JPH06230653A - Corona discharge device - Google Patents

Corona discharge device

Info

Publication number
JPH06230653A
JPH06230653A JP5041931A JP4193193A JPH06230653A JP H06230653 A JPH06230653 A JP H06230653A JP 5041931 A JP5041931 A JP 5041931A JP 4193193 A JP4193193 A JP 4193193A JP H06230653 A JPH06230653 A JP H06230653A
Authority
JP
Japan
Prior art keywords
voltage
fiber
electrode
conductive
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5041931A
Other languages
Japanese (ja)
Other versions
JP3331232B2 (en
Inventor
Toshiaki Takase
俊明 高瀬
Daisuke Ito
大輔 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12621985&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06230653(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP4193193A priority Critical patent/JP3331232B2/en
Publication of JPH06230653A publication Critical patent/JPH06230653A/en
Application granted granted Critical
Publication of JP3331232B2 publication Critical patent/JP3331232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PURPOSE:To obtain a corona discharge device having little deterioration of discharging performance and capable of uniformly and efficiently performing discharge and saving space by possessing an electrode including a conductive fiber sheet and setting the peak value of applied superposed voltage within a specified range. CONSTITUTION:An electrode of conductive fiber sheet is provided, and the peak value of the superposed voltage of DC voltage and AC voltage, which is applied on the electrode, is twice or more times as high as discharge start voltage at the time of applying DC on the electrode, and set within the range equal to or under spark discharge start voltage. The sheet formed out of conductive fiber, such as a fiber which has been worked to be conductive, metallic fiber or carbon fiber is good to be used, and the sheet obtained by forming the fiber sheet from a synthetic fiber or inorganic fiber and working the sheet to be conductive is also good as the conductive fiber sheet. Since the electrode easily performs discharge at a low voltage, toner, paper powder and dust are hardly electrostatically stuck, the deterioration of discharging performance is little, and discharging efficiency is excellent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複写機の感光体を帯電又
は除電処理するコロナ放電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corona discharge device for charging or discharging a photoconductor of a copying machine.

【0002】[0002]

【従来の技術】従来から複写機の感光体を帯電又は除電
処理するコロナ放電装置には、コロトロンなどのワイヤ
ーが電極として使用されていた。しかしながら、このよ
うなワイヤーを使用すると、4〜8キロボルトの高電圧
を印加して、放電させる必要があるため、トナー、紙粉
及びほこりなどが静電気的に付着しやすく、使用するに
つれて、放電が不均一になるなど、放電性の低下が大き
いという問題があった。また、このワイヤーからの放電
性を良くするために、このワイヤーを囲むようにシール
ド電極を設けるのが一般的であるが、このシールド電極
にも放電するため、実際に感光体へ流れる放電電流は5
〜30%程度と低く、放電効率の点でも問題があった。
更に、前述のように、高電圧を印加するため、電源が大
型化することに加えて、ワイヤーを囲むようにシールド
電極を設ける必要があるため、コロナ放電装置の占める
スペースが広く、複写機を小型化できないという問題も
あった。
2. Description of the Related Art Conventionally, wires such as corotron have been used as electrodes in corona discharge devices for charging or discharging a photoconductor of a copying machine. However, when such a wire is used, it is necessary to apply a high voltage of 4 to 8 kilovolts to discharge the wire, and thus toner, paper powder, dust, and the like are liable to be electrostatically attached, and the discharge is generated as the wire is used. There has been a problem that the dischargeability is greatly reduced, such as unevenness. In addition, in order to improve the dischargeability from this wire, it is common to provide a shield electrode so as to surround this wire, but since this shield electrode also discharges, the discharge current that actually flows to the photoconductor is 5
It was as low as about 30%, and there was a problem in terms of discharge efficiency.
Further, as described above, since a high voltage is applied, the power source becomes large and a shield electrode needs to be provided so as to surround the wire, so that the space occupied by the corona discharge device is large and the copying machine is There was also the problem that it could not be miniaturized.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記の問題を
解決するためになされたものであり、放電性の低下が小
さく、均一に効率良く放電でき、省スペース化のできる
コロナ放電装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above problems, and provides a corona discharge device in which the deterioration of the discharge property is small, the discharge can be performed uniformly and efficiently, and the space can be saved. The purpose is to do.

