode, and the first electrode and In an electrostatic attraction device that applies a voltage between the bases and holds the base on the first electrode by an electrostatic attraction force,
A second electrode for applying a potential to the substrate is embedded in the insulator and is brought into surface contact with the substrate to set the potential of the substrate on the positive side above the self-bias of plasma,
The present invention provides an electrostatic adsorption device that exhibits a normal adsorption function even when a large amount of current flows to the second electrode when a large-area substrate is used and that can control the potential of the substrate freely. The principle of the present invention will be described in detail with reference to the drawings. FIG. 6 is a schematic sectional view for explaining the principle of the electrostatic attraction device of the present invention, and FIG. 7 is a schematic plan view thereof. An insulating material 12 is formed in a donut shape on the first electrode indicated by 11. The second electrode for applying an electric potential to the substrate is the insulating material 1
It is surrounded by 2 and is spatially separated. In this figure, one second electrode is shown as a cylinder, but the shape and number are not particularly limited. The cross-sectional area of the current path is large so that the density of the current flowing through the second electrode is small, so that the current is not concentrated at one location.

【0009】絶縁性材料12の誘電率をε、膜厚をd、
第1電極面積をS1 、基体14の重量をW、第1電極と
基体間に印加する電圧をVとすると、吸着力F、絶縁材
料12の絶縁耐圧EB が満たすべき条件はつぎのような
式で表わせる。
The dielectric constant of the insulating material 12 is ε, the film thickness is d,
Assuming that the area of the first electrode is S 1 , the weight of the substrate 14 is W, and the voltage applied between the first electrode and the substrate is V, the adsorbing force F and the withstand voltage E B of the insulating material 12 must satisfy the following conditions. It can be expressed by a formula.

【0010】 F=1/2・ε・S1 ・(V/d)2 >W …(1) EB >V/d …(2) また第2電極の最小断面積をSmin 、第2電極を流れる
電流密度の上限をJmaxとすると基体面積Sに流れる最
大電流Iは、I=jmax XSmin となる。jmaxの値は
明確な値ではないが、Alの場合1X105 A/cm2
程度であり、Mo,W等の高融点金属の場合さらに高い
値になる。基体と第2電極の接点が点接触に近い場合
は、基体に流れる電流が小さい場合でも接触点での電流
密度が高く電流を流せないが、本発明による静電吸着装
置のように、基体と第2電極の接点が大きな面積をもつ
面接触の場合は、接触点での電流密度では電流は規定さ
れず、第2電極の配線幅Lとtの掛け合わせた断面積を
流れる電流密度で電流値の最大値が規定されることにな
る。また第2電極が絶縁物と空間的に分離されているた
めに、基体温度を高める場合でも絶縁物と第2電極との
熱膨張率の差を気にする必要がない。さらにこの構成に
よると第2電極がプラズマ空間にさらされることがない
ために、プラズマへの影響、及び不純物汚染が抑制され
る等の長所がある。
[0010] F = 1/2 · ε · S 1 · (V / d) 2> W ... (1) E B> V / d ... (2) The minimum cross-sectional area of the second electrode S min, second When the upper limit of the current density flowing through the electrodes is J max , the maximum current I flowing through the substrate area S is I = j max XS min . Although the value of j max is not clear, in the case of Al, it is 1 × 10 5 A / cm 2
However, the value is even higher in the case of refractory metals such as Mo and W. When the contact between the base and the second electrode is close to point contact, even if the current flowing through the base is small, the current density at the contact point is high and current cannot flow, but like the electrostatic attraction device according to the present invention, When the contact of the second electrode is a surface contact having a large area, the current is not defined by the current density at the contact point, and the current density is the current density flowing in the cross-sectional area obtained by multiplying the wiring width L of the second electrode by t. The maximum value will be specified. Further, since the second electrode is spatially separated from the insulator, it is not necessary to worry about the difference in the coefficient of thermal expansion between the insulator and the second electrode even when the temperature of the base is increased. Further, according to this structure, the second electrode is not exposed to the plasma space, which has advantages such as influence on the plasma and suppression of impurity contamination.

