JPS60202224A - Catalyst burner - Google Patents

Catalyst burner

Info

Publication number
JPS60202224A
JPS60202224A JP59057852A JP5785284A JPS60202224A JP S60202224 A JPS60202224 A JP S60202224A JP 59057852 A JP59057852 A JP 59057852A JP 5785284 A JP5785284 A JP 5785284A JP S60202224 A JPS60202224 A JP S60202224A
Authority
JP
Japan
Prior art keywords
water
oxidation catalyst
heat
amount
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59057852A
Other languages
Japanese (ja)
Inventor
Ikuo Matsumoto
松本 郁夫
Kenji Tabata
研二 田畑
Ryoji Shimada
良治 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59057852A priority Critical patent/JPS60202224A/en
Publication of JPS60202224A publication Critical patent/JPS60202224A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/18Radiant burners using catalysis for flameless combustion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To create atmosphere where generated H2 is added, more H2 is generated, and hydrocarbon is susceptible to be catalytically burnt, by a method wherein an vaporizing element impregnated with a moisture content is installed in the midway of a fuel feed circuit. CONSTITUTION:A steam feed chamber 8 is located right below a spot where an oxidation catalyst body 3 is situated, and a vaporizing element 9, causing water to be vaporized, is positioned at the central part of the chamber. A part of the heat of the oxidation catalyst body 3 during constant catalytic combustion is conducted to the underlaying steam feed chamber 8, and is used as heat for vaporization of steam from the vaporizing element 9. Water proportions an amount of a decrease in a water amount present in the steam feed chamber 8, and is automatically fed from a water tank 12. It is well known that, generally, inorganic gas, such as H2 and CO, is easily reacted as compared with hydrocarbon, such as CH4, and it is also well known that, when H2 is mixed in CH4 which is difficult to burn for catalytic combustion, an oxidation reaction rate of CH4 is increased. Thus, pouring of water during a series of reaction enables increase of an H2 amount.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は炭化水素を燃料とし、酸化触媒体上で無炎燃焼
させ、発生する輻射熱等を暖房あるいは乾燥等に利用す
る触媒燃焼器に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a catalytic combustor that uses hydrocarbons as fuel, burns them flamelessly on an oxidation catalyst, and uses the generated radiant heat for purposes such as heating or drying. .

従来例の構成とその問題点 従来の触媒燃焼器の構成例は第1図に示した様に、供給
ガスは燃料分散管1により均一に分散され、拡散マット
2を通して直接酸化触媒体3に供給されるようになって
いる。ところが触媒燃焼はその燃焼させる燃料の種類に
より大[1]に酸化活性度が異なる。すなわち白金担持
の無機繊維触媒を ′例にとれば、水素の様に氷点下で
も燃焼を開始するものから、メタンの様に500℃近く
なっても何%かの洩れが避けられないものまで様々であ
る。
Conventional configuration and its problems In the conventional catalytic combustor configuration, as shown in FIG. It is supposed to be done. However, the oxidation activity of catalytic combustion varies greatly depending on the type of fuel being combusted. In other words, if we take platinum-supported inorganic fiber catalysts as an example, they range from those like hydrogen that start burning even at subzero temperatures to those like methane that inevitably leak by some percentage even at temperatures close to 500℃. be.

特にその主成分がメタンである13A都市ガスを用いる
場合、相当量の洩れを覚悟しなくてはならない。
In particular, when using 13A city gas whose main component is methane, one must be prepared for a considerable amount of leakage.

発明の目的 本発明はかかる従来の問題を解決し、供給される炭化水
素をできるだけ触媒燃焼をさせやすい形にすることを目
的としたものである。
OBJECTS OF THE INVENTION The object of the present invention is to solve such conventional problems and to make the supplied hydrocarbons into a form that facilitates catalytic combustion as much as possible.