【0004】[0004]

【課題を解決するための手段】本発明は、導電性繊維シ
ートを含む電極を有しており、この電極に印加する直流
電圧と交流電圧との重畳電圧のピーク値が、この電極に
直流を印加した時の放電開始電圧の2倍以上であり、火
花放電開始電圧以下の範囲内に設定されたコロナ放電装
置である。
The present invention has an electrode containing a conductive fiber sheet, and the peak value of the superimposed voltage of a DC voltage and an AC voltage applied to this electrode is such that a DC voltage is applied to this electrode. The corona discharge device is set within a range that is at least twice the discharge starting voltage when applied and is below the spark discharge starting voltage.

【0005】[0005]

【作用】本発明のコロナ放電装置は導電性繊維シートを
含む電極を有しており、この電極は低電圧で容易に放電
するため、トナー、紙粉及びほこりなどが静電気的に付
着しにくく、放電性の低下が小さい。また、シールド電
極を使用しなくても、電極と近接する感光体に容易に放
電するため、放電効率にも優れている。このように、本
発明のコロナ放電装置は、低電圧で容易に放電を生じる
ため、電源を小さくすることができ、しかもシールド電
極を設ける必要もないので、省スペース化も可能となっ
た。
The corona discharge device of the present invention has an electrode containing a conductive fiber sheet, and since this electrode is easily discharged at a low voltage, toner, paper dust, dust, etc. are less likely to be electrostatically attached, Little decrease in dischargeability. Further, even if the shield electrode is not used, the discharge is easily performed to the photoconductor in the vicinity of the electrode, so that the discharge efficiency is excellent. As described above, in the corona discharge device of the present invention, since the discharge is easily generated at a low voltage, it is possible to reduce the power supply, and since it is not necessary to provide the shield electrode, the space can be saved.

【0006】更には、この電極に印加する直流電圧と交
流電圧との重畳電圧のピーク値が、この電極に直流を印
加した時の放電開始電圧の2倍以上であり、火花放電開
始電圧以下の範囲内に設定されているため、より均一に
放電できる。
Furthermore, the peak value of the superimposed voltage of the DC voltage and the AC voltage applied to this electrode is more than twice the discharge starting voltage when DC is applied to this electrode and is less than the spark discharge starting voltage. Since it is set within the range, it is possible to discharge more uniformly.

【0007】本発明の導電性繊維シートは、金属メッキ
などの導電加工した繊維、金属繊維、カーボン繊維、金
属イオン混入繊維などの導電性繊維からシートを形成し
たものでも良いし、再生繊維、半合成繊維、合成繊維、
無機繊維、植物繊維、動物繊維、鉱物繊維などの繊維か
ら繊維シートを形成した後、この繊維シートを導電加工
して得られるものであっても良い。
The conductive fiber sheet of the present invention may be a sheet formed from conductive fibers such as metal plated, conductive fibers such as metal fibers, carbon fibers and metal ion mixed fibers, regenerated fibers, semi-fibers, etc. Synthetic fiber, synthetic fiber,
It may be obtained by forming a fiber sheet from fibers such as inorganic fibers, vegetable fibers, animal fibers, and mineral fibers, and then subjecting this fiber sheet to conductive processing.

【0008】本発明においては、この導電性繊維シート
の繊維密度が3,500m/cm3以上であるのが好まし
い。繊維密度が3,500m/cm3未満であると、放電
しにくく、放電しても感光体を均一に帯電しにくいため
である。より好ましくは4,000m/cm3以上であ
り、最も好ましくは、4,500m/cm3以上である。
なお、この繊維密度は1cm3あたりにおける繊維の占
める長さであり、導電性繊維シートを構成する繊維が短
繊維である場合には、個々の短繊維の長さの和であり、
次の式によって得られる値である。 ρ:繊維の比重、r:繊維の半径(cm)
In the present invention, the fiber density of the conductive fiber sheet is preferably 3,500 m / cm 3 or more. This is because when the fiber density is less than 3,500 m / cm 3, it is difficult to discharge and it is difficult to uniformly charge the photoconductor even if discharged. It is more preferably 4,000 m / cm 3 or more, and most preferably 4,500 m / cm 3 or more.
The fiber density is the length occupied by the fibers per cm 3 , and when the fibers constituting the conductive fiber sheet are short fibers, it is the sum of the lengths of the individual short fibers,
It is a value obtained by the following formula. ρ: Specific gravity of fiber, r: Radius of fiber (cm)

