JPH05226462A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JPH05226462A
JPH05226462A JP3026892A JP3026892A JPH05226462A JP H05226462 A JPH05226462 A JP H05226462A JP 3026892 A JP3026892 A JP 3026892A JP 3026892 A JP3026892 A JP 3026892A JP H05226462 A JPH05226462 A JP H05226462A
Authority
JP
Japan
Prior art keywords
wafer
electrostatic chuck
electrode
electrodes
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3026892A
Other languages
Japanese (ja)
Inventor
Akihiro Hasegawa
明広 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3026892A priority Critical patent/JPH05226462A/en
Publication of JPH05226462A publication Critical patent/JPH05226462A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Jigs For Machine Tools (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To provide an electrostatic chuck structure which keeps a wafer uniform in temperature distribution in plasma, where the electrostatic chuck holds a processed substrate such as a wafer or the like by suction in a treatment process. CONSTITUTION:Two or more electrodes 3 are separately buried in an electrostatic chuck 1, and dielectric layers are made to vary in thickness for each electrode 3 so as to locally control a attracting force between the electrodes 3 and a wafer 5, whereby the wafer 5 is kept uniform in temperature distribution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,被吸着基板であるウエ
ハ等の処理過程における,ウエハを吸着固定する静電チ
ャックの構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an electrostatic chuck for attracting and fixing a wafer in the process of treating a wafer which is an attracted substrate.

【0002】近年,半導体装置のウエハプロセスにおい
て,エピタキシャル,CVD,スパッタ,真空蒸着等,
真空チャンバを用いる工程がますます多く使用されてい
る。そのため,ウエハの表面を損傷しない真空雰囲気内
での固定方法が必要とされ
In recent years, in the wafer process of semiconductor devices, epitaxial, CVD, sputtering, vacuum deposition, etc.
More and more processes using vacuum chambers are used. Therefore, a fixing method in a vacuum atmosphere that does not damage the wafer surface is required.

【0003】る。[0003]

【従来の技術】図7は従来例の説明図である。図におい
て,11は静電チャック, 12は誘電体, 13は電極, 14は直
流電源, 15はウエハである。
2. Description of the Related Art FIG. 7 is an explanatory view of a conventional example. In the figure, 11 is an electrostatic chuck, 12 is a dielectric, 13 is an electrode, 14 is a DC power supply, and 15 is a wafer.

【0004】ウエハプロセスにおいて,ウエハを固定す
る方法として,裏面排気を施しウエハをチャックに固定
する真空チャック方法,静電チャックを用いてウエハを
電気的に固定する方法,爪やアームを用いて機械的にウ
エハを固定する方法等がある。
In the wafer process, as a method of fixing the wafer, a vacuum chuck method of applying backside exhaust to fix the wafer to the chuck, a method of electrically fixing the wafer using an electrostatic chuck, and a machine using claws and arms. For example, there is a method of fixing the wafer.

【0005】この中で,静電チャックを用いてウエハを
電気的に固定する方法は,半導体デバイス製造の面で,
ウエハの表面に非接触であり,真空中においても適応す
ることができるため,広い範囲に利用されている。
Among them, the method of electrically fixing a wafer by using an electrostatic chuck is, in terms of manufacturing a semiconductor device,
It is used in a wide range because it is not in contact with the surface of the wafer and can be applied in vacuum.

【0006】図7(a)に示すように,従来用いられて
いる静電チャック11は, 誘電体12中に単数の電極13を設
けて,電極13とウエハ15間に直流電源14より直流電圧を
印加,或いは,図7(b)に示すように,誘電体12内に
複数の電極13を埋め込み,電極13と他の電極13間に直流
電圧を印加し,ウエハ15と電極13間に働くクーロン力に
よりウエハ15を誘電体12と電極13からなる静電チャック
11に吸着するものである。
As shown in FIG. 7 (a), a conventionally used electrostatic chuck 11 has a single electrode 13 provided in a dielectric 12 and a DC voltage from a DC power supply 14 between the electrode 13 and the wafer 15. Or a plurality of electrodes 13 are embedded in the dielectric 12 and a DC voltage is applied between the electrodes 13 and the other electrodes 13 to act between the wafer 15 and the electrodes 13 as shown in FIG. 7B. Wafer 15 is electrostatically chucked by dielectric 12 and electrode 13 by Coulomb force
It is adsorbed on 11.