発明の構成 この目的を達成するために、本発明は燃料が触媒体に到
達する前に何等かの方法を持って、燃料中に水分を持ち
込んだものである。すなわち、燃料供給回路の途中に水
分を含浸させた蒸発素子を設置したものである。蒸発に
要するエネルギーは通常、触媒燃焼時の熱を利用するの
が最も好ましいが、電気ヒータの様な外部エネルギーを
用いても良い。
DESCRIPTION OF THE INVENTION To achieve this objective, the present invention uses some method to introduce moisture into the fuel before it reaches the catalyst body. That is, an evaporation element impregnated with moisture is installed in the middle of the fuel supply circuit. Generally, it is most preferable to use heat during catalyst combustion as the energy required for evaporation, but external energy such as an electric heater may also be used.

この構成により本発明の触媒燃焼器は次の作用を有する
。一般に炭化水素が触媒燃焼をする過程を微視的に見れ
ば、炭化水素が酸化触媒体の裏面令1近において炭化水
素と、表面から拡散されてきた僅かな空気と共にレータ
ーミング(Retorming)反応(Partial
 0xidation)を起こし、発生した水素及び−
酸化炭素が酸化触媒体の表面近くにおいて燃焼し、伏酸
ガス及び水に変換する(この反応についての詳細は後述
する)。一般にH2やC○の無機ガスがCH4等の炭化
水素より、容易に反応しやすいのは公知であり、またC
H4等にH2を混合させ触媒燃焼させると、CH4の酸
化反応率が上がることも良く知られている。本発明はこ
の点に着目し、僅かな水分(水蒸気)でも燃焼ガスに混
合させると、酸化触媒体裏面付近でレーターミング(R
e t o rmi ng )反応(SteamRe 
f o rmi ng )を起こし、前述したPart
ialOxidationにより発生したH2を加え、
より多くのH2が発生し、炭化水素を触媒燃焼さぜやす
い雰囲気を作る。
With this configuration, the catalytic combustor of the present invention has the following effects. In general, if we look at the process of catalytic combustion of hydrocarbons microscopically, we can see that hydrocarbons and a small amount of air diffused from the surface undergo a retorming reaction (Retorming reaction) near the back surface of the oxidation catalyst. Partial
oxidation), the generated hydrogen and -
The carbon oxide burns near the surface of the oxidation catalyst and is converted to formic acid gas and water (more details on this reaction are provided below). It is generally known that inorganic gases such as H2 and C○ react more easily than hydrocarbons such as CH4;
It is also well known that when H2 is mixed with H4 or the like and subjected to catalytic combustion, the oxidation reaction rate of CH4 increases. The present invention has focused on this point, and when even a small amount of moisture (water vapor) is mixed into the combustion gas, it causes raying (R) near the back surface of the oxidation catalyst.
e t o r m i n g ) reaction (SteamRe
f o rming) and perform the above Part
Add H2 generated by ialOxidation,
More H2 is generated, creating an atmosphere that facilitates catalytic combustion of hydrocarbons.

実施例の説明 以下本発明の実施例を第2図を用いて説明する。Description of examples Embodiments of the present invention will be described below with reference to FIG.

なお図中で同一の構成部材は同一の番号を付与する。Note that the same components in the figures are given the same numbers.