【0009】これら繊維の繊維径は14μm以下、より
好ましくは10μm以下であると、より放電しやすいの
で好適に使用できるが、繊維径が0.1μmより小さいと
耐久性に劣るので、0.1μm以上、より好ましくは1μ
m以上であるのが好ましい。この範囲内の繊維径を有す
る繊維は、機械的および/または化学的処理を施すこと
により繊維を分割したり、ノズルから紡糸すると同時に
空気流を作用させて繊維径を小さくする、一般にマイク
ロスパンボンド法といわれる方法によっても得ることが
できる。
When the fiber diameter of these fibers is 14 μm or less, more preferably 10 μm or less, discharge is more likely to occur, and therefore it can be suitably used. However, if the fiber diameter is less than 0.1 μm, durability is poor, and therefore 0.1 μm. Above, more preferably 1μ
It is preferably m or more. A fiber having a fiber diameter within this range is divided by performing a mechanical and / or chemical treatment, or is spun from a nozzle and at the same time an air flow is applied to reduce the fiber diameter, generally a microspun bond. It can also be obtained by the method called law.

【0010】なお、これらの繊維の繊維径は繊維断面に
おいて最も長く採ることのできる直線の長さをいう。例
えば、繊維断面が楕円形の場合には長軸の長さであり、
繊維断面が三角形の場合には最も長い辺の長さであり、
四角形の場合には対角線の長い方の長さといった具合で
ある。また、様々な繊維径をもった繊維が混在する場合
には、各々の繊維の存在比率によって平均する。例え
ば、繊維径20μmの繊維70%と繊維径10μmの繊維
30%の混在した繊維シートの場合、17(=20×
0.7+10×0.3)μmである。
The fiber diameter of these fibers is the length of a straight line which can be taken longest in the fiber cross section. For example, when the fiber cross section is elliptical, it is the length of the long axis,
If the fiber cross section is triangular, it is the longest side length,
In the case of a quadrangle, it is the length of the longer diagonal. When fibers having various fiber diameters are mixed, the fibers are averaged according to their existing ratios. For example, in the case of a fiber sheet in which 70% of fibers having a fiber diameter of 20 μm and 30% of fibers having a fiber diameter of 10 μm are mixed, 17 (= 20 ×
0.7 + 10 × 0.3) μm.

【0011】前述の分割できる繊維としては、例えば、
一成分中に他成分を島状に配置した断面をもつ海島型繊
維、異なる成分を交互に層状に積層した断面をもつ多重
バイメタル型繊維、或いは一成分を他成分中に放射状に
配した断面をもつ菊花型繊維などがある。この分割でき
る繊維を構成する樹脂成分の組み合わせとしては、例え
ば、ポリアミド系樹脂とポリエステル系樹脂、ポリアミ
ド系樹脂とポリオレフィン系樹脂、ポリエステル系樹脂
とポリオレフィン系樹脂、ポリエステル系樹脂とポリア
クリロニトリル系樹脂、ポリアミド系樹脂とポリアクリ
ロニトリル系樹脂、ポリオレフィン系樹脂とポリアクリ
ロニトリル系樹脂などがある。
The above-mentioned fibers that can be divided include, for example,
A sea-island type fiber with a cross section in which other components are arranged in an island shape in one component, a multi-bimetal type fiber with a cross section in which different components are alternately laminated in layers, or a cross section in which one component is radially arranged in another component There are also chrysanthemum type fibers. Examples of the combination of resin components constituting the divisible fiber include polyamide-based resin and polyester-based resin, polyamide-based resin and polyolefin-based resin, polyester-based resin and polyolefin-based resin, polyester-based resin and polyacrylonitrile-based resin, and polyamide. Resins and polyacrylonitrile resins, polyolefin resins and polyacrylonitrile resins, and the like.

【0012】本発明の導電性繊維シートとしては、平
織、斜文織、朱子織などの織物、編物、糸レース、網、
平打組物、不織布などで良く、特に限定するものではな
いが、これらの中でも、不織布は繊維を緻密に配置する
ことができ、感光体に対して多くの繊維が作用できるた
め、放電しやすく、好適に使用できる。
The conductive fiber sheet of the present invention includes woven fabrics such as plain weave, twill weave and satin weave, knitted fabrics, thread laces, nets,
A flat braid, a non-woven fabric, or the like may be used, and the non-woven fabric is not particularly limited. Among them, the non-woven fabric can densely arrange the fibers, and many fibers can act on the photoconductor, so that it is easy to discharge, It can be preferably used.

