JPH0519043B2 - - Google Patents

Info

Publication number
JPH0519043B2
JPH0519043B2 JP58083787A JP8378783A JPH0519043B2 JP H0519043 B2 JPH0519043 B2 JP H0519043B2 JP 58083787 A JP58083787 A JP 58083787A JP 8378783 A JP8378783 A JP 8378783A JP H0519043 B2 JPH0519043 B2 JP H0519043B2
Authority
JP
Japan
Prior art keywords
fuel
porous body
ceramic porous
combustion
vaporized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58083787A
Other languages
Japanese (ja)
Other versions
JPS59208313A (en
Inventor
Takeshi Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP8378783A priority Critical patent/JPS59208313A/en
Publication of JPS59208313A publication Critical patent/JPS59208313A/en
Publication of JPH0519043B2 publication Critical patent/JPH0519043B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は液体燃料の気化ガス、気体燃料を燃焼
させるようにした発熱装置に関するものである。 一般的に液体燃料を燃焼させる方式としては綿
やガラスウール、石綿などの繊維素を束にした
り、繊布などで構成したいわゆる“芯”にて吸い
上げ、芯材の先端部に別途の点火源を近づけ、吸
い上げられた燃料の一部を気化燃焼させ、その熱
でもつて次の燃料を気化燃焼させることにより連
続的に燃焼を継続させるようにした方式によるも
の、あるいは噴霧状に燃料を噴出させ別途設けた
点火源によつて着火して発熱量の大きな燃焼火炎
を得るようにした燃焼方式などが一般的である。 ところが、上記の如き燃焼方式では、比較的大
きな発熱量が得られる反面、燃焼装置が大型化す
ること、点火源を装備しなければならないこと、
火炎が発生することにより火炎を誘起する恐れが
大きいこと、微小な発熱量を完全燃焼させること
によつて長時間にわたり継続燃焼させるような装
置を安価に得られないなど多くの欠点を有するほ
か燃料を効率的に燃焼させることが困難であつ
た。 本発明は上記に鑑みて開発した発熱装置であつ
て小型軽量で長時間に亘り、安全に燃焼させるこ
とができ、かつ燃料を効率的に燃焼させるように
したものである。 以下、本発明実施例を図によつて具体的に詳述
する。 第1図は本発明装置の基本構成図で、1は燃料
2を貯蔵する燃料タンク、3は下方部が燃料2中
に浸漬される如く配置された燃料導出多孔体であ
り、この燃料導出多孔体3は1インチ平方当り50
〜500セル程度の気孔を有するポーラス(多孔質)
セラミツクあるいは石綿、グラスウール、カーボ
ンフアイバーなどの集束体でもつて構成される。
また4はシヤツターで燃料導出多孔体3からの燃
料導出量を加減したり、供給を停止させる操作を
行なうものである。5はセラミツク多孔体で、こ
のセラミツク多孔体5としては三角、四角、六
角、円形など多数の空孔をもつたハニカム形状の
もの、不定形状の空孔をもつた三次元網状をした
ものなど各空孔が連通し、通気抵抗の比較的小さ
いものであればよく、これら多孔質の物体に対
し、酸化触媒成分である白金(Pt)パラジウム
(Pd)ロジウム(Rh)などの白金族金属を1
容量当り、0.5〜5g程度保持させて構成されて
いる。 さらに6は被加熱物体を収納する容器で、被加
熱物体の量、性状などによつてこの容器6の形状
はそれぞれに最も適した形状のものを使用すれば
よい。 次に上記のように構成された発熱装置の作動を
説明する。いま、燃料タンク1に貯蔵された燃料
2には燃料導出多孔体3の下方部が浸漬された状
態にあることから液体状の燃料2は毛細管現象に
よつて吸い上げられ、この吸い上げられる過程に
おいて燃料のほとんどが、気化燃料となり、シヤ
ツター4が開路している場合には、上昇してこの
シヤツター4の上部に配設され触媒成分が担持さ
れたセラミツク多孔体5に送られる。そのため気
化燃料はセラミツク多孔体5中において触媒成分
である白金による作用でもつて酸化反応、すなわ
ち燃焼を起こすこととなる。このような気化燃料
の酸化反応に伴つて燃焼熱が発生することから連
続的に燃料導出多孔体3から送られてくる気化燃
料はセラミツク多孔体5において酸化反応が促
進、拡大され連続的に酸化燃焼作用が継続するこ
とになり、そのため発生した燃焼熱によつて容器
6を加熱することから該容器6に入れられた被加
熱物体(図示せず)を加熱する。 一方、白金族を担持させたセラミツク多孔体5
における酸化反応を起こす容量が充分に大きい場
合には、発生する熱量は供給される気化燃料量に
ほぼ比例することから、シヤツター4の開度を調
節することによつて発熱量、加熱温度を制御する
ことができ、また該シヤツター4を閉塞すること
によつて発熱作動を停止させることができる。 ところで、上記の如く本発明装置にて燃焼に供
する液体燃料としては1気圧下における沸点が30
℃以上のメタヌール(64℃)、エタノール(78℃)
エーテル(34℃)、アセトン(54℃)など比較的
低沸点の可燃性有機液体を用いることが好ましく
その他、ガソリン、灯油などでもよいが、灯油の
如く沸点が比較的高いようなものにあつては第2
図a,bにて例示するようにヒータHを燃料導出
多孔体3、セラミツク多孔体5などの各々に埋設
しておき、該ヒータHにバツテリーBより通電し
加熱することによつて一層酸化燃焼反応を促進さ
せることができる。 さらに、燃焼に供する燃料としてはアルコー
ル、エーテル、アセトンなど常温常圧にて液体で
あるものに限らず、加圧下において液体となり常
温常圧では気体であるブタン、エタン、メタンな
どの燃料を使用してもよく、この場合供給される
気体燃料の流れを整流するために燃料導出多孔体
3を具備させておいてもよいが、その場合には必
ずしも必要とはしない。 また、上記実施例では、燃料として液体燃料や
気体燃料を用いたものを示したが、この他にメタ
ノール等の固形燃料を用いてもよい。 次に本発明装置についての実験例を第1表に挙
げる。 これらA〜Gの実験例における、特に燃料反応
の立上りをセラミツク多孔体5の中心点直上約5
mmの位置の温度と、燃料をセラミツク多孔体5に
供給開始時点からの経過時間とによりプロツトし
たのが第3図のグラフであつて、これから明らか
なように同一燃料を使用したものにおいて、燃料
導出多孔体3、セラミツク多孔体5の気孔率の大
きなもの、すなわちセル数が多く、かつ大きな体
積をもつた、特にセラミツク多孔体5を装備した
ものの方が温度立上りが早く、しかも高温度が得
られる傾向が認められる。これは実験例A、B、