【0007】静電チャック11の電極13とウエハ15の距離
は一様なので, 電極13上のウエハ15には一様な吸着力が
働いている。また,当然電極13がない部分には吸着力は
働いていない。
Since the distance between the electrode 13 of the electrostatic chuck 11 and the wafer 15 is uniform, a uniform attracting force acts on the wafer 15 on the electrode 13. In addition, of course, the adsorption force does not work on the part where the electrode 13 is not present.

【0008】[0008]

【発明が解決しようとする課題】プラズマを用いたドラ
イエッチングにおいて,エッチングレートはウエハ上の
どの位置であっても一様である必要がある。このエッチ
ングレートは温度に大きく依存する。つまり,ウエハ上
のエッチングレートを一様にするためには,ウエハ上の
温度分布を一様にすることが大切である。
In dry etching using plasma, the etching rate needs to be uniform at any position on the wafer. This etching rate greatly depends on the temperature. In other words, it is important to make the temperature distribution on the wafer uniform in order to make the etching rate on the wafer uniform.

【0009】実際には,ウエハ上の温度分布を一様にす
るために,静電チャックを水,ガス等で冷却する方法が
用いられているが,現実問題としてプラズマ中のウエハ
の温度分布は同心円状に現れる。
In practice, a method of cooling the electrostatic chuck with water, gas or the like is used in order to make the temperature distribution on the wafer uniform, but as a practical matter, the temperature distribution of the wafer in the plasma is Appear concentrically.

【0010】本発明では,プラズマ中のウエハの温度分
布を一様にするような構造の静電チャックを提供するこ
とを目的とする。
An object of the present invention is to provide an electrostatic chuck having a structure that makes the temperature distribution of a wafer in plasma uniform.

【0011】[0011]

【課題を解決するための手段】図1は本発明の原理説明
図,図2〜図6は本発明の実施例の説明図である。図に
おいて,1は静電チャック,2は誘電体,3は電極,4
は直流電源,5は被吸着基板,6はウエハ,7はチャン
バ,8はプラズマ,9は水冷管である。
FIG. 1 is an explanatory view of the principle of the present invention, and FIGS. 2 to 6 are explanatory views of an embodiment of the present invention. In the figure, 1 is an electrostatic chuck, 2 is a dielectric, 3 is an electrode, 4
Is a DC power supply, 5 is a substrate to be attracted, 6 is a wafer, 7 is a chamber, 8 is plasma, and 9 is a water cooling tube.

【0012】静電チャック1はプラズマ中において,被
吸着基板5であるウエハ6よりも低温度である。よって
プラズマ中のウエハ6のある部分が他の部分よりも温度
が高い場合,その温度が高い部分のウエハ6と静電チャ
ック1の吸着力を強くすれば,その部分の熱伝導率が良
くなり,静電チャック1にウエハ6の熱が発散して温度
が下がる。
The temperature of the electrostatic chuck 1 is lower than that of the wafer 6, which is the substrate 5 to be attracted, in plasma. Therefore, when the temperature of a part of the wafer 6 in the plasma is higher than that of the other part, if the attraction force between the wafer 6 and the electrostatic chuck 1 in the part having the higher temperature is increased, the thermal conductivity of the part is improved. The heat of the wafer 6 is dissipated to the electrostatic chuck 1 and the temperature is lowered.

