JPH05190292A - Electrode for discharge - Google Patents

Electrode for discharge

Info

Publication number
JPH05190292A
JPH05190292A JP2215492A JP2215492A JPH05190292A JP H05190292 A JPH05190292 A JP H05190292A JP 2215492 A JP2215492 A JP 2215492A JP 2215492 A JP2215492 A JP 2215492A JP H05190292 A JPH05190292 A JP H05190292A
Authority
JP
Japan
Prior art keywords
fiber
sheet
conductive
fibers
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2215492A
Other languages
Japanese (ja)
Inventor
Noboru Tanaka
昇 田中
Toshiaki Takase
俊明 高瀬
Daisuke Ito
大輔 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP2215492A priority Critical patent/JPH05190292A/en
Publication of JPH05190292A publication Critical patent/JPH05190292A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain generation of a corona discharge at low voltage by forming a discharging electrode out of a conductive fiber sheet consisting of fibers predetermined mean fiber size. CONSTITUTION:A charging electrode is formed of a conductive fiber sheet. In this sheet, a conductive fiber of conduction-worked fiber by metal plating or the like, metal fiber, carbon fiber, metal ion mixing fiber, etc., may be formed in a sheet shape, and a sheet may be formed of a regenerative fiber, semisynthetic fiber, synthetic fiber, inorganic fiber, vegetable fiber, animal fiber and a mineral fiber to perform conduction work of this fiber sheet. A mean diameter of this fiber is 14mum or less preferably 10mum or less. A conductive fiber of coating the fiber surface with electron conjugate polymer is excellent in discharge performance. The fiber sheet may be fabric of plain weave, twill weave, sateen weave, etc., knitted goods, thread lace, net, flat braid, nonwoven, etc., and particularly in the nonwoven fabric, since a vertial fiber can be arranged relating to a charged object, a corona discharge is easily generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気集塵装置、エレクト
レット処理などに使用できる放電用電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge electrode which can be used in an electrostatic precipitator, an electret treatment and the like.

【0002】[0002]

【従来の技術】従来から電気集塵装置などの放電用電極
として、ステンレス鋼、ピアノ線、タングステンワイヤ
ーなどを使用していた。しかしながら、このステンレス
鋼、ピアノ線、タングステンワイヤーは高電圧を印加し
なければコロナ放電を生じないため、エネルギー的に無
駄であった。
2. Description of the Related Art Conventionally, stainless steel, piano wire, tungsten wire, etc. have been used as discharge electrodes for electrostatic precipitators. However, this stainless steel, piano wire, and tungsten wire are wasted in energy because corona discharge does not occur unless a high voltage is applied.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記の問題を
解決するためになされたものであり、低い電圧でコロナ
放電を生じる放電用電極を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a discharge electrode which causes corona discharge at a low voltage.

【0004】[0004]

【課題を解決するための手段】本発明は導電性繊維シー
トからなる放電用電極であり、平均繊維径14μm以下
の繊維からなる導電性繊維シートであれば、より放電性
能に優れる。更には、電子共役系ポリマーにより繊維表
面を被覆した導電性繊維シートであれば、より放電性能
に優れた放電用電極である。
DISCLOSURE OF THE INVENTION The present invention is a discharge electrode made of a conductive fiber sheet, and a conductive fiber sheet made of fibers having an average fiber diameter of 14 μm or less is more excellent in discharge performance. Furthermore, a conductive fiber sheet having a fiber surface coated with an electron-conjugated polymer is a discharge electrode having more excellent discharge performance.

【0005】[0005]

【作用】本発明の放電用電極は導電性繊維シートからな
るため、被帯電物に対して複数の繊維が作用できるた
め、低い電圧でもコロナ放電が生じる。
Since the discharge electrode of the present invention is made of a conductive fiber sheet, a plurality of fibers can act on the object to be charged, so that corona discharge occurs even at a low voltage.