Cから明らかなように気化燃料と触媒成分を担持
The present invention relates to a heat generating device that burns vaporized gas of liquid fuel or gaseous fuel. Generally speaking, liquid fuel is combusted by bundling cellulose materials such as cotton, glass wool, or asbestos, or by sucking it up with a so-called "core" made of textiles, etc., and using a separate ignition source at the tip of the core material. A method in which a part of the fuel sucked up is vaporized and combusted, and the next fuel is vaporized and combusted using that heat to continue combustion, or a separate method in which the fuel is ejected in the form of a spray. A commonly used combustion method is one in which a combustion flame with a large calorific value is obtained by ignition using a provided ignition source. However, while the combustion method described above produces a relatively large amount of heat, it requires a larger combustion device and the need to be equipped with an ignition source.
It has many disadvantages, such as the high risk of inducing a flame due to the generation of flames, and the inability to obtain inexpensive equipment that allows continuous combustion for long periods of time by completely combusting minute amounts of heat. It was difficult to burn it efficiently. The present invention is a heat generating device developed in view of the above, which is small and lightweight, can burn safely for a long time, and burns fuel efficiently. Hereinafter, embodiments of the present invention will be specifically described in detail with reference to the drawings. FIG. 1 is a basic configuration diagram of the device of the present invention, in which 1 is a fuel tank for storing fuel 2, 3 is a fuel outlet porous body arranged so that its lower part is immersed in the fuel 2, and this fuel outlet porous body is Body 3 is 50 per square inch
Porous with ~500 pores
It is composed of a bundle of ceramics, asbestos, glass wool, carbon fiber, etc.
Further, numeral 4 is a shutter for adjusting the amount of fuel delivered from the fuel deriving porous body 3 or for stopping the supply. Reference numeral 5 denotes a ceramic porous body, and the ceramic porous body 5 may be a honeycomb-shaped body with a large number of pores such as triangular, square, hexagonal, or circular, or a three-dimensional net-like body with irregularly shaped pores. It is sufficient that the pores are connected and the ventilation resistance is relatively small.
It is configured to hold about 0.5 to 5 g per capacity. Furthermore, 6 is a container for storing the object to be heated, and the shape of this container 6 may be the most suitable shape depending on the amount, properties, etc. of the object to be heated. Next, the operation of the heat generating device configured as described above will be explained. Now, since the lower part of the fuel derivation porous body 3 is immersed in the fuel 2 stored in the fuel tank 1, the liquid fuel 2 is sucked up by capillary action, and in this sucking process, the fuel Most of the fuel becomes vaporized fuel, and when the shutter 4 is open, it rises and is sent to the ceramic porous body 5 disposed above the shutter 4 and carrying catalyst components. Therefore, the vaporized fuel