【0013】ウエハ6と静電チャック1の吸着力はクー
ロン力に基づいている。クーロン力は距離の二乗に反比
例する。よって,吸着力を大きくしたい部分の電極3と
ウエハ6間の誘電体2の厚さは薄くし,吸着力を小さく
したい部分は誘電体2の厚さが厚くなるように静電チャ
ック1を作成する。
The attraction force between the wafer 6 and the electrostatic chuck 1 is based on the Coulomb force. Coulomb force is inversely proportional to the square of distance. Therefore, the electrostatic chuck 1 is formed such that the thickness of the dielectric 2 between the electrode 3 and the wafer 6 where the attraction force is desired to be increased is thin, and the portion where the attraction force is desired to be increased is increased. To do.

【0014】このような誘電体2の構造は,電極3を設
けた誘電体層2’を積み重ねることにより,比較的簡単
に得ることができる。また,この方法は,電圧源が例え
一つしかなくても,電極3とウエハ6の距離が電極毎に
異なるので,静電チャック1のウエハ6に対する吸着力
は電極毎に異なる。
Such a structure of the dielectric 2 can be obtained relatively easily by stacking the dielectric layers 2'provided with the electrodes 3. Further, in this method, even if there is only one voltage source, the distance between the electrode 3 and the wafer 6 is different for each electrode, so that the attraction force of the electrostatic chuck 1 to the wafer 6 is different for each electrode.

【0015】電極3が2個以上ある従来の静電チャック
1の場合,電極3Aと電極3Bの区切り目には吸着力が働か
なかった。しかしながら,電極3を積み重ねる構造であ
ると,電極3Aと電極3Bの区切り目に平面的な隙間がなく
なり,吸着力が働かない部分をなくすことができ,より
局部的な吸着力制御が可能である。
In the case of the conventional electrostatic chuck 1 having two or more electrodes 3, the attraction force did not work at the boundary between the electrodes 3A and 3B. However, with the structure in which the electrodes 3 are stacked, there is no planar gap at the boundary between the electrode 3A and the electrode 3B, and it is possible to eliminate the part where the adsorption force does not work, and more localized adsorption force control is possible. ..

【0016】現実問題としては,プラズマ中のウエハ6
の温度分布は同心円状に現れるので,電極3の形状は同
心円状にし,ウエハ6と静電チャック1の吸着力を同心
円状に分布するようにする。
As a practical matter, the wafer 6 in the plasma is
Since the temperature distribution of 1 appears concentrically, the shape of the electrode 3 is concentric, and the attraction force between the wafer 6 and the electrostatic chuck 1 is concentrically distributed.

【0017】即ち,本発明の目的は,図1に示すよう
に,静電チャック1において, 誘電体内の電極3と, 被
吸着基板5との間の誘電体層の厚さを変化させているこ
とにより,つまり,誘電体2内に電極3を少なくとも2
個以上独立して埋め込み, 電極3毎に誘電体層の厚さを
変えて, 電極3と被吸着基板5との間の吸着力を部分的
に制御することにより,より具体的には,図2 に示すよ
うに, 静電チャック1は, 表面に電極3を埋めまた, 図
5に示すように,電極3が同心円状をなしていることに
より,そして,少なくとも2個以上の電極3に正の電圧
のみ,または正の電圧と負の電圧を印加する機構を有す
ることにより達成することができる。
That is, as shown in FIG. 1, the object of the present invention is to change the thickness of the dielectric layer between the electrode 3 in the dielectric and the attracted substrate 5 in the electrostatic chuck 1. This means that at least two electrodes 3 are provided in the dielectric 2.
More specifically, by embedding independently, by varying the thickness of the dielectric layer for each electrode 3, and partially controlling the attraction force between the electrode 3 and the substrate 5 to be attracted, As shown in FIG. 2, the electrostatic chuck 1 has electrodes 3 embedded in the surface thereof, and as shown in FIG. 5, the electrodes 3 are concentric, and at least two or more electrodes 3 are positively connected. Can be achieved by having a mechanism for applying a positive voltage and a negative voltage alone.

【0018】[0018]

【作用】本発明によれば,一定電圧で静電チャックの部
分的な吸着力を様々に変えることができ,プラズマ中の
ウエハの温度分布を制御することが可能である。
According to the present invention, the partial attraction force of the electrostatic chuck can be variously changed with a constant voltage, and the temperature distribution of the wafer in the plasma can be controlled.