【0006】本発明の導電性繊維シートは金属メッキな
どの導電加工した繊維、金属繊維、カーボン繊維、金属
イオン混入繊維などの導電性繊維をシート状に形成した
ものでも良いし、再生繊維、半合成繊維、合成繊維、無
機繊維、植物繊維、動物繊維、鉱物繊維から繊維シート
を形成した後、該繊維シートを導電加工して得られるも
のであっても良い。
The conductive fiber sheet of the present invention may be a sheet of conductive fiber such as metal plated, conductive processed fiber, metal fiber, carbon fiber, metal ion mixed fiber, or recycled fiber, semi-fiber. It may be obtained by forming a fiber sheet from a synthetic fiber, a synthetic fiber, an inorganic fiber, a plant fiber, an animal fiber, a mineral fiber and then conducting the conductive processing of the fiber sheet.

【0007】これら繊維の平均繊維径は14μm以下、
より好ましくは10μm以下であると、よりコロナ放電
が生じやすいので好適に使用できる。逆に、0.1μmよ
り小さいと耐久性に劣るため、0.1μm以上、より好ま
しくは1μm以上であるのが好ましい。この平均繊維径
をもつ繊維として、機械的および/または化学的処理を
施すことにより、極細繊維に分割可能な繊維や、ノズル
から紡糸すると同時に流体を作用させて繊維径を小さく
する、一般的にマイクロスパンボンドと言われている方
法によって直接繊維シートを製造する方法を例示できる
が、これらに限定するものではない。
The average fiber diameter of these fibers is 14 μm or less,
If the thickness is more preferably 10 μm or less, corona discharge is more likely to occur, so that it can be suitably used. On the other hand, if the thickness is less than 0.1 μm, the durability is poor. Therefore, the thickness is preferably 0.1 μm or more, more preferably 1 μm or more. As a fiber having this average fiber diameter, by subjecting it to mechanical and / or chemical treatment, fibers that can be divided into ultrafine fibers or fibers that are spun from a nozzle and at the same time a fluid acts to reduce the fiber diameter are generally used. A method of directly producing a fiber sheet by a method called microspun bond can be exemplified, but the method is not limited thereto.

【0008】なお、これらの極細繊維の平均繊維径は繊
維断面において最も長く採ることのできる直線の長さを
意味する。例えば、繊維断面が楕円形の場合には長軸を
意味し、繊維断面が三角形の場合には最も長い辺の長さ
になり、四角形の場合には対角線の長い方といった具合
である。また、平均繊維径は繊維の存在比率によって平
均した値を示す。例えば、繊維径20μmの繊維70%
と繊維径10μmの繊維30%の混合した繊維シートの
平均繊維径は、17(=20×0.7+10×0.3)μ
mである。
The average fiber diameter of these ultrafine fibers means the length of a straight line which can be taken longest in the fiber cross section. For example, when the fiber cross section is elliptical, it means the long axis, when the fiber cross section is triangular, the length is the longest side, and when it is quadrangular, the diagonal line is longer. Further, the average fiber diameter indicates a value averaged by the abundance ratio of fibers. For example, 70% fiber with a fiber diameter of 20 μm
The average fiber diameter of a fiber sheet in which 30% of fibers having a fiber diameter of 10 μm are mixed is 17 (= 20 × 0.7 + 10 × 0.3) μ
m.

【0009】前述の極細繊維に分割可能な繊維として
は、一成分中に他成分を島状に配置した断面をもつ海島
型繊維、異なる成分を交互に層状に積層した断面をもつ
多重バイメタル型繊維、或いは一成分を他成分中に放射
状に配した断面をもつ菊花型繊維を例示することができ
る。
As the fibers that can be divided into the above-mentioned ultrafine fibers, there are sea-island type fibers having a cross section in which one component is arranged with the other component in island form, and multiple bimetal type fibers having a cross section in which different components are alternately laminated. Alternatively, chrysanthemum-shaped fibers having a cross section in which one component is radially arranged in another component can be exemplified.