第2図のごとく、側熱性無機繊維体をマット状に成形し
た触媒担体の表面にPt、 Pd、 Rh等白金族金属
を担持させた酸化触媒体3と、触媒を担持させない!制
熱性無機繊維体をマント状に成形した拡散マツl−2と
を密着させ、その前部を金網4、後部を金網5とで挾み
込み、燃焼器本体6に組み込んである。燃焼器本体6の
前部には酸化触媒体3等の脱離を防ぐためフランジ6′
となっており、後部には金網5がら空間を開は燃料分散
管7が設置さhている。酸化触媒体3が置かれている箇
所のすぐ下は水蒸気供給室8となっており、その中心部
には水を蒸発させる蒸発素子9が置かれている。水蒸気
供給室8は燃料分散管7と連結パイプ10で接続されて
おり、また燃料ガス供給管11とを接続されている。水
蒸気供給室8に供給する水は触媒燃焼器本体6の裏側に
設置した水タンク12から水供給管13を通し流れ込む
様になっており、その水を蒸発させるためのヒータ14
は水蒸気供給室8の下部に密着させである。なお酸化触
媒体3前面には初期点火用のスパーク電極15が置かれ
、酸化触媒体3内部に、触媒燃焼器本体6外壁より熱電
対16が挿入されている。
As shown in Fig. 2, there is an oxidation catalyst 3 in which a platinum group metal such as Pt, Pd, or Rh is supported on the surface of a catalyst carrier made of a matte-shaped inorganic fiber with side-heating properties, and an oxidation catalyst 3 in which a platinum group metal such as Pt, Pd, or Rh is supported on the surface of the catalyst carrier, and a catalyst is not supported on the surface of the catalyst carrier. A diffusion pine l-2 made of heat-suppressing inorganic fibers formed into a mantle shape is brought into close contact with the heat-suppressing inorganic fiber body, and the front part is sandwiched between a wire mesh 4 and the rear part between a wire mesh 5 and the combustor body 6 is assembled. A flange 6' is provided at the front of the combustor body 6 to prevent the oxidation catalyst 3, etc. from detaching.
At the rear, a fuel dispersion pipe 7 is installed in a space opened through a wire mesh 5. Immediately below the location where the oxidation catalyst body 3 is placed is a water vapor supply chamber 8, and an evaporation element 9 for evaporating water is placed in the center thereof. The steam supply chamber 8 is connected to the fuel distribution pipe 7 by a connecting pipe 10, and is also connected to a fuel gas supply pipe 11. Water supplied to the steam supply chamber 8 flows from a water tank 12 installed on the back side of the catalytic combustor main body 6 through a water supply pipe 13, and a heater 14 for evaporating the water.
is in close contact with the lower part of the steam supply chamber 8. A spark electrode 15 for initial ignition is placed on the front surface of the oxidation catalyst body 3, and a thermocouple 16 is inserted into the oxidation catalyst body 3 from the outer wall of the catalytic combustor main body 6.

次に上記構成における触媒燃焼器の作用を説明する。Next, the operation of the catalytic combustor with the above configuration will be explained.

先ずスパーク電極15に通電され放電が開始される。そ
の間に、燃料ガスが燃料供給管11を通り、水蒸気供給
室8、連結パイプ10を通過して燃料分散管7に入る。
First, the spark electrode 15 is energized to start discharging. During this time, the fuel gas passes through the fuel supply pipe 11, the steam supply chamber 8, the connecting pipe 10, and enters the fuel distribution pipe 7.

燃料分散管7で燃料は均一に分散され、拡散マット3及
び酸化触媒体3を通り抜け、その表面において点火され
、全面にフレームが形成される。数十秒後にはそのフレ
ームにより酸化触媒体3自身が加熱され、自然に触媒燃
焼に移行する。この時の燃焼空気は外部より採り入れら
れ、拡散燃焼が継続される。定常の触媒燃焼時の酸化触
媒体3 給室8に伝えられ、蒸発素子9より水蒸気を蒸発させる
だめの熱に使用される。水は水蒸気供給室8内に存在す
る水量の減量に比例して、水クンク12より自動的に供
給される様になっている。寸だ燃焼初期水蒸気供給室8
に十分熱が供給されない場合、あるいは定常燃焼時でも
供給熱が不足している場合には、ヒータ14を入れるこ
とができる。なお本燃焼器の陶造り外に酸化触媒体3よ
り輻射熱、あるいは伝導熱を受け水蒸発に活用できる様
な構造であればどの様な構造でも良い。
The fuel is uniformly dispersed in the fuel distribution tube 7, passes through the diffusion mat 3 and the oxidation catalyst 3, and is ignited on the surface thereof, forming a flame over the entire surface. After several tens of seconds, the oxidation catalyst body 3 itself is heated by the flame, and catalytic combustion naturally begins. Combustion air at this time is taken in from the outside and diffusion combustion continues. During steady catalytic combustion, the oxidation catalyst body 3 is transferred to the supply chamber 8 and used as heat for evaporating water vapor from the evaporation element 9. Water is automatically supplied from the water pump 12 in proportion to the decrease in the amount of water present in the steam supply chamber 8. Initial combustion steam supply chamber 8
The heater 14 can be turned on when sufficient heat is not supplied to the combustion chamber, or when there is insufficient heat even during steady combustion. Any structure other than the ceramic structure of the combustor may be used as long as it can receive radiant heat or conductive heat from the oxidation catalyst 3 and use it for water evaporation.