【0019】[0019]

【実施例】図1は本発明の原理説明図,図2〜図6は本
発明の実施例の説明図である。図1(a)に平面図,図
1(b)に断面図で示した静電チャック1は,図2
(a)〜(d)に示すように,それぞれの表面に位置を
ずらして長方形の電極3を埋め込んだに4枚の円盤状の
誘電体層2A, 2B, 2C, 2Dを積み重ねて作成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of the principle of the present invention, and FIGS. 2 to 6 are explanatory views of an embodiment of the present invention. The electrostatic chuck 1 shown in a plan view in FIG. 1A and a sectional view in FIG.
As shown in (a) to (d), four disk-shaped dielectric layers 2A, 2B, 2C, and 2D are stacked on the respective surfaces in which the rectangular electrodes 3 are embedded at different positions.

【0020】この静電チャック1に,図1(b)に示す
ように,被吸着基板5としてシリコンのウエハを載せ,
直流電源4より各電極3に 1,000Vの電圧を印加して部
分的な吸着力を調べてみた。
As shown in FIG. 1B, a silicon wafer is placed on the electrostatic chuck 1 as a substrate 5 to be attracted.
A voltage of 1,000 V was applied from the DC power source 4 to each electrode 3 to examine the partial adsorption force.

【0021】被吸着基板5と各電極3の間隔,つまり,
誘電体層2’の厚さが薄くなるに従って,吸着力が大き
くなる結果を得た。吸着力2A>2B>2C>2D。従って, 吸
着力が大きいと前述のようにウエハの温度が下がるの
で, 図1(c)に示すように,ウエハ温度はDよりAの
方に向かって低くなっている。
The distance between the attracted substrate 5 and each electrode 3, that is,
The result is that the attraction force increases as the thickness of the dielectric layer 2'decreases. Adsorption force 2A>2B>2C> 2D. Therefore, if the suction force is large, the temperature of the wafer is lowered as described above, so that the wafer temperature is lower than D in the direction A as shown in FIG.

【0022】以上のように,誘電体層2'の厚さを変えれ
ば,吸着力が制御できることが確認された。本発明との
比較例として従来の二極式の静電チャックの構造を図3
(a)に平面図,図3(b)に断面図で示す。
As described above, it was confirmed that the attraction force can be controlled by changing the thickness of the dielectric layer 2 '. As a comparative example with the present invention, the structure of a conventional bipolar electrostatic chuck is shown in FIG.
FIG. 3A is a plan view and FIG. 3B is a sectional view.

【0023】誘電体12としてアルミナセラミックを使用
している。この静電チャック11の中心部分の電極3Aに−
1,000 V,外周部分の電極3Bに+1,000 Vの電圧を印加
することによりウエハを固定する。静電チャック1は図
4(a)に模式断面図で示す平行平板型RIE装置にセ
ットされている。
Alumina ceramic is used as the dielectric 12. The electrode 3A at the center of the electrostatic chuck 11
The wafer is fixed by applying a voltage of 1,000 V and +1,000 V to the electrode 3B on the outer peripheral portion. The electrostatic chuck 1 is set in the parallel plate type RIE device shown in the schematic sectional view of FIG.

【0024】プラズマ形成条件は,アルゴン(Ar)ガス流
量 100sccm, チャンバ内ガス圧力0.15Torr, RF電力 500
Wで行った。水冷管より20℃の水を流して静電チャック
11を冷却し,プラズマを発生した時のウエハ温度は,図
4(b)にウエハの平面図で示すように,ウエハ6の中
心部分に比べて外周付近が高温である。最大値と最小値
の差は30℃で, かなりの温度差があることが観察され
る。
The plasma formation conditions are as follows: Argon (Ar) gas flow rate 100 sccm, chamber gas pressure 0.15 Torr, RF power 500
W went. Electrostatic chuck by flowing 20 ℃ water from the water cooling tube
As shown in the plan view of the wafer in FIG. 4B, the wafer temperature at the time of cooling 11 and generating plasma is higher in the vicinity of the outer periphery than in the central portion of the wafer 6. The difference between the maximum value and the minimum value is 30 ℃, and it is observed that there is a considerable temperature difference.