【0010】この分割可能な繊維を構成する樹脂成分の
組み合わせとして、ポリアミド系樹脂とポリエステル系
樹脂、ポリアミド系樹脂とポリオレフィン系樹脂、ポリ
エステル系樹脂とポリオレフィン系樹脂、ポリエステル
系樹脂とポリアクリロニトリル系樹脂、ポリアミド系樹
脂とポリアクリロニトリル系樹脂、ポリオレフィン系樹
脂とポリアクリロニトリル系樹脂などを例示することが
できるが、これらに限定されるものではない。
As the combination of resin components constituting the divisible fiber, polyamide resin and polyester resin, polyamide resin and polyolefin resin, polyester resin and polyolefin resin, polyester resin and polyacrylonitrile resin, Polyamide-based resin and polyacrylonitrile-based resin, polyolefin-based resin and polyacrylonitrile-based resin, and the like can be exemplified, but the invention is not limited thereto.

【0011】他方、高巻縮繊維を使用すると、被帯電物
の形状に合せて繊維シートを成型できるため、複雑な形
状をもつ被帯電物のどの部分に対しても、均一に放電す
ることができる。高巻縮繊維からなる繊維シートを成型
しても、高巻縮繊維の巻縮が引き伸ばされるのみで、繊
維自体が引き伸ばされるわけではないので、金属或いは
電子共役系のポリマーが剥離せず、放電性は低下しな
い。
On the other hand, when the highly crimped fiber is used, the fibrous sheet can be formed in conformity with the shape of the object to be charged, so that any portion of the object to be charged having a complicated shape can be uniformly discharged. it can. Even if a fiber sheet made of highly crimped fiber is molded, the crimp of the highly crimped fiber is only stretched, and the fiber itself is not stretched. The sex does not deteriorate.

【0012】この高巻縮繊維とは潜在化していても顕在
化していても良いが、巻縮が顕在化した状態で、巻縮数
が15〜100個/インチの繊維であり、より好ましく
は20〜90個/インチの繊維である。
The highly crimped fiber may be latent or actualized, but the number of crimps is 15 to 100 fibers / inch in the state where the crimp is actualized, and more preferably. 20 to 90 fibers / inch.

【0013】この高巻縮繊維としては、2種類の収縮率
の異なる樹脂からなり、スパイラル状の巻縮をもつ複合
繊維、或いは単一成分からなり、特定の熱履歴で巻縮を
もつ繊維が例示でき、これらの中でも、高融点ポリエス
テルと低融点ポリエステルからなるサイドバイサイド型
の複合繊維は巻縮数が多く、優れた伸縮性を示すので好
ましく使用できる。
As the highly crimped fibers, there are two types of resins having different shrinkage ratios, a composite fiber having a spiral crimp, or a fiber having a single component and crimping with a specific heat history. Examples thereof include side-by-side type composite fibers composed of high-melting point polyester and low-melting point polyester, which have a large number of crimps and exhibit excellent stretchability, and therefore can be preferably used.

【0014】以上のような繊維を使用して、既に導電性
のある繊維を使用する場合には繊維シートを形成するこ
とにより本発明の放電電極となり、導電性のない繊維を
使用する場合には繊維シートを形成した後に導電加工す
ることにより、本発明の放電電極となる。
In the case of using already conductive fibers using the above fibers, a fiber sheet is formed to form the discharge electrode of the present invention, and in case of using non-conductive fibers, The discharge electrode of the present invention is obtained by conducting a conductive process after forming the fiber sheet.

【0015】本発明の導電性繊維シートとしては、平
織、斜文織、朱子織などの織物、編物、糸レース、網、
平打組物、不織布などで良く、特に限定するものではな
いが、これらの中でも、不織布は被帯電物に対して垂直
な繊維を配置させることができるため、コロナ放電が生
じやすく、好適に使用できる。
The conductive fiber sheet of the present invention includes plain weave, twill weave, satin weave, woven fabrics, knitted fabrics, thread laces, nets,
It may be a flat braid, a non-woven fabric or the like and is not particularly limited, but among them, since the non-woven fabric can arrange fibers perpendicular to the object to be charged, corona discharge is likely to occur and can be suitably used. ..

【0016】この不織布の中でもカード法、エアレイ
法、湿式法、スパンボンド法などにより得られる繊維ウ
エブを、水流、或いはニードルを作用させることにより
繊維同士を絡合することにより得られる不織布は、繊維
の配向方向が厚み方向であり、被帯電物に対して略垂直
の繊維が存在するため、よりコロナ放電が生じやすい。
Among these non-woven fabrics, a non-woven fabric obtained by entanglement of fibers with a web of fibers obtained by a card method, an air-laying method, a wet method, a spunbond method or the like by applying water current or a needle Since the orientation direction of is the thickness direction and there are fibers substantially perpendicular to the object to be charged, corona discharge is more likely to occur.