undergoes an oxidation reaction, that is, combustion, in the ceramic porous body 5 due to the action of platinum, which is a catalyst component. As combustion heat is generated as a result of the oxidation reaction of the vaporized fuel, the oxidation reaction of the vaporized fuel continuously sent from the fuel derivation porous body 3 is promoted and expanded in the ceramic porous body 5, and the vaporized fuel is continuously oxidized. The combustion action continues, so that the generated combustion heat heats the container 6, thereby heating the heated object (not shown) placed in the container 6. On the other hand, a ceramic porous body 5 carrying platinum group metals
If the capacity to cause the oxidation reaction in is sufficiently large, the amount of heat generated is approximately proportional to the amount of vaporized fuel supplied, so the amount of heat generated and the heating temperature can be controlled by adjusting the opening degree of the shutter 4. Furthermore, by closing the shutter 4, the heat generating operation can be stopped. By the way, as mentioned above, the liquid fuel used for combustion in the apparatus of the present invention has a boiling point of 30
Methanol (64℃), ethanol (78℃) above ℃
It is preferable to use a flammable organic liquid with a relatively low boiling point, such as ether (34℃) or acetone (54℃).In addition, gasoline, kerosene, etc. may also be used, but if the liquid has a relatively high boiling point, such as kerosene, is the second
As illustrated in Figures a and b, a heater H is embedded in each of the fuel derivation porous body 3, ceramic porous body 5, etc., and the heater H is energized from the battery B to heat it, thereby further oxidizing combustion. It can accelerate the reaction. Furthermore, the fuel used for combustion is not limited to alcohol, ether, and acetone, which are liquid at room temperature and pressure, but also fuels such as butane, ethane, and methane, which become liquid under pressure and are gas at room temperature and pressure. In this case, a porous fuel outlet body 3 may be provided to rectify the flow of the supplied gaseous fuel, but in that case, it is not necessarily required. Further, in the above embodiments, liquid fuel or gaseous fuel is used as the fuel, but solid fuel such as methanol may also be used. Next, Table 1 lists experimental examples for the apparatus of the present invention. In these experimental examples A to G, in particular, the rise of the fuel reaction was set at approximately 50% directly above the center point of the ceramic porous body 5.
The graph in Figure 3 is a plot of the temperature at the mm position and the elapsed time from the start of supply of fuel to the ceramic porous body 5.As is clear from this, when the same fuel is used, the fuel The derived porous body 3 and the ceramic porous body 5 having a high porosity, that is, those having a large number of cells and a large volume, especially those equipped with the ceramic porous body 5, have a faster temperature rise and can achieve higher temperatures. There is a tendency for this to occur. This is experimental example A, B,
As is clear from C, it supports vaporized fuel and catalyst components.

