JPH0518857A - Fizeau interference measuring device applying phase deviation interference method - Google Patents

Fizeau interference measuring device applying phase deviation interference method

Info

Publication number
JPH0518857A
JPH0518857A JP3171287A JP17128791A JPH0518857A JP H0518857 A JPH0518857 A JP H0518857A JP 3171287 A JP3171287 A JP 3171287A JP 17128791 A JP17128791 A JP 17128791A JP H0518857 A JPH0518857 A JP H0518857A
Authority
JP
Japan
Prior art keywords
intensity
interference
optical axis
cos
sin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3171287A
Other languages
Japanese (ja)
Inventor
Yoshiya Matsui
吉哉 松居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3171287A priority Critical patent/JPH0518857A/en
Publication of JPH0518857A publication Critical patent/JPH0518857A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure interference with high accuracy by applying a phase deviation interference method to a Fizeau interference measuring device. CONSTITUTION:The phase shift data caused by the distance up to an optical axis of the intensity change of the interference pattern at each part in an interference region when a reference spherical surface 5 is vibrated in an optical axis direction is preliminarily calculated and, when an initial phase is calculated from intensity data becoming representation at every period when the intensity change data obtained at every part is divided into four periods, the correction factor based on the phase shift data is used to obtain an accurate initial phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフィゾー干渉測定方法に
関する。本発明は、半導体集積回路焼付用の超高解像力
レンズなど最近の高性能な光学系を構成する個々の球面
の真球度を波長の1/100といった高い精度で測定で
きる信頼性の高い干渉測定に良好に適用できる。
FIELD OF THE INVENTION The present invention relates to a Fizeau interferometry method. The present invention is a highly reliable interferometric measurement capable of measuring the sphericity of each spherical surface that constitutes a recent high-performance optical system such as an ultra-high-resolution lens for printing a semiconductor integrated circuit with high accuracy of 1/100 of a wavelength. Can be applied well to

【0002】[0002]

【従来の技術】光学系を構成する球面の形状の良否を判
定するのに光の干渉現象を利用する干渉計はかなり以前
から用いられていたが、干渉性の良い光源としてのレー
ザーの普及とエレクトロニクス技術の発展とに支えられ
て、最近は従来よりも格段に精密で信頼性の高い干渉計
の活用が可能となった。位相変移干渉法と呼ばれる技術
がその代表的な例である。
2. Description of the Related Art Interferometers that utilize the phenomenon of light interference have been used for a long time to judge the quality of the shape of the spherical surface that constitutes an optical system. Supported by the development of electronics technology, recently it has become possible to utilize interferometers that are much more precise and reliable than ever before. A typical example is a technique called phase shift interferometry.

【0003】位相変移干渉法が開発される以前の干渉測
定は、被測定面と比較の基準となる参照面との間の静的
な干渉パターンを手がかりとするもので、被測定面の形
状誤差について大ざっぱな良否の判定はできても、被測
定面全面の形状誤差を定量的に求めることは極めて困難
であった。それに対して位相変移干渉法は、被測定面と
参照面との間の光路長を微少量変化させた場合の干渉パ
ターンの強度(明暗)の変化が被測定面の形状誤差を反
映して干渉領域内の各位置でタイミングに微妙なずれを
生じるのを利用して被測定面全面の形状誤差を定量的に
求めようという技術である。
Interferometry before the development of phase shift interferometry is based on a static interference pattern between a surface to be measured and a reference surface which is a reference for comparison. However, it was extremely difficult to quantitatively determine the shape error of the entire surface to be measured, even though it was possible to roughly judge the quality. On the other hand, in the phase shift interferometry, when the optical path length between the measured surface and the reference surface is changed by a small amount, the change in the intensity (brightness) of the interference pattern reflects the shape error of the measured surface and causes interference. This is a technique for quantitatively obtaining the shape error of the entire surface to be measured by utilizing the fact that the timing slightly deviates at each position in the area.