【0013】この不織布の製造方法としては、例えば、
カード法、エアレイ法、湿式法、スパンボンド法などに
より得られる繊維ウエブを、水流又はニードルを作用さ
せることにより繊維同士を絡合する方法、接着剤により
結合する方法、構成繊維の融着により結合する方法など
がある。これらの中でも、湿式法によって得られた繊維
ウエブを水流で絡合した不織布は、繊維が均一に配置し
ており、しかも繊維密度が大きいため、好適に使用する
ことができる。なお、前述の分割できる繊維を使用する
と、水流或いはニードルパンチによって繊維同士を絡合
すると同時に、繊維を分割できるという、製造工程上の
利点がある。
As a method of manufacturing this non-woven fabric, for example,
The fiber web obtained by the card method, the air-laying method, the wet method, the spunbond method, etc. is entangled with each other by the action of a water stream or a needle, the method of bonding with an adhesive, the bonding of the constituent fibers by fusion. There are ways to do it. Among these, a nonwoven fabric obtained by entanglement of a web of fibers obtained by a wet method with a water stream has fibers uniformly arranged and has a high fiber density, and thus can be suitably used. It should be noted that the use of the above-mentioned splittable fibers has an advantage in the manufacturing process that the fibers can be split at the same time as the fibers are entangled with each other by a water stream or a needle punch.

【0014】以上のようにして得られた繊維シートのう
ち、導電性のない繊維を使用した場合、繊維シートに導
電加工をして、電極の一部又は全部を得る。
When non-conductive fibers are used among the fiber sheets obtained as described above, the fiber sheet is subjected to conductive processing to obtain a part or all of the electrodes.

【0015】この導電性繊維シートの表面抵抗は1×1
0〜1×109Ω/□であるのが好ましい。表面抵抗が
1×100Ω/□未満であると、部分的に火花放電が生
じやすく、均一に安定した放電が生じにくく、1×10
9Ω/□を越えると、高電圧を印加させる必要が生じる
ため、トナー、紙粉やほこりなどを付着しやすく、放電
性が低下するばかりでなく、仮に導電性繊維シートに欠
陥がある場合や異物が付着していた場合には、火花放電
が生じる可能性があるためである。より好ましい表面抵
抗は1×102〜1×106Ω/□であり、最も好ましい
表面抵抗は1×102〜1×104Ω/□である。
The surface resistance of this conductive fiber sheet is 1 × 1.
It is preferably from 0 0 to 1 × 10 9 Ω / □. If the surface resistance is less than 1 × 10 0 Ω / □, partial spark discharge is likely to occur, and uniform and stable discharge is unlikely to occur.
If it exceeds 9 Ω / □, it is necessary to apply a high voltage, so toner, paper powder, dust, etc. tend to adhere, which not only reduces the dischargeability, but also if the conductive fiber sheet is defective. This is because if foreign matter is attached, spark discharge may occur. The more preferable surface resistance is 1 × 10 2 to 1 × 10 6 Ω / □, and the most preferable surface resistance is 1 × 10 2 to 1 × 10 4 Ω / □.

【0016】なお、繊維シート又は繊維の導電加工方法
としては、例えば、電子共役系ポリマーによる被覆処
理、金属メッキ処理、蒸着処理、スパッタリング処理、
イオンプレーティング処理、金属溶射処理などがある。
なお、電子共役系ポリマーによる被覆処理は、導電性繊
維シートの表面抵抗を前記範囲内の値にすることが容易
であるため、好適に使用できる。
Examples of the conductive processing method for the fiber sheet or fiber include, for example, coating treatment with an electron conjugated polymer, metal plating treatment, vapor deposition treatment, sputtering treatment,
Ion plating treatment, metal spray treatment, etc. are available.
The coating treatment with the electron-conjugated polymer can be preferably used because it is easy to make the surface resistance of the conductive fiber sheet within the above range.

【0017】この電子共役系ポリマーにより導電性を付
与する方法としては、例えば、塩化鉄(III)、塩化銅
(II)などの酸化剤を含む溶液を、繊維シート又は繊維
に含浸した後、モノマーに接触させることにより重合さ
せる方法がある。また、モノマーとの接触方法は、モノ
マーが液体状態の場合、酸化剤の付着した繊維シート又
は繊維にモノマーを含浸したり、塗布したり、スプレー
すれば良く、モノマーが気体状態の場合、モノマーで充
填した容器内に、酸化剤の付着した繊維シート又は繊維
を載置すれば良い。
As a method of imparting conductivity with this electron-conjugated polymer, for example, a solution containing an oxidizing agent such as iron (III) chloride or copper (II) chloride is impregnated into a fiber sheet or fibers, and then the monomer is added. There is a method of polymerizing by contacting with. Further, the method of contacting with the monomer is to impregnate, coat or spray the fiber sheet or fibers to which the oxidant is attached when the monomer is in a liquid state. The fiber sheet or fiber to which the oxidant is attached may be placed in the filled container.