【0011】電極材は上述の条件を満たせば特に限定さ
れるものでなく、Al,W,Mo,Pt等の金属,金属
シリサイド,及び低抵抗Si等半導体物質でも全く構わ
ない。一方絶縁材料も同様に上述の条件を満たせばよく
アルミナなどのほか、SiO2 ,Si34 ,ポリイミ
ド系の高分子材料でも特に問題はない。
The electrode material is not particularly limited as long as the above conditions are satisfied, and metals such as Al, W, Mo and Pt, metal silicides, and semiconductor materials such as low resistance Si may be used. On the other hand, the insulating material may similarly satisfy the above-mentioned conditions, and in addition to alumina or the like, SiO 2 , Si 3 N 4 , or a polyimide-based polymer material does not pose any particular problem.

【0012】[0012]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明の第1の実施例による静電吸
着装置の概略的断面図、図2はその平面図である。図に
おいて、符号61は第1電極、62は絶縁物、63は第
2電極、64は基体である。
FIG. 1 is a schematic sectional view of an electrostatic chucking device according to a first embodiment of the present invention, and FIG. 2 is a plan view thereof. In the figure, reference numeral 61 is a first electrode, 62 is an insulator, 63 is a second electrode, and 64 is a base.

【0014】第1電極はMo電極で、大円の直径は外
周,内周がそれぞれ9cm、6cm,中心の小円の直径
が3cmである。一方第2電極63もMoであり、空間
部はおよそ1mmである。絶縁物62は250μm膜厚
のアルミナで形成されており、第2電極61と分離され
かつ周囲を取り囲んでいる構成となっている。このアル
ミナ絶縁膜の絶縁破壊耐圧はおよそ1X105 V/cm
であり、2500V/250μmであるため、大気中で
1000Vを印加し4インチウエハを吸着させたところ
0.2N/cm2 以上の力で完全に吸着した。この静電
吸着装置を図3に示すrf−dc結合のバイアススパッ
タ装置(T.Ohmi,T.Ichikawa,et
al,J.Appl.Phys.66,pp.4756
−4766(1989))の基板側及びターゲット側に
用いて実験を行なった。81が真空チャンバ、82が5
インチSiターゲット、83が永久磁石、84が4イン
チSi基板、85, 86が本発明による静電吸着装
置、87が100MHZ 高周波電源、88がマッチング
回路、89,90がターゲット及び基板の電位を決定す
る直流電源、91,92がローパスフィルタ、93が電
極シールドである。実験条件を下記に示す。
The first electrode is a Mo electrode, and the diameter of the great circle is 9 cm and 6 cm at the outer and inner circumferences, and the diameter of the small circle at the center is 3 cm. On the other hand, the second electrode 63 is also Mo, and the space portion is about 1 mm. The insulator 62 is made of alumina having a film thickness of 250 μm and is separated from the second electrode 61 and surrounds the periphery thereof. The breakdown voltage of this alumina insulating film is approximately 1 × 10 5 V / cm.
Since it is 2500 V / 250 μm, 1000 V was applied in the atmosphere to adsorb a 4-inch wafer, and it was adsorbed completely with a force of 0.2 N / cm 2 or more. This electrostatic adsorption device is an rf-dc coupled bias sputtering device (T. Ohmi, T. Ichikawa, et.
al, J .; Appl. Phys. 66, pp. 4756
An experiment was carried out using -4766 (1989) on the substrate side and the target side. 81 is a vacuum chamber, 82 is 5
Inch Si target, 83 permanent magnet, 84 a 4-inch Si substrate, 85, 86 electrostatic chuck according to the present invention, 87 is 100 MHz Z frequency power source, 88 is a matching circuit, 89 and 90 of the target and the potential of the substrate A DC power supply to be determined, 91 and 92 are low-pass filters, and 93 is an electrode shield. The experimental conditions are shown below.