【0004】現在干渉計をとして一般に良く使われてい
るトワイマン形とフィゾー形に位相変移干渉法を適用し
た場合の干渉計主要部分の光学配置を示したのが図4と
図5である。これら双方の図で3がビームスプリッタ
ー、4、4′がレーザーからの平面波を球面波に変換す
る収束レンズ、5、5′が形状測定の基準となる参照
面、7が被測定面、8が干渉パターンの強度を検出する
イメージセンサー面である。
FIGS. 4 and 5 show the optical arrangement of the main part of the interferometer when the phase shift interferometry is applied to the Twyman type and the Fizeau type which are commonly used as an interferometer at present. In both these figures, 3 is a beam splitter, 4 and 4'is a converging lens for converting a plane wave from a laser into a spherical wave, 5 and 5'is a reference surface which is a standard for shape measurement, 7 is a measured surface, and 8 is a measured surface. It is an image sensor surface for detecting the intensity of the interference pattern.

【0005】図4に示したトワイマン干渉計の場合に
は、図の左から入射した平面波の一部はビームスプリッ
ターで反射され、さらに平らな参照面5′で反射された
後、ビームスプリッター3を通過してイメージセンサー
面8に到達する。また入射した平面波でビームスプリッ
ター3を通過したものは収束レンズ4′で球面波に変換
され、更にその球面波に同心になるように配置された被
測定球面7で反射され、再び収束レンズ4′で平面波の
形に変換された後、ビームスプリッター3で反射されて
イメージセンサー面8に到達する。こうしてイメージセ
ンサー上に到達した二つの波面の干渉による干渉パター
ンがイメージセンサー上に形成される。
In the case of the Twyman interferometer shown in FIG. 4, a part of the plane wave incident from the left side of the figure is reflected by the beam splitter and further reflected by the flat reference surface 5 ', and then the beam splitter 3 is moved. It passes through and reaches the image sensor surface 8. Further, the incident plane wave that has passed through the beam splitter 3 is converted into a spherical wave by the converging lens 4 ', is further reflected by the measured spherical surface 7 arranged so as to be concentric with the spherical wave, and is again converged by the converging lens 4'. After being converted into a plane wave form by, the beam is reflected by the beam splitter 3 and reaches the image sensor surface 8. In this way, an interference pattern is formed on the image sensor due to the interference of the two wavefronts arriving on the image sensor.

【0006】一方、図5に示したフィゾー干渉計の場合
には、左方から入射した平面波はビームスプリッター3
を通過して収束レンズ4で球面波に変換された後、その
一部はその球面波に対して同心になるように構成されて
いる収束レンズ後端の参照球面5で反射され、再び収束
レンズ4で平面波に変換された後、ビームスプリッター
3で反射されてイメージセンサー面8に到達する。また
参照球面5を通過した球面波は、その球面波と同心にな
るように配置された被測定球面7で反射され、参照球面
5を通過して収束レンズ4で平面波の形に変換された
後、ビームスプリッター3で反射されてイメージセンサ
ー面8に到達する。こうしてイメージセンサー面に到達
した二つの波面の干渉によるパターンがイメージセンサ
ー上に形成される。
On the other hand, in the case of the Fizeau interferometer shown in FIG. 5, the plane wave incident from the left side is reflected by the beam splitter 3.
After being converted into a spherical wave by the converging lens 4 after passing through, a part of it is reflected by the reference spherical surface 5 at the rear end of the converging lens which is configured so as to be concentric with the spherical wave, and the converging lens again. After being converted into a plane wave at 4, the beam is reflected by the beam splitter 3 and reaches the image sensor surface 8. Further, the spherical wave that has passed through the reference spherical surface 5 is reflected by the measured spherical surface 7 that is arranged concentrically with the spherical wave, passes through the reference spherical surface 5, and is converted into a plane wave shape by the converging lens 4. The beam is reflected by the beam splitter 3 and reaches the image sensor surface 8. In this way, a pattern is formed on the image sensor due to the interference of the two wavefronts reaching the image sensor surface.