【0018】この重合させるモノマーとしては、例え
ば、ピロール、アセチレン、ベンゼン、アニリン、フェ
ニルアセチレン、フラン、チオフェン、インドール及び
これらモノマーの誘導体などがある。これらの中でも、
ピロールは導電性、重合性に優れ、均一に導電性を付与
できるため、特に好適に使用できる。
Examples of the monomer to be polymerized include pyrrole, acetylene, benzene, aniline, phenylacetylene, furan, thiophene, indole and derivatives of these monomers. Among these,
Pyrrole is particularly suitable for use because it has excellent conductivity and polymerizability and can impart conductivity evenly.

【0019】以上のようにして得た導電性繊維シート
は、例えば、シート状、ロール状、糸状などに加工した
形態、或いは金属ロールなどの導電性基材に貼り合わせ
た形態で電極を形成する。
The conductive fiber sheet obtained as described above forms an electrode in a form processed into a sheet shape, a roll shape, a thread shape or the like, or a shape bonded to a conductive base material such as a metal roll. .

【0020】本発明のコロナ放電装置は前述のような電
極を含んでおり、この電極に印加する直流電圧と交流電
圧との重畳電圧のピーク値が、この電極に直流を印加し
た時の放電開始電圧の2倍以上であり、火花放電開始電
圧以下の範囲内に設定されている。この重畳電圧のピー
ク値が放電開始電圧の2倍未満であると、感光体の帯電
が不足するため、反転現像系においては、全体的にトナ
ーが多く付き過ぎて黒班点が多く、鮮明な画像が得られ
ず、他方、火花放電開始電圧を越えると、感光体の帯電
が多くなり過ぎるため、反転現像系においては、全体的
にトナーが少なく白抜き点が多く、鮮明な画像が得られ
ないためである。
The corona discharge device of the present invention includes the electrode as described above, and the peak value of the superimposed voltage of the DC voltage and the AC voltage applied to this electrode is the discharge start when DC is applied to this electrode. It is more than twice the voltage and is set within the range of the spark discharge starting voltage or less. If the peak value of this superimposed voltage is less than twice the discharge start voltage, the photoreceptor is insufficiently charged, so in the reversal developing system, too much toner is attached overall and there are many black spots and a clear image. No image can be obtained. On the other hand, if the spark discharge start voltage is exceeded, the photoreceptor is charged too much.Therefore, in the reversal development system, there is little toner as a whole and there are many white spots, and a clear image is obtained. Because there is no.

【0021】なお、電極に直流を印加した時の放電開始
電圧とは、導電性繊維シートを含む電極を、感光体とギ
ャップを設けて設置し、徐々に直流電圧を上げていった
時に、感光体に初めて電流が流れた時の電圧をいい、火
花放電開始電圧とは、同様に設置した電極に直流電圧を
印加していき、感光体に流れる電流が急激に増大する時
の電圧をいう。そのため、これら放電開始電圧及び火花
放電開始電圧は使用する電極によって変化するが、本発
明のように導電性繊維シートを含む電極は、低電圧で放
電を開始し、低電圧で火花放電を開始するため、放電性
の低下が小さく、放電効率にも優れている。なお、低電
圧で放電するため、オゾンの発生量も極めて少なく、感
光体や周辺部品を酸化劣化させたり、人体への悪影響が
少ないという利点も有している。
The discharge start voltage when a direct current is applied to the electrode means that when the electrode containing the conductive fiber sheet is installed with a gap between the photosensitive member and the direct current voltage, the direct current voltage is gradually increased. The spark discharge start voltage means the voltage when the current first flows through the body, and the spark discharge start voltage means the voltage when the DC current is applied to similarly installed electrodes and the current flowing through the photoconductor rapidly increases. Therefore, the discharge start voltage and the spark discharge start voltage vary depending on the electrode used, but the electrode including the conductive fiber sheet as in the present invention starts discharge at a low voltage and starts spark discharge at a low voltage. Therefore, the deterioration of the discharge property is small and the discharge efficiency is excellent. In addition, since the discharge is performed at a low voltage, the amount of ozone generated is extremely small, and there is an advantage that the photoconductor and peripheral parts are oxidatively deteriorated and the human body is not adversely affected.

【0022】交流電圧の波形としては、例えば、サイン
波、矩形波、パルス波などがある。
Examples of the waveform of the AC voltage include a sine wave, a rectangular wave, and a pulse wave.