【0025】そこで,外周部分の温度上昇を抑制するた
めに,図5に示すように,ウエハ6の外周部分の吸着力
が中心部分の吸着力に比べて大きくなるような静電チャ
ック1を作成した。
Therefore, in order to suppress the temperature rise of the outer peripheral portion, as shown in FIG. 5, an electrostatic chuck 1 is prepared in which the attracting force of the outer peripheral portion of the wafer 6 is larger than that of the central portion. did.

【0026】この静電チャック1の誘電体2は,図6に
示すようにウエハの外周部分をカバーするような電極3A
を埋め込んだ円盤状の誘電体層2Aと, ウエハの中心部分
をカバーするような電極3Bを埋め込んだ円盤状の誘電体
層2Bとを同心円状に積み重ねた構造である。
As shown in FIG. 6, the dielectric 2 of the electrostatic chuck 1 has an electrode 3A that covers the outer peripheral portion of the wafer.
It has a structure in which a disk-shaped dielectric layer 2A in which is embedded and a disk-shaped dielectric layer 2B in which an electrode 3B covering the central portion of the wafer is embedded are concentrically stacked.

【0027】この静電チャック1を用いて,前記の従来
例と同様な実験を行った結果,ウエハ6の中心部分にく
らべては,ウエハ6の外周部分の温度は幾分高温ではあ
るが,最大値と最小値の差は11℃となり, ウエハ6の温
度分布は可なり改善された。
As a result of conducting an experiment similar to the above-mentioned conventional example using this electrostatic chuck 1, the temperature of the outer peripheral portion of the wafer 6 is somewhat higher than that of the central portion of the wafer 6, The difference between the maximum value and the minimum value was 11 ° C, and the temperature distribution of the wafer 6 was improved considerably.

【0028】この実験結果より, 電極3の数を増やし,
誘電体層2'の厚さの差を拡大すれば, より改善された温
度分布が得られる。
From the results of this experiment, the number of electrodes 3 is increased,
If the difference in the thickness of the dielectric layer 2'is enlarged, a more improved temperature distribution can be obtained.

【0029】[0029]

【発明の効果】以上説明したように,本発明によれば,
ウエハのような被吸着基板と静電チャック管の吸着力を
ウエハと電極の間隔に対応する静電力の差により部分的
に変化させて, ウエハと静電チャック間の熱伝導を制御
し, プラズマ中のウエハ温度の分布を一様にすることが
できた。
As described above, according to the present invention,
The attraction force between the substrate to be attracted such as a wafer and the electrostatic chuck tube is partially changed by the difference in the electrostatic force corresponding to the distance between the wafer and the electrode to control the heat conduction between the wafer and the electrostatic chuck and The distribution of the wafer temperature inside was able to be made uniform.

【0030】従って, ウエハ全面において, 一定のエッ
チングレートを得ることが可能となっり, ウエハプロセ
スの技術的向上に寄与するところが大きい。
Therefore, it becomes possible to obtain a constant etching rate on the entire surface of the wafer, which largely contributes to the technical improvement of the wafer process.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理説明図(その1)FIG. 1 is an explanatory diagram of the principle of the present invention (No. 1)

【図2】 本発明の原理説明図(その2)FIG. 2 is an explanatory diagram of the principle of the present invention (No. 2)

【図3】 本発明の一実施例の説明図(その1)FIG. 3 is an explanatory diagram of an embodiment of the present invention (No. 1)

【図4】 本発明の一実施例の説明図(その2)FIG. 4 is an explanatory diagram of an embodiment of the present invention (No. 2)

【図5】 本発明の一実施例の説明図(その3)FIG. 5 is an explanatory diagram of an embodiment of the present invention (part 3).

【図6】 本発明の一実施例の説明図(その4)FIG. 6 is an explanatory view of an embodiment of the present invention (No. 4).