【0015】 投入ガス…Ar ガス圧力…8mTorr ターゲット直流電位…−200V 投入高周波電力…400W 基板直流電位…+5V 基板温度…300℃ この場合、基板に流れ込む電流を測定すると1.8Aで
あるが電極材等の発熱、断線などの問題は生ぜず、静電
吸着装置に吸着した基板上には良質なSi単結晶が成長
した。一方第2電極がインコネルのピン電極である静電
吸着装置を用いて同様の実験を行なったところ、前記イ
ンコネルのピンが大電流により発熱し融解してしまい基
板が静電吸着装置から滑り落ちてしまった。また第2電
極無の静電吸着装置を用いた場合は、基板の自己バイア
スはおよそ−5Vであり静電吸着により基板は吸着され
たが、基板に照射されるイオンエネルギーが高すぎて基
板にダメージが生じてしまい。基板上に成長した結晶は
結晶性の良くないアモルファスSiであった。
Input gas: Ar gas pressure: 8 mTorr Target DC potential: -200 V Input high frequency power: 400 W Substrate DC potential: +5 V Substrate temperature: 300 ° C. In this case, the current flowing into the substrate is 1.8 A, but the electrode material is However, problems such as heat generation and wire breakage did not occur, and a good-quality Si single crystal grew on the substrate attracted by the electrostatic attraction device. On the other hand, when a similar experiment was conducted using an electrostatic adsorption device in which the second electrode was an Inconel pin electrode, the Inconel pin generated heat due to a large current and melted, and the substrate slipped off the electrostatic adsorption device. Oops. Further, when the electrostatic adsorption device without the second electrode was used, the self-bias of the substrate was about −5 V, and the substrate was adsorbed by electrostatic adsorption, but the ion energy applied to the substrate was too high and the Damage has occurred. The crystal grown on the substrate was amorphous Si with poor crystallinity.

【0016】[他の実施例]図4は本発明の第2の実施
例による静電吸着装置の概略的断面図、図5はその平面
図である。図において、符号101は第1電極、102
は絶縁物、103は第2電極、104は基体である。
[Other Embodiments] FIG. 4 is a schematic sectional view of an electrostatic chucking device according to a second embodiment of the present invention, and FIG. 5 is a plan view thereof. In the figure, reference numeral 101 is a first electrode, 102
Is an insulator, 103 is a second electrode, and 104 is a base.

【0017】101で示される第1電極、及び103で
示される第2電極はMo電極であり、絶縁物102はア
ルミナを用いている。平面図で示される絶縁物102お
よび、第2電極103のそれぞれの直径は10cm、7
cm,5cm,2cmである。またそれぞれの空間はお
よそ1mmであった。このアルミナ絶縁膜の厚さは25
0μm、絶縁破壊耐圧はおよそ1X105 V/cmであ
り、2500V/250μmであるため、まずは大気中
で1000Vを印加し6インチウエハを吸着させたとこ
ろ完全に吸着した。この静電吸着装置を図3に示すrf
−dc結合のバイアススパッタ装置の基板側及びターゲ
ット側に用いてターゲット、基板サイズを6インチに
し、高周波投入電力を900Wとした以外は第1の実施
例と同様な実験を行なったところ、基板に流れ込む電流
は4.0Aであるが発熱、断線などの問題は生ぜず、静
電吸着装置吸着した基板上には実施例1と同様な良質な
Si単結晶が成長した。
The first electrode 101 and the second electrode 103 are Mo electrodes, and alumina is used as the insulator 102. The diameter of each of the insulator 102 and the second electrode 103 shown in the plan view is 10 cm, 7
cm, 5 cm, 2 cm. Moreover, each space was about 1 mm. The thickness of this alumina insulating film is 25
Since the dielectric breakdown voltage is 0 μm and the dielectric breakdown voltage is about 1 × 10 5 V / cm and 2500 V / 250 μm, 1000 V was first applied in the atmosphere to adsorb a 6-inch wafer, and it was completely adsorbed. This electrostatic adsorption device is shown in FIG.
An experiment similar to that of the first embodiment was conducted except that the target and the substrate size were set to 6 inches and the high-frequency input power was set to 900 W by using on the substrate side and the target side of the -dc coupled bias sputtering apparatus. The flowing current was 4.0 A, but problems such as heat generation and disconnection did not occur, and a high-quality Si single crystal similar to that of Example 1 was grown on the substrate attracted by the electrostatic chuck.