【0023】以下に、本発明の実施例を記載するが、以
下の実施例に限定されるものではない。なお、表面抵抗
は表面抵抗計(三菱油化(株)製、ロレスタAP)を使
用し、四端子法により測定した値である。
Examples of the present invention will be described below, but the invention is not limited to the following examples. The surface resistance is a value measured by a four-terminal method using a surface resistance meter (Loresta AP manufactured by Mitsubishi Petrochemical Co., Ltd.).

【0024】[0024]

【実施例】【Example】

(実施例1〜3、比較例1〜2)ポリエステル繊維(繊
維径3.2μm、繊維長5mm)100%を湿式法により繊
維ウエブを形成した後、水圧95kg/cm2の水流により絡
合し、目付100g/m2、厚み0.6mmの不織布を得た。
この不織布に30%濃度の塩化鉄(III)を含浸した
後、ピロール溶液を蒸発させたピロールモノマーガスに
接触させることにより、不織布全体を3.5g/m2のポリ
ピロールで被覆した導電性不織布を得た。この導電性不
織布の繊維密度は、15,000m/cm3で、表面抵抗
は1.3×102Ω/□であった。
(Examples 1 to 3 and Comparative Examples 1 and 2) 100% of polyester fibers (fiber diameter 3.2 μm, fiber length 5 mm) were formed by a wet method, and then entangled with a water flow of water pressure 95 kg / cm 2. A non-woven fabric having a basis weight of 100 g / m 2 and a thickness of 0.6 mm was obtained.
After impregnating this non-woven fabric with iron (III) chloride at a concentration of 30%, the whole non-woven fabric was coated with 3.5 g / m 2 of polypyrrole by bringing the pyrrole solution into contact with the vaporized pyrrole monomer gas. Obtained. The fiber density of this conductive nonwoven fabric was 15,000 m / cm 3 and the surface resistance was 1.3 × 10 2 Ω / □.

【0025】この導電性不織布を、直径8mmの金属ロー
ルシャフトに平巻きして電極を作成し、感光体と0.5m
mだけ離して、レーザービームプリンターに設置した。
この電極に、直流電圧と交流電圧の組み合わせ(直流電
圧(V)、交流電圧(ピークトゥピーク値、V))がそれぞ
れ(−800、400)(−600、600)(−60
0、800)(−500、400)(−900、60
0)の重畳電圧(順に実施例1、実施例2、実施例3、
比較例1、比較例2)を印加して画像を形成させ、この
画像を目視により優劣を判定した。この結果は表1に示
すように、本発明のコロナ放電装置は低電圧でも放電が
均一に生じ、感光体を均一に帯電できることがわかる。
なお、電極の放電開始電圧は−400ボルトで、火花放
電開始電圧は−1,100ボルトであった。
This conductive non-woven fabric was flatly wound on a metal roll shaft having a diameter of 8 mm to form an electrode, and the electrode was made 0.5 m from the photoconductor.
The laser beam printer was installed at a distance of m.
A combination of a DC voltage and an AC voltage (DC voltage (V), AC voltage (peak to peak value, V)) is (-800, 400) (-600, 600) (-60
0, 800) (-500, 400) (-900, 60)
0) superimposed voltage (in the order of Example 1, Example 2, Example 3,
Comparative Examples 1 and 2) were applied to form an image, and the image was visually judged to be superior or inferior. The results show that, as shown in Table 1, the corona discharge device of the present invention discharges uniformly even at a low voltage and can uniformly charge the photoconductor.
The discharge start voltage of the electrode was -400 V and the spark discharge start voltage was -1,100 V.

【0026】[0026]

【表1】 [Table 1]