【0007】上記のような干渉計に位相変移干渉法を適
用するためには、参照面と被測定球面との間の光路長を
約1波長ほど変化させる必要があり、一般に良く用いら
れるのは圧電素子などを利用して参照面を光軸方向に微
小変位させるという方法である。参照面と被測定球面の
間の光路長が変化すると、それに伴ってイメージセンサ
ー上の任意の位置での干渉パターンの強度Iは正弦波状
に変化する。その変化するIの値の中の定数の部分を
a、変化の振幅をb、変化の初期位相をφ、参照面の変
位に伴って変動する位相をxとすると、一般に強度Iの
値の変化は次のように書ける。
In order to apply the phase shift interferometry to the interferometer as described above, it is necessary to change the optical path length between the reference surface and the spherical surface to be measured by about 1 wavelength, which is generally used. This is a method of slightly displacing the reference surface in the optical axis direction using a piezoelectric element or the like. When the optical path length between the reference surface and the measured spherical surface changes, the intensity I of the interference pattern at an arbitrary position on the image sensor changes sinusoidally. When the constant part in the changing value of I is a, the amplitude of the change is b, the initial phase of the change is φ, and the phase fluctuating with the displacement of the reference surface is x, the change of the value of the intensity I is generally. Can be written as

【0008】 I=a+bcos(φ+x) (1) トワイマン干渉計とフィゾー干渉計のいずれの場合にも
光軸上、すなわちイメージセンサーの中心部では参照面
の変位量δとxの間には光の波長をλとしてつぎの関係
が成立する。
I = a + bcos (φ + x) (1) In both the Twyman interferometer and the Fizeau interferometer, on the optical axis, that is, in the central portion of the image sensor, the displacement of the reference plane is between δ and x. The following relation holds when the wavelength is λ.

【0009】[0009]

【外6】 [Outside 6]

【0010】図4に示したように、トワイマン干渉計の
場合には参照面が平面であるから、その光軸方向の変位
δに伴う被測定球面との間の光路長の変化は干渉領域の
どの場所でも同じになり、したがってδと位相xの関係
(2)は光軸上だけでなく干渉領域全体を通して成立す
る。しかし、(1)の右辺に含まれている初期位相φが
被測定球面の形状誤差などの影響で干渉領域内の位置に
よって異なるので、δの変位に伴う干渉パターンの強度
Iの変化は干渉領域内の位置により相互にδ方向にずれ
た形になる。図6はそれを図示したもので、下が例えば
光軸上、上が光軸外の任意の位置におけるδとIの関係
を示している。(2)が干渉領域内の位置に無関係に成
立することから2本の縦線で区切られたIの変化の1周
期、すなわち位相xが2πだけ変移する間のδの変移量
は両者全く同一であるがIの変化の形は相互にδ方向に
ずれる。
As shown in FIG. 4, in the case of the Twyman interferometer, since the reference surface is a plane, the change in the optical path length between the reference surface and the spherical surface to be measured due to the displacement δ in the optical axis direction changes in the interference region. It is the same everywhere, so the relationship (2) between δ and phase x holds not only on the optical axis but throughout the interference region. However, since the initial phase φ included in the right side of (1) differs depending on the position in the interference area due to the shape error of the measured spherical surface, the change in the intensity I of the interference pattern due to the displacement of δ changes. Depending on the position inside, the shapes are offset from each other in the δ direction. FIG. 6 shows this, and the lower part shows the relationship between δ and I at an arbitrary position outside the optical axis, for example, on the optical axis. Since (2) holds regardless of the position in the interference region, one cycle of change in I separated by two vertical lines, that is, the amount of δ change during the phase x changes by 2π is exactly the same. However, the shape of the change of I deviates from each other in the δ direction.