【表】【table】

【表】 した部分との触媒面積が多く、酸化反応が急激に
促進されるためであると考えられる。 ところが、実験例D〜Gにおける如く、セラミ
ツク多孔体5が小さな体積のものにあつてはセル
数が多いものであつたとしても酸化反応の立上り
は緩慢で、この場合、温度上昇値も約70℃程度ま
でであつて比較的低い温度に加熱するための発熱
装置の構成に適していることがわかる。また実験
例F、Gのように燃料濃度の低いものを用いたも
のでは酸化反応の立上りは極めて緩慢なものであ
つて、上昇温度も20〜40℃範囲にとどまる。した
がつて同じ発熱装置であつたとしても供給する燃
料の濃度によつて得られる発熱量、上昇温度を制
御することが可能であることが判る。 なお、上記第1表に挙げた実験例には燃料とし
てメタノールのみを用いた場合をあげたがこれに
限らずエタノール、アセトンなど他の可熱性有機
液体を用いた場合もほぼ同様の温度上昇すなわち
酸化(燃焼)反応をもつ傾向を示した。 また、ブタンなど常温常圧状態で気体の燃料を
セラミツク多孔体5に供給して酸化反応の立上り
を調べたが、かかる気体燃料を用いた場合にあつ
てもほぼ同様に傾向が見受けられた。ただし、沸
点が高い液体燃料を用いる場合と同様、初期の酸
化反応を引起こすべく第3図bの如くセラミツク
多孔体5中に埋設したヒータHでもつて予じめ加
熱すれば酸化反応を引起し継続させることが容易
に可能であつた。 ところで、燃料を酸化反内(燃焼)させるセラ
ミツク多孔体5としては充分な反応を起させるた
めに可能な限り体積の大きなもので、かつ1容
量当り少なくとも酸化触媒としての白金族金属を
0.5〜5g担持させたものであるが、セル数とし
ては20〜600セル/in2のものが本発発明熱装置の
構成に適するとともに使用に便利なものであつ
た。 なお、本発明実施例において燃料導出多孔体3
とセラミツク多孔体5とをそれぞれ別体のもので
構成したが、これに限らず、例えば一体のセラミ
ツク多孔体を用い、燃料タンク1中の燃料2に浸
漬し、該燃料2を吸い上げ、気化させる下半分は
白金族金属を担持させず、下半分で気化した気化
燃料を酸化反応(燃焼)させるべく上半分に対し
ては白金族金属を担持させたものであつてもよ
い。この場合における燃焼作動の開始、停止には
酸化反応を行うセラミツク多孔体の部位への酸素
(空気)の供給を遮断するようにするか、あるい
は液体燃料への浸漬し燃料導出多孔体を成す部分
が燃料液面より離れる如くセラミツク多孔質体全
体を上下方向にあげさげできるようにしたもので
あつてもよい。 なお、酸化反応を起させるセラミツク多孔体の
上部に配置される容器6の形状は該容器6にて加
熱される被加熱物体を入れるに適したものであれ
ば、特定する必要はなく任意形状のものを用いれ
ばよい。 以上のように本発明によれば気体燃料あるいは
液体燃料で気化したものをセラミツク多孔体に担
持せしめた白金族金属の有するすぐれた酸化触媒
作用を利用するようにした装置であることから、
点火源を要せず小型軽量で長時間に亘り、効率良
く燃焼させることができ、しかも火災などを引起
こす恐れのない安全で多方面に使用し得る発熱装
置を安価に提供することができるなど多くのすぐ
れた特徴をもつている。
[Table] This is thought to be because the oxidation reaction is rapidly promoted because the catalytic area is large. However, as in Experimental Examples D to G, when the ceramic porous body 5 has a small volume, even if the number of cells is large, the rise of the oxidation reaction is slow, and in this case, the temperature rise value is also about 70 It can be seen that it is suitable for the configuration of a heat generating device for heating to a relatively low temperature of about .degree. Further, in the case of using a fuel having a low concentration as in Experimental Examples F and G, the oxidation reaction takes place extremely slowly, and the temperature rise remains within the range of 20 to 40°C. Therefore, it can be seen that even if the heat generating devices are the same, it is possible to control the amount of heat generated and the temperature rise by changing the concentration of the supplied fuel. Note that although the experimental examples listed in Table 1 above are based on the case where only methanol is used as the fuel, this is not the only example, and when other heat-generating organic liquids such as ethanol and acetone are used, almost the same temperature rise, i.e. It showed a tendency to have an oxidation (combustion) reaction. Furthermore, we investigated the onset of the oxidation reaction by supplying a gaseous fuel such as butane to the ceramic porous body 5 at room temperature and normal pressure, and found that almost the same tendency was observed even when such a gaseous fuel was used. However, as in the case of using a liquid fuel with a high boiling point, the oxidation reaction can be caused by heating it in advance with the heater H embedded in the ceramic porous body 5 as shown in Fig. 3b in order to cause the initial oxidation reaction. It was easy to continue. By the way, the ceramic porous body 5 for oxidizing (combusting) the fuel should have as large a volume as possible in order to cause a sufficient reaction, and should contain at least a platinum group metal as an oxidation catalyst per volume.