【0017】なお、前述の極細繊維を得ることのできる
分割可能な繊維を使用すると、水流或いはニードルパン
チによって繊維を絡合すると同時に、繊維を分割し、厚
み方向に繊維が配向するため、製造工程上、好ましい絡
合不織布の形成方法である。
When the divisible fibers that can obtain the above-mentioned ultrafine fibers are used, the fibers are entangled by water flow or needle punching, and at the same time, the fibers are divided and the fibers are oriented in the thickness direction. Above, it is a preferable method for forming an entangled nonwoven fabric.

【0018】以上のようにして得られた繊維シートの
内、導電性のない繊維を使用した場合、繊維シートに導
電加工を施して、本発明の放電用電極を得る。
When non-conductive fibers are used among the fiber sheets obtained as described above, the fiber sheet is subjected to conductive processing to obtain the discharge electrode of the present invention.

【0019】本発明の導電加工として金属メッキ処理、
蒸着処理、スパッタリング処理、イオンプレーティング
処理、金属溶射処理、電子共役系ポリマーによる被覆処
理などが例示できるが、これらに限定するものではな
い。なお、電子共役系ポリマーによる被覆処理は放電性
に優れているため、好適に使用できる。なお、これら導
電加工は繊維シートに施すことができるのは勿論のこ
と、予め繊維の状態で施して、導電性の繊維を得た後に
繊維シートを形成しても良い。
Metal plating treatment as the conductive processing of the present invention,
Examples thereof include vapor deposition treatment, sputtering treatment, ion plating treatment, metal spraying treatment, and coating treatment with an electron conjugated polymer, but are not limited thereto. In addition, the coating treatment with the electron-conjugated polymer has excellent discharge properties, and thus can be preferably used. In addition, it is needless to say that the conductive processing can be applied to the fiber sheet, and the fiber sheet may be formed after the conductive fiber is obtained by performing the conductive processing in advance.

【0020】この電子共役系ポリマーにより繊維表面に
導電性を付与する方法として、塩化鉄(III)、塩化銅
(II)などの酸化剤を含む溶液を、繊維シートに含浸し
た後、モノマーに接触させることにより重合させる方法
を例示できるが、これに限定されるものではない。ま
た、モノマーとの接触方法は、モノマーが液体状態の場
合、酸化剤の付着した繊維シートにモノマーを含浸した
り、塗布したり、スプレーすれば良く、モノマーが気体
状態の場合、モノマーで充填した容器内に、酸化剤の付
着した繊維シートを載置すれば良い。
As a method for imparting electrical conductivity to the fiber surface with this electron-conjugated polymer, a solution containing an oxidizing agent such as iron (III) chloride or copper (II) chloride is impregnated into the fiber sheet and then contacted with the monomer. Although the method of polymerizing by doing so can be illustrated, it is not limited to this. Further, the method of contacting with the monomer is to impregnate, coat or spray the fiber sheet to which the oxidant is attached when the monomer is in a liquid state, and when the monomer is in a gas state, it is filled with the monomer. The fiber sheet to which the oxidant is attached may be placed in the container.

【0021】この重合させるモノマーとしては、アセチ
レン、ベンゼン、アニリン、フェニルアセチレン、ピロ
ール、フラン、チオフェン、インドール及びこれらモノ
マーの誘導体などを例示することができる。これらの中
でも、ピロールは導電性、重合性に優れ、特に好適に使
用できる。
Examples of the monomer to be polymerized include acetylene, benzene, aniline, phenylacetylene, pyrrole, furan, thiophene, indole and derivatives of these monomers. Among these, pyrrole is excellent in conductivity and polymerizability and can be particularly preferably used.

【0022】以上のようにして得られた放電用電極は、
例えば電気集塵装置、エレクトレット処理、或いは複写
機などのOA機器などに使用できる。なお、使用する際
にはシート状、ロール状、糸状に加工した形態で使用す
る。
The discharge electrode obtained as described above is
For example, it can be used for an electric dust collector, an electret treatment, or an OA device such as a copying machine. When used, it is used in the form of sheet, roll or thread.