【0011】位相変移干渉法で基本となる手続きは、参
照面の変移δに伴って干渉領域内の各位置でIが変化す
る状態をイメージセンサーで検出し、その結果から被測
定球面の形状誤差などに起因する各位置での初期位相φ
の値を求める手続きである。トワイマン干渉計に位相変
移干渉法を適用した場合には、上記のように(2)の関
係が干渉領域全体にわたって成立するのでφの値を求め
るのも比較的容易であって、すでに各種の方法が試みら
れており、その手続きは公知となっている(例えばAp
plied Optics 13 No.11(197
4)p2693〜2703、Photonics SP
ECTRA 22 No.10(1988)p169〜
176、その他)。これまでに行われている比較的簡単
な方法としては以下述べるようなものがある。
The basic procedure of the phase shift interferometry is that the image sensor detects a state where I changes at each position in the interference region with the shift δ of the reference surface, and from the result, the shape error of the measured spherical surface is detected. Initial phase φ at each position due to
Is a procedure for obtaining the value of. When the phase shift interferometry is applied to the Twyman interferometer, it is relatively easy to find the value of φ because the relationship of (2) is established over the entire interference region as described above, and various methods have already been used. Have been attempted, and the procedure has been publicly known (for example, Ap
plied Optics 13 No. 11 (197
4) p2693-2703, Photonics SP
ECTRA 22 No. 10 (1988) p169-
176, etc.). The following is a relatively simple method that has been used so far.

【0012】図7に示すように、参照面の変位δによっ
てIが一周期変化する(xの変移量が2πになる)区間
を4等分し、その最初の位置1とそれに続く三つの分割
位置2〜4におけるIの値I1〜I4をイメージセンサー
によって干渉領域内の各位置について検出する。それら
の値から、それぞれの位置でのφの値がつぎにより算出
できる。
As shown in FIG. 7, a section in which I changes by one cycle due to the displacement δ of the reference surface (the displacement amount of x becomes 2π) is divided into four equal parts, and the first position 1 and three subsequent divisions are divided. detecting each position of the interference area values I 1 ~I 4 of I in position 2-4 by the image sensor. From these values, the value of φ at each position can be calculated as follows.

【0013】[0013]

【外7】 [Outside 7]

【0014】[0014]

【外8】 もしくは[Outside 8] Or

【0015】[0015]

【外9】 もしくは[Outside 9] Or

【0016】[0016]

【外10】 [Outside 10]

【0017】[0017]

【発明が解決しようとする課題】上記のように、トワイ
マン干渉計に位相変移干渉法を適用する上で理論上とく
に困難な問題はなく、初期位相φの値を求める手続きも
すでに公知となっている。しかしその反面、位相変移干
渉法本来の目的である高精度な測定、例えば球面の真球
度を波長の1/10以下の精度で測定しようとするよう
な用途に対しては問題がある。図4に示したトワイマン
干渉計の光学配置を見れば分かるように、入射波面が参
照面で反射してイメージセンサー面に到達する光路と被
測定球面で反射してイメージセンサー面に到達する光路
とは別になっており、しかもビームスプリッターのプリ
ズムや収束レンズなどがそれら別個の光路中に存在して
いる。したがってそうした光学素子の欠陥がそのまま干
渉パターンに影響を与える訳で、その影響を波長の1/
10以下に抑えることは極めて困難だからである。
As described above, there is no theoretically difficult problem in applying the phase-shifting interferometry to the Twyman interferometer, and the procedure for obtaining the value of the initial phase φ has already been known. There is. However, on the other hand, there is a problem in high-precision measurement, which is the original purpose of phase-shifting interferometry, for example, in an application in which the sphericity of a spherical surface is measured with an accuracy of 1/10 or less of the wavelength. As can be seen by looking at the optical arrangement of the Twyman interferometer shown in FIG. 4, an optical path in which the incident wavefront is reflected by the reference surface and reaches the image sensor surface, and an optical path in which the incident wavefront is reflected by the measured spherical surface and reaches the image sensor surface. Apart from that, the prism of the beam splitter and the converging lens are present in these separate optical paths. Therefore, the defect of such an optical element directly affects the interference pattern, and the effect is 1 / wavelength.
This is because it is extremely difficult to keep it at 10 or less.