上記実施例の酸化触媒体3はアルミナ繊維体の集積体は
ロジウム(Rh )を重量比0.5%を担持させたもの
である。この触媒体を用いメタン(CH4)を触媒燃焼
させた場合、燃焼効率は96〜98(2〜4%の洩れ、
酸化触媒体温度400〜500’C)であるが、本実施
例の触媒燃焼器の場合、その燃焼効率は99%以上にも
達する。本実施例の触媒燃焼器における触媒体周辺は次
作用を有する。第3図に示した様に酸化触媒体3の右側
よII)CH4と僅かな水蒸気が供給された場合、CH
4が酸化触媒体3左辺より拡散されてきた酸素と接触し
、酸化反応を起こす。
In the oxidation catalyst body 3 of the above embodiment, the alumina fiber aggregate supports rhodium (Rh) at a weight ratio of 0.5%. When methane (CH4) is catalytically burned using this catalyst, the combustion efficiency is 96-98 (2-4% leakage,
The oxidation catalyst body temperature is 400 to 500'C), but in the case of the catalytic combustor of this example, the combustion efficiency reaches 99% or more. The area around the catalyst body in the catalytic combustor of this embodiment has the following effects. II) When CH4 and a small amount of water vapor are supplied from the right side of the oxidation catalyst 3 as shown in FIG.
4 comes into contact with oxygen diffused from the left side of the oxidation catalyst 3, causing an oxidation reaction.

CH4+202 → CO2+2H20・・・・・(1
)上記反応により発生した水分は、酸化触媒体3を拡散
移動し、あるいは触媒担体のアルミナ表面に取りイーj
き、CH4と接し、Reforming反応を起こす。
CH4+202 → CO2+2H20...(1
) The moisture generated by the above reaction diffuses through the oxidation catalyst 3 or is absorbed onto the alumina surface of the catalyst carrier.
Then, it comes into contact with CH4 and causes a Reforming reaction.

CH4+ H20→3H2+CO・・・・ ・ 2この
時点で、外部より僅かな水分が外部より供給されると2
の反応が多く起り、H2の量が多量に発生する。2の反
応により発生したH2及びCOは酸化触媒体3左側の表
面近くに移動しく表面近くのほうが拡散酸素が多量に存
在する)、次の反応を起こす。
CH4+ H20→3H2+CO・・・2 At this point, if a small amount of moisture is supplied from the outside, 2
reaction takes place, and a large amount of H2 is generated. The H2 and CO generated by the reaction in step 2 move to the left surface of the oxidation catalyst 3 (there is a larger amount of diffused oxygen near the surface), causing the following reaction.

2H2+02 →2H20−−・ ・−G)2CO+0
2→2 CO2・ ・・・・ ■またC H4自身も酸
化触媒体3左側に移行し、直接酸化し、完全燃焼するも
のも存在する。
2H2+02 →2H20−-・・−G)2CO+0
2→2 CO2... ■Also, some of the C H4 itself moves to the left side of the oxidation catalyst 3, where it is directly oxidized and completely combusted.

CH4+202−)CO2−1−2H20−5)発生し
た水分の一部は再びReformingに使用され、ま
たそのまま外部に放出される。
CH4+202-)CO2-1-2H20-5) A part of the generated water is used again for reforming and is also discharged to the outside as it is.