【0023】以下に、本発明の実施例を記載するが、以
下の実施例に限定されるものではない。
Examples of the present invention will be described below, but the present invention is not limited to the following examples.

【0024】[0024]

【実施例】【Example】

(実施例1)ポリエステル繊維(平均繊維径3.2μm、
繊維長5mm)100%を湿式法により繊維ウエブを形成
した後、水圧50〜95kg/cm2の水流により絡合し、目
付100g/m2、厚み0.6mmの不織布を得た。
Example 1 Polyester fiber (average fiber diameter 3.2 μm,
A fiber web of 100% (fiber length 5 mm) was formed by a wet method and then entangled with a water flow of water pressure of 50 to 95 kg / cm 2 to obtain a nonwoven fabric having a basis weight of 100 g / m 2 and a thickness of 0.6 mm.

【0025】その後、不織布に30%濃度の塩化鉄(II
I)を含浸した後、ピロール溶液を蒸発させたピロール
モノマーガスに接触させることにより、不織布の略全体
をポリピロールで被覆した放電用電極を得た。
Thereafter, the non-woven fabric was mixed with iron chloride (II
After impregnation with I), the pyrrole solution was brought into contact with the evaporated pyrrole monomer gas to obtain a discharge electrode in which substantially the entire nonwoven fabric was covered with polypyrrole.

【0026】(実施例2)マイクロスパンボンド法によ
り、平均繊維径2.5μmの6ナイロンからなる目付20
g/m2、厚み0.1mmの不織布を得た。なお、平均繊維径
は電子顕微鏡写真をもとに、10点の平均を計算した値
である。その後、この不織布を実施例1と全く同様にし
て、不織布の略全体をポリピロールで被覆した放電用電
極を得た。
(Example 2) A basis weight 20 made of 6 nylon having an average fiber diameter of 2.5 μm was measured by the micro spun bond method.
A non-woven fabric with g / m 2 and a thickness of 0.1 mm was obtained. The average fiber diameter is a value calculated by averaging 10 points based on an electron micrograph. Then, this non-woven fabric was processed in exactly the same manner as in Example 1 to obtain a discharge electrode in which substantially the entire non-woven fabric was coated with polypyrrole.

【0027】(実施例3)ポリエステル成分を主体と
し、該ポリエステル成分をポリアミド成分により8区分
に分離、接合した繊度2デニール、繊維長38mmで、断
面が菊花型の繊維100%を、カーディングして繊維ウ
エブとした後、水圧50〜95kg/cm2の水流により絡合
し、目付85g/m2、厚み0.45mmの不織布を得た。こ
の不織布の平均繊維径は6.1μmであった。なお、平均
繊維径は電子顕微鏡写真をもとに計算した値であり、該
ポリエステル成分は平均6μmであり、該ポリアミド成
分は平均7μmであった。その後、この不織布を実施例
1と全く同様にして、不織布の略全体にポリピロールで
被覆した放電用電極を得た。
Example 3 A polyester component was used as a main component, and the polyester component was separated into eight sections by a polyamide component and bonded, and a fineness of 2 denier, a fiber length of 38 mm, and 100% chrysanthemum-shaped fiber in cross section were carded. Fiber web, and then entangled with a water flow having a water pressure of 50 to 95 kg / cm 2 to obtain a nonwoven fabric having a basis weight of 85 g / m 2 and a thickness of 0.45 mm. The average fiber diameter of this nonwoven fabric was 6.1 μm. The average fiber diameter was calculated based on an electron micrograph, the polyester component had an average of 6 μm, and the polyamide component had an average of 7 μm. Then, this non-woven fabric was treated in exactly the same manner as in Example 1 to obtain a discharge electrode in which substantially the entire non-woven fabric was coated with polypyrrole.