【0018】一方、図5に示したフィゾー干渉計の光学
配置では、参照面と被測定球面とが他の介在物なしに直
接向かい合う形になっており、入射波面が参照面で反射
されてイメージセンサー面に到達する光路と被測定球面
で反射してイメージセンサー面に到達する光路とは上記
の参照面と被測定球面とが直接向かい合う空間を除き共
通であるために、プリズムや収束レンズに多少の欠陥が
あっても干渉パターンには相互にキャンセルされてほと
んど影響を与えないのである。このことはフィゾー干渉
計が被測定球面の形状誤差を高い精度で測定するのにき
わめて有利であることを意味し、これに位相変移干渉法
を適用することもすでに実際に行われている。そして、
測定の場合には、トワイマン干渉計について述べたと同
様に参照面を光軸方向に微少量変位させるという方法が
とられている。ところが、フィゾー干渉計の場合には、
被測定面が平面という特別の場合を除き一般に参照面は
凹の球面であるから、それを光軸方向に変位させた時の
被測定球面との間の光路長の変化は全面一様にはならず
に光軸から離れるに従って減少する傾向を生じ、その程
度は被測定球面の形状が深いほど、換言すれば曲率半径
に比較して径が大きいほど顕著になるのである。したが
って、このことを無視してトワイマン干渉計について行
われているのと同様の方法で、初期位相φの値を求める
と結果に系統的な誤差を生じることは明らかである。も
し、この問題の実行可能な解決策があればフィゾー干渉
計の利点を生かした、きわめて信頼性が高く精密な干渉
測定が可能になる筈であるが、これまでのところ、この
問題に理論的な検討を加えた文献は見当たらないし、ま
た実際に位相変位法を適用したフィゾー干渉計でどのよ
うな処置が取られているか明らかにされた例もない。
On the other hand, in the optical arrangement of the Fizeau interferometer shown in FIG. 5, the reference surface and the measured spherical surface directly face each other without other inclusions, and the incident wavefront is reflected by the reference surface to form an image. The optical path reaching the sensor surface and the optical path reflected by the measured spherical surface and reaching the image sensor surface are common except for the space where the reference surface and the measured spherical surface directly face each other. Even if there are defects, the interference patterns are mutually canceled and have almost no effect. This means that the Fizeau interferometer is extremely advantageous for measuring the shape error of the measured spherical surface with high accuracy, and the application of the phase shift interferometry to it has already been actually carried out. And
In the case of measurement, the method of displacing the reference surface by a small amount in the optical axis direction is adopted as in the case of the Twyman interferometer. However, in the case of Fizeau interferometer,
Since the reference surface is generally a concave spherical surface except when the measured surface is a flat surface, the change in the optical path length between the reference surface and the measured spherical surface when it is displaced in the optical axis direction is not uniform over the entire surface. However, it tends to decrease with distance from the optical axis, and the degree thereof becomes more remarkable as the shape of the measured spherical surface becomes deeper, in other words, as the diameter becomes larger than the radius of curvature. Therefore, it is clear that ignoring this fact and obtaining the value of the initial phase φ in a manner similar to that performed for the Twyman interferometer will result in a systematic error in the result. If there were a feasible solution to this problem, it would have been possible to make very reliable and precise interferometric measurements, taking advantage of the Fizeau interferometer, but so far there has been no theoretical solution to this problem. No literature has been found to have been thoroughly examined, and there is no example that clarified what kind of treatment was actually performed by the Fizeau interferometer to which the phase displacement method was applied.

【0019】本発明はフィゾー干渉計に位相変移干渉法
を適用した場合の干渉領域内で一様でない光路長の変化
と、それに伴う干渉パターンの変化の様子から被測定面
の形状誤差の寄与量を正確に求める手続きを確立し、そ
れによってフィゾー干渉計の備えている利点を十分に生
かした高精度な干渉測定を提供する事を目的とする。
According to the present invention, when the phase shift interferometry is applied to the Fizeau interferometer, the amount of contribution of the shape error of the surface to be measured is determined from the change in the optical path length which is not uniform in the interference region and the accompanying change in the interference pattern. The purpose of this is to establish a procedure for accurately obtaining the interferometer, and thereby to provide a highly accurate interferometric measurement that fully utilizes the advantages of the Fizeau interferometer.