【0027】(実施例4〜6、比較例3〜4)ポリエス
テル成分を主体とし、このポリエステル成分を繊維の軸
から放射状に伸びるポリアミド成分により8区分に分離
した断面が菊花型の繊維(繊度2デニール、繊維長38
mm)100%を、カーディングして繊維ウエブとした
後、水圧95kg/cm2の水流により絡合し、目付85g/
m2、厚み0.45mmの不織布を得た。この不織布の繊維
径は電子顕微鏡写真をもとに測定した値で、ポリエステ
ル成分は平均6μmで、ポリアミド成分は平均7μmであ
り、この平均繊維径は6.1μmであった。その後、この
不織布を実施例1と全く同様にして、不織布全体を3.
0g/m2のポリピロールで被覆し、導電性不織布を得た。
この導電性不織布の繊維密度は4,800m/cm3で、
表面抵抗は2.0×102Ω/□であった。
(Examples 4 to 6 and Comparative Examples 3 to 4) A polyester component was the main component, and the polyester component was separated into 8 sections by a polyamide component radially extending from the axis of the fiber. Denier, fiber length 38
mm) 100% is carded into a fibrous web, which is then entangled with a water flow at a water pressure of 95 kg / cm 2 to give a basis weight of 85 g /
A nonwoven fabric with m 2 and a thickness of 0.45 mm was obtained. The fiber diameter of this nonwoven fabric was a value measured based on an electron micrograph, and the polyester component had an average of 6 μm and the polyamide component had an average of 7 μm, and the average fiber diameter was 6.1 μm. Then, this non-woven fabric was treated in exactly the same manner as in Example 1 and the whole non-woven fabric was treated with 3.
A conductive non-woven fabric was obtained by coating with 0 g / m 2 of polypyrrole.
The fiber density of this conductive non-woven fabric is 4,800 m / cm 3 ,
The surface resistance was 2.0 × 10 2 Ω / □.

【0028】この導電性不織布を、実施例1と同様にレ
ーザービームプリンターに設置し、この電極に、直流電
圧と交流電圧の組み合わせ(直流電圧(V)、交流電圧
(ピークトゥピーク値、V))がそれぞれ(−1,00
0、200)(−1,000、400)(−700、1,
000)(−700、400)(−1,000、80
0)の重畳電圧(順に実施例4、実施例5、実施例6、
比較例3、比較例4)を印加して画像を形成させ、この
画像を目視により優劣を判定した。この結果も表1に示
すように、本発明のコロナ放電装置は低電圧でも放電が
均一に生じ、感光体を均一に帯電できることがわかる。
なお、電極の放電開始電圧は−500ボルトで、火花放
電開始電圧は−1,300ボルトであった。
This conductive non-woven fabric was installed in a laser beam printer as in Example 1, and a combination of DC voltage and AC voltage (DC voltage (V), AC voltage) was applied to this electrode.
(Peak to peak value, V) is (-1,00)
0, 200) (-1,000, 400) (-700, 1,
000) (-700, 400) (-1,000, 80
0) superimposed voltage (Example 4, Example 5, Example 6,
An image was formed by applying Comparative Examples 3 and 4), and the image was visually judged to be superior or inferior. This result also shows that, as shown in Table 1, the corona discharge device of the present invention discharges uniformly even at a low voltage and can uniformly charge the photoconductor.
The discharge start voltage of the electrode was -500 V and the spark discharge start voltage was -1,300 V.

【0029】[0029]

【発明の効果】本発明のコロナ放電装置は導電性繊維シ
ートを含む電極を有しており、この電極は低電圧で容易
に放電するため、放電性の低下が小さい。また、シール
ド電極を使用しなくても容易に放電するため、放電効率
にも優れている。このように、本発明のコロナ放電装置
は、低電圧で容易に放電を生じるため、電源を小さくす
ることができ、しかもシールド電極を必要としないの
で、省スペース化も可能となった。
The corona discharge device of the present invention has an electrode containing a conductive fiber sheet. Since this electrode is easily discharged at a low voltage, the deterioration of the discharge property is small. In addition, the discharge efficiency is excellent because the discharge is easily performed without using the shield electrode. As described above, in the corona discharge device of the present invention, since the discharge is easily generated at the low voltage, the power source can be made small, and the shield electrode is not required. Therefore, the space can be saved.

【0030】更には、本発明のコロナ放電装置の電極に
印加する直流電圧と交流電圧との重畳電圧のピーク値
が、この電極に直流を印加した時の放電開始電圧の2倍
以上であり、火花放電開始電圧以下の範囲内に設定され
ているため、より均一に放電できる。
Further, the peak value of the superimposed voltage of the DC voltage and the AC voltage applied to the electrode of the corona discharge device of the present invention is more than twice the discharge starting voltage when DC is applied to this electrode, Since it is set within the range below the spark discharge starting voltage, more uniform discharge can be achieved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性繊維シートを含む電極を有してお
り、該電極に印加する直流電圧と交流電圧との重畳電圧
のピーク値が、該電極に直流を印加した時の放電開始電
圧の2倍以上であり、火花放電開始電圧以下の範囲内に
設定されていることを特徴とするコロナ放電装置。
1. An electrode including a conductive fiber sheet is provided, and a peak value of a superimposed voltage of a DC voltage and an AC voltage applied to the electrode is a discharge start voltage when DC is applied to the electrode. A corona discharge device characterized in that it is set to a value not less than twice and not higher than a spark discharge starting voltage.
JP4193193A 1993-02-05 1993-02-05 Corona discharge device Expired - Fee Related JP3331232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4193193A JP3331232B2 (en) 1993-02-05 1993-02-05 Corona discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4193193A JP3331232B2 (en) 1993-02-05 1993-02-05 Corona discharge device