Although 0.5 to 5 g was supported, a cell number of 20 to 600 cells/in 2 was suitable for the construction of the thermal device of the present invention and was convenient for use. In addition, in the embodiment of the present invention, the fuel derivation porous body 3
Although the ceramic porous body 5 and the ceramic porous body 5 are constructed as separate bodies, the present invention is not limited to this, and for example, an integrated ceramic porous body may be used, immersed in the fuel 2 in the fuel tank 1, and sucking up the fuel 2 to vaporize it. The lower half may not support a platinum group metal, and the upper half may support a platinum group metal in order to cause an oxidation reaction (combustion) of the vaporized fuel in the lower half. In this case, to start and stop the combustion operation, the supply of oxygen (air) to the part of the ceramic porous body that undergoes the oxidation reaction must be cut off, or the part that forms the fuel derivation porous body must be immersed in liquid fuel. The entire porous ceramic body may be raised up and down so that it is separated from the fuel liquid level. The shape of the container 6 placed above the ceramic porous body that causes the oxidation reaction does not need to be specified and can be of any shape as long as it is suitable for containing the object to be heated in the container 6. Just use something. As described above, the present invention is a device that utilizes the excellent oxidation catalytic action of platinum group metals in which gaseous fuel or liquid fuel is supported on a ceramic porous body.
It is possible to provide at low cost a heat generating device that is small and lightweight, does not require an ignition source, can burn efficiently for a long time, and is safe and can be used in many ways without the risk of causing a fire. It has many excellent features.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例による発熱装置の縦断面
図、第2図a,bは第1図における燃料導出多孔
体3、セラミツク多孔体5のみのそれぞれ他の実
施例を示す破断面図である。第3図は本発明装置
を用いた実施例による上昇温度と反応時間の関係
を示すグラフである。 1:燃料タンク、2:液体燃料、3:燃料導出
多孔体、4:シヤツター、5:セラミツク多孔
体、6:容器。
FIG. 1 is a longitudinal sectional view of a heat generating device according to an embodiment of the present invention, and FIGS. 2a and 2b are broken sectional views showing other embodiments of only the fuel deriving porous body 3 and the ceramic porous body 5 in FIG. 1, respectively. be. FIG. 3 is a graph showing the relationship between increased temperature and reaction time in an example using the apparatus of the present invention. 1: fuel tank, 2: liquid fuel, 3: fuel derivation porous body, 4: shutter, 5: ceramic porous body, 6: container.