【0020】[0020]

【課題を解決するための手段】前述目的を達成するため
本発明は、被検球面からの光束と参照球面からの光束と
を少なくとも一方の面を光軸方向に振動させた状態で干
渉させて干渉領域の干渉パターンの強度変化を測定する
フィゾー型の干渉測定方法において、あらかじめ前記面
振動をさせた際の前記干渉領域の非光軸上各点における
強度変化の光軸からの距離に起因する位相ずれ情報を記
憶する過程と、前記各点における光軸上干渉パターン強
度変化一周期間内での干渉パターンの強度変化を検出す
る過程と、該検出された強度変化を複数期間に分割した
場合の各期間の代表時点における強度または各期間内で
の強度の積分値を検出する過程と、該各期間毎の代表時
点における強度または強度の積分値と、前記記憶された
位相ずれ情報とより、前記各点ごとの干渉パターンの強
度変化の初期位相の値を算出する過程と、を設けてい
る。
In order to achieve the above-mentioned object, the present invention makes a light beam from a test spherical surface and a light beam from a reference spherical surface interfere with each other while vibrating at least one surface in the optical axis direction. In the Fizeau-type interference measurement method for measuring the intensity change of the interference pattern in the interference region, due to the distance from the optical axis of the intensity change at each point on the non-optical axis of the interference region when the surface vibration is performed in advance. A step of storing the phase shift information, a step of detecting the intensity change of the interference pattern on the optical axis interference pattern intensity change one cycle at each point, and a step of dividing the detected intensity change into a plurality of periods The process of detecting the intensity at the representative time point of each period or the integrated value of the intensity within each period, the intensity at the representative time point of each period or the integrated value of the intensity, and the stored phase shift information. , It is provided, comprising the steps of calculating the value of the initial phase of the intensity change of the interference pattern for each point.

【0021】また、本発明は、参照面を光軸方向に微小
量変位させることによって干渉領域全体の干渉パターン
の強度を変化させる形式の位相変移干渉法を適用したフ
ィゾー干渉測定装置において、干渉測定に先立って、参
照面の光軸方向の変位により光軸上の干渉パターンの強
度が一周期変化する間に干渉領域周縁部の干渉パターン
の強度変化の位相が系統的に遅れる量を、実際に測定す
るか、またはそれと同等の位相の遅れ量を干渉領域周縁
部に対応する入射光の開口数の値から計算により求めて
おき、干渉測定の際には、参照面の光軸方向の変位に伴
う光軸上の干渉パターンの強度変化の一周期の区間を4
等分し、その最初の時点とそれに続く三つの分割時点に
おける干渉パターンの強度、または4分割した各区間内
での強度の積分値を、干渉領域内の各部分についてイメ
ージセンサーを備えた干渉パターン検出部で同時に測定
し、前記干渉領域周縁部での干渉パターンの強度変化の
系統的な遅れ量と、干渉領域内の各部分について得られ
た前記各時点の干渉パターンの強度または前記各区間の
強度の積分値とから、干渉領域各部分における干渉パタ
ーンの強度変化の初期位相の値を算出する計算処理機構
を設けている。
The present invention also provides an interferometric measurement in a Fizeau interferometer using a phase shift interferometer of the type in which the intensity of the interference pattern in the entire interference region is changed by displacing the reference surface by a small amount in the optical axis direction. Prior to the above, the amount by which the phase of the intensity change of the interference pattern at the peripheral portion of the interference region is systematically delayed while the intensity of the interference pattern on the optical axis changes for one cycle due to the displacement of the reference surface in the direction of the optical axis, Measure or calculate the equivalent phase delay amount from the numerical value of the numerical aperture of the incident light corresponding to the peripheral edge of the interference region.When measuring the interference, the displacement in the optical axis direction of the reference surface The interval of one cycle of the intensity change of the interference pattern on the optical axis is 4
The intensity of the interference pattern at the first time point and the three subsequent time points, which are equally divided, or the integrated value of the intensity in each of the four divided intervals is used as an interference pattern provided with an image sensor for each part in the interference region. Simultaneously measured by the detection unit, the systematic delay amount of the intensity change of the interference pattern in the interference region peripheral portion, the intensity of the interference pattern at each time point obtained for each portion in the interference region or each of the intervals A calculation processing mechanism is provided for calculating the value of the initial phase of the intensity change of the interference pattern in each part of the interference region from the integrated value of the intensity.