以上が大略の反応メカニズムであるが、実際にかなり複
雑な課程を踏む。しかし一般的にH2やCOの無機ガス
がCH4等の炭化水素より容易に反応しやすいのは公知
であり、燃焼しにくいCH4にH2を混合させ触媒燃焼
させるとCH4の酸化反応率が上がることも良く知られ
ている。従ってこの一連の反応の途中に水を注入するこ
とによりH2量を増加させることができる。また本実施
例に示したRhの様に400〜500°CでもRefo
rming反応を十分性なうことができる触媒を用いる
ことは本効果をより有利に展開できる。
The above is a general outline of the reaction mechanism, but it actually involves a fairly complex process. However, it is generally known that inorganic gases such as H2 and CO react more easily than hydrocarbons such as CH4, and if H2 is mixed with CH4, which is difficult to burn, and catalytically combusted, the oxidation reaction rate of CH4 may increase. well known. Therefore, by injecting water during this series of reactions, the amount of H2 can be increased. Also, like Rh shown in this example, even at 400 to 500°C, Refo
This effect can be more advantageously developed by using a catalyst that can sufficiently carry out the rming reaction.

しかしRhの他の白金族触媒あるいは触媒効果は落ちる
ものの遷移金族酸化金族でも同様の作用を示す。
However, Rh's other platinum group catalysts or transition metal oxide group metal oxides exhibit similar effects, although the catalytic effect is lower.

発明の効果 以上の様に本発明の触媒燃焼器によれば、次の効果が得
られる。
Effects of the Invention As described above, the catalytic combustor of the present invention provides the following effects.

(1)燃料ガスに僅かな水分を導入するだけでCH4等
の炭化水素の燃焼効率を上げることができる。
(1) The combustion efficiency of hydrocarbons such as CH4 can be increased by simply introducing a small amount of moisture into the fuel gas.

特にメタンは触媒燃焼しにくいガスであるが、従来にそ
の例を見ない9996以上の燃焼効率をみることができ
る。
In particular, methane is a gas that is difficult to catalytically burn, but the combustion efficiency of 9996 or higher, which has never been seen before, can be seen.

2 水導入は補助的な意味での添加物であるので、何等
かの都合で水の供給が途切れても、燃焼の不能と云う事
がなく、若干燃焼効率が落ちるのみで燃焼を継続するこ
とができる。
2. Water is introduced as an additive in a supplementary sense, so even if the water supply is cut off for some reason, combustion will not become impossible, and combustion will continue with only a slight decrease in combustion efficiency. Can be done.

■ 家庭用暖房器として触媒燃焼方式は従来プロパン、
ブタンあるいは無機ガスを用いていたが、その他メタン
を主成分としたガスに対しても適用することができる様
になった。
■ Conventional catalytic combustion systems for home heaters use propane,
Although butane or inorganic gas was used, it can now be applied to other gases whose main component is methane.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の触媒燃焼器の断面図、第2図は本発明の
触媒燃焼器の一実施例を示す断面図、第3図は触媒燃焼
機構の概念図である。 3・・・・酸化触媒体、9・・・・蒸発素子、14・・
ヒータ、12・・・・・水タンク。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1rlA 2 第 2 □ 第3図
FIG. 1 is a sectional view of a conventional catalytic combustor, FIG. 2 is a sectional view showing an embodiment of the catalytic combustor of the present invention, and FIG. 3 is a conceptual diagram of a catalytic combustion mechanism. 3... Oxidation catalyst body, 9... Evaporation element, 14...
Heater, 12... Water tank. Name of agent: Patent attorney Toshio Nakao and 1 other person
1rlA 2 2nd □ Fig. 3

Claims (1)