Claims (1)

【特許請求の範囲】[Claims] 1 メタノール、エタノール、エーテル、アセト
ン、メタン、エタン、ブタンなどの燃料を入れた
燃料タンクと、該燃料タンク中の燃料を導く燃料
導出多孔体を介して、プラチナ、パラジウムなど
の白金族金属を担持させた、セル数が20〜600セ
ル/in2のセラミツクハニカム多孔体を配設せし
め、上記燃料導出多孔体の上端より放出される気
化燃料を上記セラミツクハニカム多孔体でもつて
燃焼させるようにしたことを特徴とする発熱装
置。
1 Supporting platinum group metals such as platinum and palladium through a fuel tank containing fuel such as methanol, ethanol, ether, acetone, methane, ethane, butane, and a fuel outlet porous body that guides the fuel in the fuel tank. A ceramic honeycomb porous body having a cell count of 20 to 600 cells/in 2 is disposed, and the vaporized fuel released from the upper end of the fuel deriving porous body is combusted by the ceramic honeycomb porous body. A heat generating device featuring:
JP8378783A 1983-05-12 1983-05-12 Exothermic device Granted JPS59208313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8378783A JPS59208313A (en) 1983-05-12 1983-05-12 Exothermic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8378783A JPS59208313A (en) 1983-05-12 1983-05-12 Exothermic device

Publications (2)

Publication Number Publication Date
JPS59208313A JPS59208313A (en) 1984-11-26
JPH0519043B2 true JPH0519043B2 (en) 1993-03-15

Family

ID=13812348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8378783A Granted JPS59208313A (en) 1983-05-12 1983-05-12 Exothermic device

Country Status (1)

Country Link
JP (1) JPS59208313A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61280304A (en) * 1985-06-04 1986-12-10 Masao Sugiyama Heater
JPH0334518U (en) * 1989-08-08 1991-04-04
DE10042479C2 (en) * 2000-08-29 2002-10-02 Aral Ag & Co Kg Device and method for the catalytic oxidation of fuels

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135009U (en) * 1974-09-09 1976-03-16
JPS5732332U (en) * 1980-03-25 1982-02-20
JPS5866707A (en) * 1981-10-16 1983-04-21 Matsushita Electric Ind Co Ltd Burner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135009U (en) * 1974-09-09 1976-03-16
JPS5732332U (en) * 1980-03-25 1982-02-20
JPS5866707A (en) * 1981-10-16 1983-04-21 Matsushita Electric Ind Co Ltd Burner

Also Published As

Publication number Publication date
JPS59208313A (en) 1984-11-26

Similar Documents

Publication Publication Date Title
TW407047B (en) Cigarette with a mouthpiece section and its uses
JP2007521453A (en) Capillary pump for liquid vaporization
EP1442254B1 (en) Membrane catalytic heater
KR950011463B1 (en) Catalytic combustion apparatus
US9279583B2 (en) Catalytic burner
US20100227286A1 (en) Membrane catalytic heater
JPH0519043B2 (en)
JP2005221202A (en) Catalytic combustion device
JPS61180818A (en) Hot air generation by catalytic burning
JP2006501435A (en) Post-combustion device
JPH0113229Y2 (en)
JPH0579220U (en) Heat generating device and warmer using the same
JP4546831B2 (en) Driving method of post-combustion device and post-combustion device
JPS643952Y2 (en)
JPS60120114A (en) Catalystic burner
JP2762194B2 (en) Catalytic combustion device
JP3732034B2 (en) Hybrid catalytic combustion apparatus and combustion method
JPS602812A (en) Liquid fuel combustion device
JPS6137524B2 (en)
JPS58136905A (en) Burner
JPS60207818A (en) Liquid fuel burner
JPS5926204B2 (en) combustion device
JPS61184319A (en) Method of generating hot blast by catalytic combustion
JP2000329309A (en) Catalytic combustion device
JPS60202224A (en) Catalyst burner