【0028】(実施例4)ノーメックス繊維(登録商
標、デュポン社製、平均繊維径12.1μm、繊維長38
mm)100%をカーディングして繊維ウエブとした後、
水圧50〜95kg/cm2の水流により絡合し、目付80g/
m2、厚み0.8mmの不織布を得た。その後、この不織布
を実施例1と全く同様にして、不織布の略全体にポリピ
ロールで被覆した放電用電極を得た。
(Example 4) Nomex fiber (registered trademark, manufactured by DuPont, average fiber diameter 12.1 μm, fiber length 38)
mm) After carding 100% into a fiber web,
Entangled with a water flow of 50-95 kg / cm 2 of water pressure to give a weight of 80 g /
A non-woven fabric with m 2 and a thickness of 0.8 mm was obtained. Then, this non-woven fabric was treated in exactly the same manner as in Example 1 to obtain a discharge electrode in which substantially the entire non-woven fabric was coated with polypyrrole.

【0029】(実施例5)ポリプロピレン繊維(平均繊
維径15.4μm、繊維長38mm)100%をカーディン
グして繊維ウエブとした後、水圧50〜95kg/cm2の水
流により絡合し、目付50g/m2、厚み0.6mmの不織布
を得た。その後、この不織布を実施例1と全く同様にし
て、不織布の略全体にポリピロールで被覆した放電用電
極を得た。
Example 5 Polypropylene fiber (average fiber diameter 15.4 μm, fiber length 38 mm) 100% was carded into a fiber web, which was then entangled with a water flow of water pressure of 50 to 95 kg / cm 2 to give a basis weight. A non-woven fabric of 50 g / m 2 and a thickness of 0.6 mm was obtained. Then, this non-woven fabric was treated in exactly the same manner as in Example 1 to obtain a discharge electrode in which substantially the entire non-woven fabric was coated with polypyrrole.

【0030】(実施例6)実施例3と全く同様にして得
られた不織布を常法の無電解メッキ処理を施すことによ
り、不織布重量に対してニッケルが50%付着した放電
用電極を得た。
(Example 6) A non-woven fabric obtained in exactly the same manner as in Example 3 was subjected to a conventional electroless plating treatment to obtain a discharge electrode having 50% nickel adhering to the weight of the non-woven fabric. ..

【0031】(放電特性試験)放電特性の評価方法とし
て、静電気測定装置(日本スタテック(株)製、SV−
7型)を用いて帯電圧を測定した。この装置の放電用電
極として、実施例1〜6の20×200mmに裁断した電
極と、比較として径が80μmのタングステンワイヤー
電極を、1.5m/minで移動する、厚さ50μmのポリエ
ステルフィルムと0.5mm離して設置し、1.5KV印加
した後のポリエステルフィルムの帯電圧を測定した。な
お、この測定は温度25℃、湿度30%の条件下で行な
った。この結果は表1に示す。
(Discharge Characteristic Test) As a method for evaluating the discharge characteristic, an electrostatic measuring device (manufactured by Nippon Static Co., Ltd., SV-
7) was used to measure the charged voltage. As the discharge electrode of this device, an electrode cut into 20 × 200 mm in Examples 1 to 6 and a tungsten wire electrode having a diameter of 80 μm as a comparison were moved at 1.5 m / min, and a polyester film having a thickness of 50 μm was used. The electrostatic charges of the polyester film were measured after being placed 0.5 mm apart and applying 1.5 KV. In addition, this measurement was performed under conditions of a temperature of 25 ° C. and a humidity of 30%. The results are shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】この結果から、本発明の放電用電極は同じ
印加電圧であっても帯電圧が大きいため、より低い電圧
でも放電が生じることがわかる。
From these results, it can be seen that the discharge electrode of the present invention has a large electrification voltage even at the same applied voltage, and therefore discharge occurs even at a lower voltage.

【0034】[0034]

【発明の効果】本発明の放電用電極は導電性繊維シート
からなり、被帯電物に対して複数の繊維が作用できるた
め、低い電圧でもコロナ放電が生じる。
The discharge electrode of the present invention is composed of a conductive fiber sheet, and a plurality of fibers can act on an object to be charged, so that corona discharge occurs even at a low voltage.

【0035】平均繊維径14μm以下の繊維からなる導
電性繊維シートはよりコロナ放電が生じやすく、効率的
に被帯電物を帯電させることができる。
A conductive fiber sheet made of fibers having an average fiber diameter of 14 μm or less is more likely to cause corona discharge and can efficiently charge an object to be charged.