Publications (2)

Publication Number Publication Date
JPH06230653A true JPH06230653A (en) 1994-08-19
JP3331232B2 JP3331232B2 (en) 2002-10-07

Family

ID=12621985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4193193A Expired - Fee Related JP3331232B2 (en) 1993-02-05 1993-02-05 Corona discharge device

Country Status (1)

Country Link
JP (1) JP3331232B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313463A (en) * 2006-05-26 2007-12-06 Matsushita Electric Works Ltd Electrostatic atomizer
JP2017173361A (en) * 2016-03-18 2017-09-28 京セラドキュメントソリューションズ株式会社 Discharge member and static eliminator including the same, and image forming apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814858A (en) * 1981-07-20 1983-01-27 Toshiba Corp Contact charger
JPS6186040U (en) * 1984-11-09 1986-06-05
JPS61278879A (en) * 1985-06-04 1986-12-09 Canon Inc Corona discharging device
JPH01280784A (en) * 1989-03-17 1989-11-10 Fuji Xerox Co Ltd Conductive brush roll for electronic copying machine
JPH0269781A (en) * 1988-09-05 1990-03-08 Canon Inc Corona electrifying device
JPH04358175A (en) * 1991-06-04 1992-12-11 Canon Inc Electrifier
JPH0627782A (en) * 1992-07-09 1994-02-04 Hiraoka H I Kenkyusho:Kk Charger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814858A (en) * 1981-07-20 1983-01-27 Toshiba Corp Contact charger
JPS6186040U (en) * 1984-11-09 1986-06-05
JPS61278879A (en) * 1985-06-04 1986-12-09 Canon Inc Corona discharging device
JPH0269781A (en) * 1988-09-05 1990-03-08 Canon Inc Corona electrifying device
JPH01280784A (en) * 1989-03-17 1989-11-10 Fuji Xerox Co Ltd Conductive brush roll for electronic copying machine
JPH04358175A (en) * 1991-06-04 1992-12-11 Canon Inc Electrifier
JPH0627782A (en) * 1992-07-09 1994-02-04 Hiraoka H I Kenkyusho:Kk Charger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313463A (en) * 2006-05-26 2007-12-06 Matsushita Electric Works Ltd Electrostatic atomizer
JP4645528B2 (en) * 2006-05-26 2011-03-09 パナソニック電工株式会社 Electrostatic atomizer
JP2017173361A (en) * 2016-03-18 2017-09-28 京セラドキュメントソリューションズ株式会社 Discharge member and static eliminator including the same, and image forming apparatus

Also Published As

Publication number Publication date
JP3331232B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
KR930000241B1 (en) Electroconductive composite fiber and process for preparation thereof
JP3917524B2 (en) Fiber composite and use thereof
JPH07135087A (en) Static elimination sheet and using method thereof
JPH06230653A (en) Corona discharge device
JP3492722B2 (en) Discharge electrode substrate
JPH10310974A (en) Production of electrically conductive fiber
JPH10131035A (en) Production of electroconductive fiber
JPH06215854A (en) Electrode base material for discharge
JPH01292116A (en) Electrically conductive fiber and production thereof
JP3342161B2 (en) Conductive fiber sheet and conductive roll
JPH06104093A (en) Conductive adhesive sheet
JPH05190292A (en) Electrode for discharge
JP3033834B2 (en) Static elimination roll and method of using the same
JPH0733637B2 (en) Conductive fiber
JP4251762B2 (en) Conductive string material
JP2001190983A (en) Dust collection sheet for electric precipitator, and electric precipitator
JPH07201487A (en) Static eliminating sheet
JP4465785B2 (en) Manufacturing method and manufacturing apparatus of electret fiber sheet
JPH08243066A (en) Cleaning material
JPH06302395A (en) Static eliminating sheet
JP2001170519A (en) Dust collecting sheet for electric precipitator and electric precipitator using the same
JPS6385112A (en) Electrically conductive conjugate fiber
JPH01183520A (en) Electrically conductive fiber
JP3278137B2 (en) Conductive composite fiber and contact charging brush comprising the same
JPH08293393A (en) Cleaning material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees