JPH051902B2 - - Google Patents

Info

Publication number
JPH051902B2
JPH051902B2 JP59109811A JP10981184A JPH051902B2 JP H051902 B2 JPH051902 B2 JP H051902B2 JP 59109811 A JP59109811 A JP 59109811A JP 10981184 A JP10981184 A JP 10981184A JP H051902 B2 JPH051902 B2 JP H051902B2
Authority
JP
Japan
Prior art keywords
sensor
gas
strontium titanate
main component
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59109811A
Other languages
Japanese (ja)
Other versions
JPS60253858A (en
Inventor
Koji Yamamura
Koichi Tachibana
Satoshi Sekido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI
Original Assignee
DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI filed Critical DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI
Priority to JP10981184A priority Critical patent/JPS60253858A/en
Publication of JPS60253858A publication Critical patent/JPS60253858A/en
Publication of JPH051902B2 publication Critical patent/JPH051902B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は燃焼排気ガス雰囲気にさらしてその抵
抗変化からストーブ、ボイラなどの燃焼器・自動
車のエンジンなどの内燃機関に供給される空気と
燃料の当量点を検出するセンサに関する。 従来例の構成とその問題点 従来、燃焼器の空気と燃料の当量点を検知する
センサとしては、安定化ジルコニア固体電解質、
酸化スズ、二酸化チタンやMgCo2O4などがある。 安定化ジルコニア固体電解質は、白金を電極及
び触媒として使用しており、コストが高く、また
酸化スズなどの金属酸化物より成る電気抵抗変化
を利用するセンサは、電気抵抗の温度依存性が大
きいために、温度変化に対する補償電気回路ある
いは、もう一つのセンサ素子を必要とする問題が
ある。 発明の目的 本発明は、燃焼排気ガス雰囲気にさらし、その
抵抗変化で燃料と空気の当量点を検出する、薄膜
状の長寿命のガスセンサを提供することを目的と
する。 発明の構成 本発明は、チタン酸ストロンチウムを主成分と
するセラミツク基板上に一対の電極膜を形成し、
その上に、化学式
INDUSTRIAL APPLICATION FIELD The present invention relates to a sensor that detects the equivalence point of air and fuel supplied to a combustor such as a stove or boiler or an internal combustion engine such as an automobile engine based on a change in resistance when exposed to a combustion exhaust gas atmosphere. Conventional configurations and their problems Conventionally, sensors for detecting the equivalence point of air and fuel in the combustor have been made using stabilized zirconia solid electrolytes,
Examples include tin oxide, titanium dioxide and MgCo 2 O 4 . Stabilized zirconia solid electrolytes use platinum as electrodes and catalysts, which are expensive, and sensors that utilize changes in electrical resistance made of metal oxides such as tin oxide have high temperature dependence of electrical resistance. Another problem is that it requires a compensation circuit for temperature changes or another sensor element. OBJECTS OF THE INVENTION An object of the present invention is to provide a long-life thin film gas sensor that is exposed to a combustion exhaust gas atmosphere and detects the equivalence point of fuel and air based on the change in resistance. Structure of the Invention The present invention forms a pair of electrode films on a ceramic substrate containing strontium titanate as a main component,
On top of that, the chemical formula

【式】 (0x0.3)にSrTiO3を20〜70モル%添加し
た材料より成るセンサ感応体の薄膜を形成し、多
孔質のチタン酸ストロンチウムの被覆膜より構成
される。 チタン酸ストロンチウムを主成分とするセラミ
ツクス基板は、センサ感応体材料とほぼ同じ熱膨
張係数を有するために急熱、急冷の熱衝撃により
センサ感応体膜に亀裂を生じたり、センサ感応体
膜が剥離することがなく、また、高温下の雰囲気
でもセンサ感応体材料と反応を起こすことがな
く、安定であり、センサ感応体を破壊することが
ない。チタン酸ストロンチウムを主成分とする多
孔質セラミツクの被覆膜は、センサ感応体に接触
するガス量を制限し、このことによりセンサ感応
体が有する還元性ガス(CO、HCガス)と酸素と
を充分に反応させることができ、センサ感応体に
接しているガスの酸素濃度を低くすることがで
き、薄膜化することによるセンサ感度の低下を防
ぐことができる。また、被覆膜は、センサ上に堆
積する繊維状の有機物(例えば綿ぼこり)等、ま
たアルミナ、シリカ(例えば砂ぼこり)等による
高温使用時に起こる有機物によるセンサ感応体の
還元破壊、またシルミナ、シリカとの反応による
センサ感応体の破壊を防ぐことができる。 発明の実施例 センサの構造及び作製方法を第1図a,bを用
いて説明する。第1図において1は、チタン酸ス
トロンチウムを主成分とするセラミツクス基板で
ある。基板はチタン酸ストロンチウムに少量の焼
結助剤を添加し、プレス成型後1400℃で8時間焼
成して作成した。2は電極であり白金ペーストを
塗布し焼付した。基板1の上に化学式
[Formula] A thin film of the sensor sensitive material is formed of a material in which 20 to 70 mol% of SrTiO 3 is added to (0x0.3), and is composed of a porous strontium titanate coating film. Ceramic substrates whose main component is strontium titanate have almost the same coefficient of thermal expansion as the sensor sensitive material, so thermal shocks caused by rapid heating and cooling can cause cracks in the sensor sensitive film or peeling of the sensor sensitive film. Furthermore, it is stable and does not cause any reaction with the sensor sensitive material even in high-temperature atmospheres, and will not destroy the sensor sensitive material. The porous ceramic coating whose main component is strontium titanate limits the amount of gas that comes into contact with the sensor sensitive body, thereby reducing the amount of reducing gas (CO, HC gas) and oxygen contained in the sensor sensitive body. A sufficient reaction can be caused, the oxygen concentration of the gas in contact with the sensor sensitive body can be lowered, and a decrease in sensor sensitivity due to thinning the film can be prevented. In addition, the coating film prevents the reduction and destruction of the sensor sensitive body due to organic matter such as fibrous organic matter (e.g., cotton dust) that accumulates on the sensor, alumina, silica (e.g., sand dust), etc. that occurs during high-temperature use, and silumina, silica, etc. Destruction of the sensor sensitive body due to reaction with silica can be prevented. Embodiments of the Invention The structure and manufacturing method of the sensor will be explained using FIGS. 1a and 1b. In FIG. 1, reference numeral 1 denotes a ceramic substrate containing strontium titanate as a main component. The substrate was created by adding a small amount of sintering aid to strontium titanate, press molding, and firing at 1400°C for 8 hours. 2 is an electrode, which is coated with platinum paste and baked. Chemical formula on board 1

【式】(0x0.3)に SrTiO3を20〜70モル%含むペロブスカイト型複
合酸化物より成るセンサ感応体膜3を約100μm
の厚さに溶射により形成し、1000℃で3時間焼成
後チタン酸ストロンチウムを主成分とするセラミ
ツク多孔質膜4を溶射により形成した。リード5
は基板に穴を開け、リードを通して、白金ペース
トで焼付しセンサを完成した。 センサ感応体材料の
[Formula] (0x0.3) A sensor sensitive film 3 made of a perovskite type composite oxide containing 20 to 70 mol% of SrTiO 3 is approximately 100 μm thick.
After firing at 1000° C. for 3 hours, a ceramic porous membrane 4 containing strontium titanate as a main component was formed by thermal spraying. lead 5
completed the sensor by drilling a hole in the board, passing the leads through, and baking it with platinum paste. sensor susceptor material

【式】のxが0.3より大きい 値より成るセンサは、xの増加に伴い焼結性が悪
く、また室温で放置しておくと焼結した粒子がそ
の接合部で亀裂を生じ、バラバラになる傾向があ
り、抵抗値が安定しなかつた。 上述のように作成したセンサのセンサ感応体材
料とセンサ抵抗の温度特性を第2図に示した。
Sensors in which x in [Formula] is larger than 0.3 have poor sinterability as x increases, and if left at room temperature, the sintered particles will crack at the joints and fall apart. There was a tendency that the resistance value was unstable. FIG. 2 shows the temperature characteristics of the sensor sensitive material and sensor resistance of the sensor fabricated as described above.

【表】 チタン酸ストロンチウムを添加しない場合のセ
ンサの抵抗は、数十mΩと非常に小さいために、
電極とセンサ感応体膜との接触抵抗やリード線の
抵抗などによる影響が大きく充分な感度を得るこ
とが困難である。しかし、チタン酸ストロンチウ
ムを添加することで、センサ感応体膜の抵抗を大
きくでき他のノイズの影響を小さくできるととも
に熱膨張係数を基板の熱膨張係数に近づけること
ができた。また、チタン酸ストロンチウムの添加
量が20〜70モル%の領域では、400℃〜1000℃の
温度範囲では、温度変化に対するセンサの抵抗変
化が小さく温度補償を必要としない。センサ感応
体材料としてLa0.35Sr0.65Co0.7Fe0.3O3にSrTiO3
60mole%添加した材料を用いたセンサを管状炉
に通した石英ガラス管中に入れて800℃に保持し、
O22%/N2ガス雰囲気とCO4%/N2ガス1.1/
minに対して、O22%/N2ガス1/minの混合
ガス雰囲気の2つの雰囲気に交互に変化させて寿
命試験を行つた。 その結果を第3図に示した。アルミナ系セラミ
ツクス基板を使用した場合の結果を線イで、シリ
カ系セラミツク基板を使用した場合の結果を線ロ
で、そして本発明の実施例であるチタン酸ストロ
ンチウムを主成分とするセラミツク基板を使用し
た場合の結果を線ハでそれぞれ示した。また、破
線は、CO4%/N2ガスを1.1/min、O22%/
N2ガスを1/minの混合ガスを1分間流した
時のセンサ抵抗値であり、実線は、O22%/N2
スのみを2/min5分間流した時の抵抗値であ
る。 アルミナ系セラミツク基板やシリカ系セラミツ
クス基板に比べてチタン酸ストロンチウムを主成
分とするセラミツクス基板を使用したセンサの抵
抗は5000サイクルの試験でもその変化は5%以内
と低いものであり寿命が向上した。 センサのチタン酸ストロンチウムを主成分とす
る多孔質セラミツクス被覆膜4は、センサ感応体
膜3をすすやほこりから保護するとともに、セン
サ感応体に接触するガス量を制限し、このことに
よりセンサ感応体が有する還元性ガス(CO、HC
ガス)と酸素とを充分に反応させることができ、
センサ感応体に接しているガスの酸素濃度を低く
することができ、薄膜化することによりセンサ感
度の低下を防ぐことができる。 第4図に、チタン酸ストロンチウムを主成分と
する多孔質セラミツクス被覆膜を設けたセンサト
と設けてないセンサチのガス特性を示した。抵抗
値はガス流通後1分後の値を取つた。 被覆膜の設けてないセンサは、COとO2の混合
ガスが直接センサ感応体膜に接触し、また充分な
CO酸化触媒活性がないことから、COとO2との
反応によりO2濃度を低くすることができず、感
度が低いものと考えられる。これに対して、チタ
ン酸ストロンチウム系多孔質セラミツクスで被覆
したセンサは、センサ感応体膜へのガス流入量が
制限されたことによりセンサ内部のO2濃度が低
くくなり、抵抗変化が大きくなると考えられる。 発明の効果 本発明のセンサは
[Table] The resistance of the sensor without the addition of strontium titanate is extremely small at several tens of mΩ.
It is difficult to obtain sufficient sensitivity due to the large influence of the contact resistance between the electrode and the sensor sensitive film and the resistance of the lead wire. However, by adding strontium titanate, it was possible to increase the resistance of the sensor sensitive film, reduce the influence of other noises, and bring the coefficient of thermal expansion closer to that of the substrate. Further, in the range where the amount of strontium titanate added is 20 to 70 mol %, the resistance change of the sensor with respect to temperature change is small in the temperature range of 400° C. to 1000° C., and temperature compensation is not required. SrTiO 3 in La 0.35 Sr 0.65 Co 0.7 Fe 0.3 O 3 as sensor sensitive material
A sensor using a material with 60 mole% added was placed in a quartz glass tube passed through a tube furnace and maintained at 800℃.
O2 2 %/ N2 gas atmosphere and CO4%/ N2 gas 1.1/
A life test was conducted by alternating between two atmospheres: a mixed gas atmosphere of 2% O 2 /N 2 gas 1/min. The results are shown in Figure 3. Line A shows the results when an alumina-based ceramic substrate is used, line B shows the results when a silica-based ceramic substrate is used, and a ceramic substrate containing strontium titanate as a main component, which is an example of the present invention, is used. The results for each case are shown by line C. In addition, the broken lines indicate CO4%/N 2 gas at 1.1/min and O 2 %/min.
This is the sensor resistance value when a mixed gas of N 2 gas at 1/min was flowed for 1 minute, and the solid line is the resistance value when only O 2 2%/N 2 gas was flowed at 2/min for 5 minutes. Compared to alumina-based ceramic substrates or silica-based ceramic substrates, the resistance of sensors using ceramic substrates containing strontium titanate as a main component has a low change of less than 5% even after 5,000 cycle tests, resulting in improved service life. The sensor's porous ceramic coating film 4 mainly composed of strontium titanate protects the sensor sensitive body film 3 from soot and dust, and limits the amount of gas that comes into contact with the sensor sensitive body, thereby reducing the sensor sensitivity. Reducing gases (CO, HC) contained in the body
gas) and oxygen can be sufficiently reacted,
The oxygen concentration of the gas in contact with the sensor sensitive body can be lowered, and by making the film thinner, a decrease in sensor sensitivity can be prevented. FIG. 4 shows the gas characteristics of Sensat with and without a porous ceramic coating film containing strontium titanate as a main component. The resistance value was taken 1 minute after gas flow. For sensors without a coating, the mixed gas of CO and O 2 comes into direct contact with the sensor sensitive membrane, and
Since there is no CO oxidation catalytic activity, the O 2 concentration cannot be lowered by the reaction between CO and O 2 , which is considered to be the reason for the low sensitivity. On the other hand, it is thought that for sensors coated with strontium titanate-based porous ceramics, the O 2 concentration inside the sensor will be low due to the restriction of the gas flow into the sensor sensitive membrane, resulting in a large change in resistance. It will be done. Effects of the invention The sensor of the invention is

【式】 (0x0.3)にSrTiO3を20〜60モル%添加し
た材料より成るセンサ感応体膜をチタン酸ストロ
ンチウムを主成分とするセラミツクス基板上に形
成し、さらに、チタン酸ストロンチウムを主成分
とする多孔質セラミツクスで被覆することによ
り、高感度、高応答性、さらに長寿命の効果を有
するガスセンサである。
[Formula] A sensor sensitive film made of a material in which 20 to 60 mol% of SrTiO 3 is added to (0x0.3) is formed on a ceramic substrate whose main component is strontium titanate, and further, strontium titanate is the main component. This gas sensor has high sensitivity, high responsiveness, and long life by being coated with porous ceramics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは本発明の一実施例のガスセンサ
の構成を示す斜視図および断面図、第2図は同ガ
スセンサの素材と抵抗の温度特性を示す図、第3
図は同排気ガスセンサと比較例との寿命試験結果
を示す図、第4図は同ガスセンサと比較例とのガ
ス−抵抗特性図である。 1……アルミナ系セラミツクス基板、2……シ
リカ系セラミツクス基板、3……チタン酸ストロ
ンチウム系セラミツクス基板、4……セラミツク
多孔質膜、5……リード、イ,ロ,ニ,ホ,チ…
…比較例、ハ,ヘ,ト……本発明の実施例。
1A and 1B are perspective views and sectional views showing the configuration of a gas sensor according to an embodiment of the present invention, FIG. 2 is a diagram showing the temperature characteristics of the material and resistance of the gas sensor, and FIG.
The figure shows the life test results of the same exhaust gas sensor and a comparative example, and FIG. 4 is a gas-resistance characteristic diagram of the same exhaust gas sensor and the comparative example. DESCRIPTION OF SYMBOLS 1... Alumina ceramics substrate, 2... Silica ceramics substrate, 3... Strontium titanate ceramics substrate, 4... Ceramic porous membrane, 5... Lead, A, B, D, H, CH...
...Comparative example, c, h, g... Example of the present invention.

Claims (1)

【特許請求の範囲】 1 化学式【式】(0x 0.3)で表わされる材料にSrTiO3を20〜70mole
%の割合で添加した材料の薄膜をチタン酸ストロ
ンチウムを主成分とするセラミツク基板上に形成
したことを特徴とするガスセンサ。 2 チタン酸ストロンチウムを主成分とするセラ
ミツク多孔質膜で被覆したことを特徴とする特許
請求の範囲第1項記載のガスセンサ。
[Claims] 1. 20 to 70 mole of SrTiO 3 is added to the material represented by the chemical formula [formula] (0x 0.3).
1. A gas sensor characterized in that a thin film of a material added at a ratio of 1.5% is formed on a ceramic substrate whose main component is strontium titanate. 2. The gas sensor according to claim 1, characterized in that the gas sensor is coated with a ceramic porous membrane containing strontium titanate as a main component.
JP10981184A 1984-05-30 1984-05-30 Gas sensor Granted JPS60253858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10981184A JPS60253858A (en) 1984-05-30 1984-05-30 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10981184A JPS60253858A (en) 1984-05-30 1984-05-30 Gas sensor