【0018】[0018]

【発明の効果】以上説明したように、第1の電極上に絶
縁物を介して導電性物質もしくは半導体物質をもつ基体
を設置し、前記第1の電極と前記基体間に電圧を印加
し、前記基体を前記第1の電極上に静電吸着力により保
持する静電吸着装置において、基体に電位を与える第2
の電極を前記絶縁物と空間的に分離し、かつ前記基体に
面接触させることにより、基体を通して大電流を流しな
がら基体表面の電位を制御し、静電力により基体を吸着
させることが可能となった。熱的なストレスにも強く、
特に基体温度を上げながら、基体の電位をプラズマによ
る自己バイアスから正側に電位を制御する場合や、大面
積基板を用いる場合に有効である。
As described above, a substrate having a conductive substance or a semiconductor substance is placed on the first electrode via an insulator, and a voltage is applied between the first electrode and the substrate, In an electrostatic chucking device for holding the substrate on the first electrode by electrostatic chucking force, a second electrode for applying a potential to the substrate is used.
By spatially separating the electrode of the substrate from the insulator and making surface contact with the substrate, it is possible to control the potential of the substrate surface while flowing a large current through the substrate and to attract the substrate by electrostatic force. It was Strong against thermal stress,
In particular, it is effective when the potential of the substrate is controlled to the positive side from the self-bias by plasma while raising the substrate temperature, or when a large area substrate is used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例による静電吸着装置の概略
的断面図。
FIG. 1 is a schematic cross-sectional view of an electrostatic attraction device according to a first embodiment of the present invention.

【図2】本発明の第1実施例による静電吸着装置の平面
図。
FIG. 2 is a plan view of the electrostatic attraction device according to the first embodiment of the present invention.

【図3】図1及び図1に示した静電吸着装置をバイアス
スパッタ装置に適用した場合を示す概略的断面図。
FIG. 3 is a schematic cross-sectional view showing a case where the electrostatic attraction device shown in FIGS. 1 and 1 is applied to a bias sputtering device.

【図4】本発明の第2実施例による静電吸着装置の概略
的断面図。
FIG. 4 is a schematic cross-sectional view of an electrostatic attraction device according to a second embodiment of the present invention.

【図5】本発明の第2実施例による静電吸着装置の平面
図。
FIG. 5 is a plan view of an electrostatic attraction device according to a second embodiment of the present invention.

【図6】本発明の静電チャック原理を説明するための説
明図。
FIG. 6 is an explanatory diagram for explaining the principle of the electrostatic chuck of the present invention.

【図7】本発明の静電チャック原理を説明するための説
明図。
FIG. 7 is an explanatory diagram for explaining the principle of the electrostatic chuck of the present invention.

【図8】従来の静電吸着装置の概略的断面図。FIG. 8 is a schematic sectional view of a conventional electrostatic attraction device.

【図9】従来の静電吸着装置の概略的断面図。FIG. 9 is a schematic sectional view of a conventional electrostatic attraction device.

【図10】従来の静電吸着装置の概略的断面図。FIG. 10 is a schematic cross-sectional view of a conventional electrostatic attraction device.