【特許請求の範囲】[Claims] (1)炭化水素を含む燃料ガスを供給する径路の途中に
水分を含浸させた蒸発素子を設置させ、そこを通過した
燃料ガスを酸化触媒体上に供給させ、外部より拡散空気
を採り入れ、酸化触媒体上で低温燃焼させる触媒燃焼器
。 ■ 酸化触媒体は、耐熱性セラミック繊維の集合体を担
体とし、その表面にPt、Pd、Rh等白金族金属ある
いはN i、Co s Mn等遷移金属酸化物等を担持
させて構成した特許請求の範囲第1項に記載の触媒燃焼
器。 ■ 蒸発素子の水を、酸化触媒体からの輻射熱、あるい
は伝導熱により蒸発させる構成とした特許請求の範囲第
1項に記載の触媒燃焼器。
(1) An evaporation element impregnated with moisture is installed in the middle of the path for supplying fuel gas containing hydrocarbons, and the fuel gas that has passed through it is supplied onto the oxidation catalyst, and diffused air is taken in from the outside to oxidize it. A catalytic combustor that burns at a low temperature on a catalytic body. ■ A patent claim in which the oxidation catalyst is constructed by using an aggregate of heat-resistant ceramic fibers as a carrier and supporting platinum group metals such as Pt, Pd, and Rh or transition metal oxides such as Ni and CosMn on the surface of the carrier. The catalytic combustor according to item 1. (2) The catalytic combustor according to claim 1, wherein water in the evaporation element is evaporated by radiant heat or conduction heat from the oxidation catalyst.
JP59057852A 1984-03-26 1984-03-26 Catalyst burner Pending JPS60202224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59057852A JPS60202224A (en) 1984-03-26 1984-03-26 Catalyst burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59057852A JPS60202224A (en) 1984-03-26 1984-03-26 Catalyst burner

Publications (1)

Publication Number Publication Date
JPS60202224A true JPS60202224A (en) 1985-10-12

Family

ID=13067516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59057852A Pending JPS60202224A (en) 1984-03-26 1984-03-26 Catalyst burner

Country Status (1)

Country Link
JP (1) JPS60202224A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820146B1 (en) 2006-09-28 2008-04-08 엘지전자 주식회사 Hydric catalyst combustion burner
CN103335312A (en) * 2012-07-17 2013-10-02 张达积 Infrared hydrogen energy burner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820146B1 (en) 2006-09-28 2008-04-08 엘지전자 주식회사 Hydric catalyst combustion burner
CN103335312A (en) * 2012-07-17 2013-10-02 张达积 Infrared hydrogen energy burner
CN103335312B (en) * 2012-07-17 2016-07-27 张达积 Infrared ray hydrogen energy burner

Similar Documents

Publication Publication Date Title
US6302683B1 (en) Catalytic combustion chamber and method for igniting and controlling the catalytic combustion chamber
JP4677418B2 (en) Diesel engine exhaust system
JP2008527300A (en) Apparatus and method for providing a uniform mixture of fuel and oxidant
JP2008019796A (en) Exhaust system of diesel engine
US6932593B2 (en) Method of preheating catalytic heater
JPS61147014A (en) Catalytic burner
JPS61180818A (en) Hot air generation by catalytic burning
JPS60202224A (en) Catalyst burner
JPH0933007A (en) Combustion device
JPS59112112A (en) Catalyst burner device
JPS59195024A (en) Catalyst combustion burner
JPS59176510A (en) Fuel reforming type catalytic burner
JPH0217306A (en) Porous burner
JP2762194B2 (en) Catalytic combustion device
KR100286826B1 (en) Rotation type oilstove with radiation type ceramic mat electric heating cylinder having catalyst therein
JPS60202223A (en) Catalyst burner
JPS59208313A (en) Exothermic device
JPH0423164B2 (en)
JPS61291817A (en) Catalyst combustion device
JPS6117812A (en) Combustion apparatus
JPS643952Y2 (en)
JPS59221509A (en) Catalyst combustion unit capable of revising fuel quality
JPS60233413A (en) Catalyst combustion device
JPS6242203B2 (en)
JPS62716A (en) Catalyst combustion device