Publications (2)

Publication Number Publication Date
JPS60253858A JPS60253858A (en) 1985-12-14
JPH051902B2 true JPH051902B2 (en) 1993-01-11

Family

ID=14519801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10981184A Granted JPS60253858A (en) 1984-05-30 1984-05-30 Gas sensor

Country Status (1)

Country Link
JP (1) JPS60253858A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4339737C1 (en) * 1993-11-22 1995-01-19 Siemens Ag Gas sensor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974997A (en) * 1972-11-20 1974-07-19
JPS49103699A (en) * 1973-02-02 1974-10-01
JPS50109795A (en) * 1974-02-04 1975-08-29
JPS5619584A (en) * 1979-07-24 1981-02-24 Chiyou Lsi Gijutsu Kenkyu Kumiai Semiconductor memory
JPS578439A (en) * 1980-06-19 1982-01-16 Matsushita Electric Ind Co Ltd Sensor for detecting concentration of oxygen
JPS5720577A (en) * 1980-07-10 1982-02-03 Mayekawa Mfg Co Ltd Speed controller with variable-frequency power source for electric motor for driving screw compressor
JPS57103041A (en) * 1980-12-19 1982-06-26 Matsushita Electric Ind Co Ltd Equivalent point sensor of combustion
JPS57106568A (en) * 1980-12-22 1982-07-02 Murata Manufacturing Co Moisture sensitive ceramic
JPS57204445A (en) * 1981-06-12 1982-12-15 Matsushita Electric Ind Co Ltd Sensor indicating equivalent composition of combustion gas
JPS5815731A (en) * 1981-07-21 1983-01-29 Nippon Denso Co Ltd Speed controller for vehicle

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974997A (en) * 1972-11-20 1974-07-19
JPS49103699A (en) * 1973-02-02 1974-10-01
JPS50109795A (en) * 1974-02-04 1975-08-29
JPS5619584A (en) * 1979-07-24 1981-02-24 Chiyou Lsi Gijutsu Kenkyu Kumiai Semiconductor memory
JPS578439A (en) * 1980-06-19 1982-01-16 Matsushita Electric Ind Co Ltd Sensor for detecting concentration of oxygen
JPS5720577A (en) * 1980-07-10 1982-02-03 Mayekawa Mfg Co Ltd Speed controller with variable-frequency power source for electric motor for driving screw compressor
JPS57103041A (en) * 1980-12-19 1982-06-26 Matsushita Electric Ind Co Ltd Equivalent point sensor of combustion
JPS57106568A (en) * 1980-12-22 1982-07-02 Murata Manufacturing Co Moisture sensitive ceramic
JPS57204445A (en) * 1981-06-12 1982-12-15 Matsushita Electric Ind Co Ltd Sensor indicating equivalent composition of combustion gas
JPS5815731A (en) * 1981-07-21 1983-01-29 Nippon Denso Co Ltd Speed controller for vehicle

Also Published As

Publication number Publication date
JPS60253858A (en) 1985-12-14

Similar Documents

Publication Publication Date Title
US4453397A (en) Gas detecting sensor
US4244918A (en) Gas component detection apparatus
US4940528A (en) Oxygen sensor elements
US3909385A (en) Oxygen sensor for automotive use
JPH0437944B2 (en)
JPH03261677A (en) Ceramic green sheet material, electrochemical element and production thereof
JP2811976B2 (en) Oxide semiconductor gas sensor
JPS61147146A (en) Lambda sensor
JPH051902B2 (en)
WO1985004859A1 (en) Composition
JP2584881B2 (en) Ceramic green sheet and method for producing electrochemical element using the same
JP2847979B2 (en) Oxide semiconductor gas sensor
JPH0510918A (en) Oxygen-concentration detecting element and manufacture thereof
JPS6080750A (en) Lean-burn type exhaust gas sensor
JPS61155746A (en) Exhaust gas sensor
JPH03165253A (en) Oxygen sensor
JPS62211525A (en) Temperature sensor
JP2869836B2 (en) Oxygen sensor
JPS61155745A (en) Exhaust gas sensor
JPS6161343B2 (en)
JPS61155747A (en) Exhaust gas sensor
JPS60205343A (en) Air-fuel ratio detector for lean burn
JPH05256816A (en) Oxygen sensor and its manufacture
JPH0261550A (en) Sensor for combustion control
JPS61147150A (en) Waste gas sensor