【符号の説明】[Explanation of symbols]

61,101 第1電極 62,102 絶縁物 63,103 第2電極 64,104 基体 61,101 first electrode 62,102 insulator 63,103 second electrode 64,104 substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1の電極上に、絶縁物を介して導電性
物質もしくは半導体物質をもつ基体を配置し、前記第1
の電極と前記基体との間に電圧を印加することによっ
て、前記第1の電極上に前記基体を静電吸着力により保
持するようになされた静電吸着装置において、前記基体
に所定の電位を付与するための第2の電極が前記絶縁物
に対して空間的に分離され、かつ前記第2の電極が前記
基体に対して面接触していることを特徴とする静電吸着
装置。
1. A substrate having a conductive material or a semiconductor material with an insulator interposed therebetween is disposed on the first electrode, and the first electrode is provided.
In the electrostatic attraction device configured to hold the substrate on the first electrode by the electrostatic attraction force by applying a voltage between the electrode and the substrate, a predetermined potential is applied to the substrate. An electrostatic chucking device, wherein a second electrode for applying is spatially separated from the insulator, and the second electrode is in surface contact with the substrate.
【請求項2】 前記第2電極と前記絶縁物の前記基体に
接する面が前記絶縁物に囲まれていることを特徴とする
請求項1記載の静電吸着装置。
2. The electrostatic adsorption device according to claim 1, wherein a surface of the second electrode and the insulator, which is in contact with the base, is surrounded by the insulator.
【請求項3】 前記第2電極の側面が空間を介して絶縁
物に囲まれていることを特徴とする請求項1または2の
いずれかに記載の静電吸着装置。
3. The electrostatic attraction device according to claim 1, wherein a side surface of the second electrode is surrounded by an insulator with a space interposed therebetween.
JP1844292A 1992-01-08 1992-01-08 Electrostatic attraction device Pending JPH05190655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1844292A JPH05190655A (en) 1992-01-08 1992-01-08 Electrostatic attraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1844292A JPH05190655A (en) 1992-01-08 1992-01-08 Electrostatic attraction device

Publications (1)

Publication Number Publication Date
JPH05190655A true JPH05190655A (en) 1993-07-30

Family

ID=11971754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1844292A Pending JPH05190655A (en) 1992-01-08 1992-01-08 Electrostatic attraction device

Country Status (1)

Country Link
JP (1) JPH05190655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7567421B2 (en) * 2003-06-17 2009-07-28 Creative Technology Corporation Bipolar electrostatic chuck

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7567421B2 (en) * 2003-06-17 2009-07-28 Creative Technology Corporation Bipolar electrostatic chuck

Similar Documents

Publication Publication Date Title
KR100242529B1 (en) Stage having electrostatic chuck and plasma processing apparatus using same
US4897171A (en) Wafer susceptor
US4384918A (en) Method and apparatus for dry etching and electrostatic chucking device used therein
JP3064409B2 (en) Holding device and semiconductor manufacturing apparatus using the same
US5737178A (en) Monocrystalline ceramic coating having integral bonding interconnects for electrostatic chucks
JPH0779122B2 (en) Electrostatic chuck with diamond coating
JPH04186653A (en) Electrostatic chuck
JP2001035907A (en) Chuck device
TW200405443A (en) Electrostatic absorbing apparatus
JP4010541B2 (en) Electrostatic adsorption device
KR19990063844A (en) Method and device for electrostatic holding of dielectric material in vacuum processor
JPH08236602A (en) Electrostatic chuck
JPS63194345A (en) Electrostatic chuck
JPH07335732A (en) Electrostatic chuck, plasma treatment equipment using electrostatic chuck and its manufacture
JPH033250A (en) Substrate holder
JP2003282692A (en) Substrate carrying tray and substrate processing apparatus using this tray
JPH06124998A (en) Plasma process equipment
US20220130706A1 (en) Etching apparatus and methods of cleaning thereof
JPH05190655A (en) Electrostatic attraction device
JPH09260472A (en) Electrostatic chuck
JP2851766B2 (en) Electrostatic chuck
JPH05226462A (en) Electrostatic chuck
JPH074718B2 (en) Electrostatic adsorption device
JP3769378B2 (en) Electrostatic chuck
JPH02130915A (en) Plasma processing equipment