【0036】電子共役系ポリマーにより繊維表面を被覆
した導電性繊維シートはより効率良く放電することがで
きる。
A conductive fiber sheet whose fiber surface is coated with an electron-conjugated polymer can be discharged more efficiently.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導電性繊維シートからなることを特徴と
する放電用電極。
1. An electrode for discharge, comprising a conductive fiber sheet.
【請求項2】 平均繊維径14μm以下の繊維からなる
導電性繊維シートであることを特徴とする請求項1記載
の放電用電極。
2. The discharge electrode according to claim 1, which is a conductive fiber sheet made of fibers having an average fiber diameter of 14 μm or less.
【請求項3】 電子共役系ポリマーにより繊維表面を被
覆した導電性繊維シートであることを特徴とする請求項
1〜2記載の放電用電極。
3. The discharge electrode according to claim 1, which is a conductive fiber sheet having a fiber surface coated with an electron-conjugated polymer.
JP2215492A 1992-01-10 1992-01-10 Electrode for discharge Pending JPH05190292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2215492A JPH05190292A (en) 1992-01-10 1992-01-10 Electrode for discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2215492A JPH05190292A (en) 1992-01-10 1992-01-10 Electrode for discharge

Publications (1)

Publication Number Publication Date
JPH05190292A true JPH05190292A (en) 1993-07-30

Family

ID=12074928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2215492A Pending JPH05190292A (en) 1992-01-10 1992-01-10 Electrode for discharge

Country Status (1)

Country Link
JP (1) JPH05190292A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258891A (en) * 1992-03-13 1993-10-08 Achilles Corp Static eliminator
EP0812344A1 (en) * 1994-05-20 1997-12-17 LARKIN, William J. Static eliminator and method
EP0817545A2 (en) * 1996-07-01 1998-01-07 Xerox Corporation Static elimination devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258891A (en) * 1992-03-13 1993-10-08 Achilles Corp Static eliminator
EP0812344A1 (en) * 1994-05-20 1997-12-17 LARKIN, William J. Static eliminator and method
EP0812344A4 (en) * 1994-05-20 1997-12-17
EP0817545A2 (en) * 1996-07-01 1998-01-07 Xerox Corporation Static elimination devices
EP0817545A3 (en) * 1996-07-01 1998-09-16 Xerox Corporation Static elimination devices

Similar Documents

Publication Publication Date Title
US4388370A (en) Electrically-conductive fibres
KR101653019B1 (en) Conductive sheet and electrode
US20090294733A1 (en) Process for improved electrospinning using a conductive web
KR100543477B1 (en) Fiber complex and its use
JP7394923B2 (en) Carbon fiber sheet, gas diffusion electrode, membrane-electrode assembly, polymer electrolyte fuel cell, and method for producing carbon fiber sheet
CN106906643A (en) A kind of antistatic afterfinish method for non-weaving cloth
JPH07135087A (en) Static elimination sheet and using method thereof
JPH05190292A (en) Electrode for discharge
JP5785321B2 (en) Conductive fiber structure, metal porous structure, battery electrode material, and battery
JP2007002374A (en) Conductive conjugated fiber and conductive fabric
JPH05299881A (en) Conductive adhesive sheet
JPH10310974A (en) Production of electrically conductive fiber
JPH06104093A (en) Conductive adhesive sheet
JP3342161B2 (en) Conductive fiber sheet and conductive roll
JPH05174991A (en) Static eliminator sheet
JPH06230653A (en) Corona discharge device
JP3226440B2 (en) Cleaning material
JPH06215854A (en) Electrode base material for discharge
JPH06302395A (en) Static eliminating sheet
JP2001190983A (en) Dust collection sheet for electric precipitator, and electric precipitator
JPH07201487A (en) Static eliminating sheet
JP3492722B2 (en) Discharge electrode substrate
JPH08238204A (en) Cleaning material
JP2001170519A (en) Dust collecting sheet for electric precipitator and electric precipitator using the same
JP2006097145A (en) Fiber composite material and use thereof