【図7】 従来例の説明図FIG. 7 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 静電チャック 2 誘電体 3 電極 4 直流電源 5 被吸着基板 6 ウエハ 7 チャンバ 8 プラズマ 9 水冷管 1 Electrostatic Chuck 2 Dielectric 3 Electrode 4 DC Power Supply 5 Adsorbed Substrate 6 Wafer 7 Chamber 8 Plasma 9 Water Cooling Tube

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 静電チャック(1) において, 誘電体(2)
内の電極(3) と, 被吸着基板(5) との間の誘電体層の厚
さを変化させていることを特徴とする静電チャック。
1. An electrostatic chuck (1) comprising a dielectric (2)
An electrostatic chuck characterized in that a thickness of a dielectric layer between an electrode (3) inside and a substrate (5) to be attracted is changed.
【請求項2】 前記誘電体(2) 内に前記電極(3) を少な
くとも二つ以上独立して埋め込み, 前記電極(3) 毎に誘
電体層の厚さを変えて, 前記電極(3) と前記被吸着基板
(5) との間の吸着力を部分的に制御することを特徴とす
る請求項1記載の静電チャック。
2. At least two or more electrodes (3) are independently embedded in the dielectric (2), the thickness of the dielectric layer is changed for each electrode (3), And the substrate to be attracted
The electrostatic chuck according to claim 1, wherein the attraction force between (5) and (5) is partially controlled.
【請求項3】 前記静電チャック(1) は, 表面に前記電
極(3) を埋め込んだ誘電体層(2')を少なくとも2層以上
重ね合わせてなることを特徴とする請求項2記載の静電
チャック。
3. The electrostatic chuck (1) according to claim 2, wherein at least two or more dielectric layers (2 ′) having the surface embedded with the electrodes (3) are superposed on each other. Electrostatic chuck.
【請求項4】 前記電極(3) が同心円状をなしているこ
とを特徴とする請求項1,或いは2,或いは3記載の静
電チャック。
4. The electrostatic chuck according to claim 1, wherein the electrode (3) has a concentric circular shape.
【請求項5】 前記少なくとも2個以上の電極(3) に正
の電圧のみ,または正の電圧と負の電圧を印加する機構
を有することを特徴とする請求項1,或いは2,或いは
3,或いは4記載の静電チャック。
5. A mechanism for applying only a positive voltage, or a positive voltage and a negative voltage, to the at least two or more electrodes (3), 1. Alternatively, the electrostatic chuck according to item 4.
JP3026892A 1992-02-18 1992-02-18 Electrostatic chuck Withdrawn JPH05226462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3026892A JPH05226462A (en) 1992-02-18 1992-02-18 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3026892A JPH05226462A (en) 1992-02-18 1992-02-18 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JPH05226462A true JPH05226462A (en) 1993-09-03

Family

ID=12298959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3026892A Withdrawn JPH05226462A (en) 1992-02-18 1992-02-18 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JPH05226462A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11502062A (en) * 1995-03-10 1999-02-16 ラム リサーチ コーポレイション Multilayer electrostatic chuck and method of manufacturing the same
WO2000058994A1 (en) * 1999-03-31 2000-10-05 Lam Research Corporation Method and apparatus for compensating non-uniform wafer processing in plasma processing
EP1132956A1 (en) * 1998-10-29 2001-09-12 Tokyo Electron Limited Vacuum processor apparatus
US6370004B1 (en) 1998-09-29 2002-04-09 Ngk Insulators, Ltd. Electrostatic chuck
JP2005064105A (en) * 2003-08-08 2005-03-10 Tomoegawa Paper Co Ltd Electrostatic chuck device, electrode sheet therefor and adsorption method
JP2007173592A (en) * 2005-12-22 2007-07-05 Kyocera Corp Electrostatic chuck
JP2008001989A (en) * 2006-06-23 2008-01-10 Qimonda Ag Sputter deposition apparatus and method
US8000082B2 (en) 2005-09-30 2011-08-16 Lam Research Corporation Electrostatic chuck assembly with dielectric material and/or cavity having varying thickness, profile and/or shape, method of use and apparatus incorporating same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11502062A (en) * 1995-03-10 1999-02-16 ラム リサーチ コーポレイション Multilayer electrostatic chuck and method of manufacturing the same
US6370004B1 (en) 1998-09-29 2002-04-09 Ngk Insulators, Ltd. Electrostatic chuck
KR100369871B1 (en) * 1998-09-29 2003-01-29 니뽄 가이시 가부시키가이샤 Electrostatic chuck
EP1132956A1 (en) * 1998-10-29 2001-09-12 Tokyo Electron Limited Vacuum processor apparatus
EP1132956A4 (en) * 1998-10-29 2005-04-27 Tokyo Electron Ltd Vacuum processor apparatus
WO2000058994A1 (en) * 1999-03-31 2000-10-05 Lam Research Corporation Method and apparatus for compensating non-uniform wafer processing in plasma processing
US6188564B1 (en) 1999-03-31 2001-02-13 Lam Research Corporation Method and apparatus for compensating non-uniform wafer processing in plasma processing chamber
JP2002540616A (en) * 1999-03-31 2002-11-26 ラム リサーチ コーポレーション Method and apparatus for correcting non-uniform wafer processing in a plasma processing chamber
JP2005064105A (en) * 2003-08-08 2005-03-10 Tomoegawa Paper Co Ltd Electrostatic chuck device, electrode sheet therefor and adsorption method
US8000082B2 (en) 2005-09-30 2011-08-16 Lam Research Corporation Electrostatic chuck assembly with dielectric material and/or cavity having varying thickness, profile and/or shape, method of use and apparatus incorporating same
JP2007173592A (en) * 2005-12-22 2007-07-05 Kyocera Corp Electrostatic chuck
JP2008001989A (en) * 2006-06-23 2008-01-10 Qimonda Ag Sputter deposition apparatus and method

Similar Documents

Publication Publication Date Title
US5631803A (en) Erosion resistant electrostatic chuck with improved cooling system
CN100550271C (en) Be used for the showerhead electrode design of semiconductor processing reactor
TWI438861B (en) Annulus clamping and backside gas cooled electrostatic chuck
US5903428A (en) Hybrid Johnsen-Rahbek electrostatic chuck having highly resistive mesas separating the chuck from a wafer supported thereupon and method of fabricating same
US5606485A (en) Electrostatic chuck having improved erosion resistance
JP4935143B2 (en) Mounting table and vacuum processing apparatus
US6104596A (en) Apparatus for retaining a subtrate in a semiconductor wafer processing system and a method of fabricating same
JPH04211146A (en) Electrostatic chuck
JP2015509280A (en) Hot plate with planar thermal zone for semiconductor processing
TW200405443A (en) Electrostatic absorbing apparatus
KR20030074833A (en) Focus ring for semiconductor treatment and plasma treatment device
JP2014522103A (en) Electrostatic chuck with plasma-assisted dechuck on wafer backside
JPH11512692A (en) Method and apparatus for electrostatically clamping a dielectric workpiece in a vacuum processing apparatus
WO2003008666A1 (en) Electrostatic chuck with dielectric coating
TW202205347A (en) Edge ring, substrate support, plasma processing system and method of replacing edge ring
US20200013595A1 (en) Electrostatic chuck and plasma processing apparatus including the same
KR102345663B1 (en) Electrostatic chucks with coolant gas zones and corresponding groove and monopolar electrostatic clamping electrode patterns
WO2021111732A1 (en) Attracting-and-holding device and object surface machining method
TW202224092A (en) High temperature bipolar electrostatic chuck
JPH1064986A (en) Substrate supporting chuck having contamination suppressing layer and its manufacture
JPH05226462A (en) Electrostatic chuck
TW202147371A (en) Electrostatic edge ring mounting system for substrate processing
JP2767282B2 (en) Substrate holding device
JPS62193141A (en) Wafer holding mechanism
JP4602528B2 (en) Plasma processing equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518