【0022】[0022]

【実施例】本発明の第1実施例の原理を説明する。The principle of the first embodiment of the present invention will be described.

【0023】フィゾー干渉計に位相変移干渉法を適用
し、参照球面を光軸方向に変位させた場合の変位量δと
干渉パターン強度Iの関係を図6と同様に示したのが図
1で、この図の下側が光軸上、図の上側の実線が光軸外
の任意の位置での様子の1例を示している。この図に示
したように、参照面が球面の場合には変位量δに対する
参照球面と被測定球面との間の光路長の変化が、光軸外
の位置では光軸上に比べて若干減少する傾向を生じ、そ
れに伴ってIが一周期変化するためのδの区間がその分
だけ伸びる。しかし、もし仮にδに伴う光路長の変化が
トワイマン干渉計の場合のように干渉領域全体を通して
一様であり、かつIの変化の一周期の最初の状態が同じ
であったと仮定すると、光軸外の位置でのIとδの関係
は図1の上側の破線で示したようになった筈である。一
方、変位δによるIの変化の関係は、光軸上でも光軸外
の位置でも(1)で表される点に変わりはなく、光軸上
と光軸外とで変わるのは(2)のδとxの関係だけで、
しかも求めたいのは干渉領域内の各位置での初期位相φ
の値であるから、干渉領域内の各位置ごとに変位δによ
るIの変化の一周期の区間を4等分してトワイマン干渉
計で行ったと同様の方法でφの値を求めることも考えら
れる。
FIG. 1 shows the relationship between the displacement amount δ and the interference pattern intensity I when the phase shift interferometry is applied to the Fizeau interferometer and the reference spherical surface is displaced in the optical axis direction, as in FIG. The lower side of the figure shows an example of the state on the optical axis and the upper solid line in the figure at an arbitrary position outside the optical axis. As shown in this figure, when the reference surface is a spherical surface, the change in the optical path length between the reference spherical surface and the measured spherical surface with respect to the displacement amount δ is slightly reduced at the position outside the optical axis as compared with that on the optical axis. Occurs, and accordingly, the section of δ for changing one cycle of I extends by that amount. However, assuming that the change in the optical path length with δ is uniform throughout the interference region as in the case of the Twyman interferometer, and the initial state of one cycle of the change in I is the same, The relationship between I and δ at the outer position should be as shown by the upper broken line in FIG. On the other hand, the relationship of the change of I due to the displacement δ is the same as the point represented by (1) on the optical axis and the position off the optical axis, and it does not change on and off the optical axis (2). Only by the relation between δ and x of
Moreover, we want to find the initial phase φ at each position in the interference region.
Therefore, it is also possible to obtain the value of φ by a method similar to that performed by the Twyman interferometer by equally dividing a section of one cycle of the change in I due to the displacement δ into four equal parts for each position in the interference region. .

【0024】しかし、この方法ではイメージセンサーか
らデータを取り込む時点が干渉領域内の位置ごとに異な
るので手続きが著しく繁雑になる。イメージセンサーか
らのデータの取り込みは干渉領域全体について同時に行
う方が手続きがはるかに簡単になる。フィゾー干渉計の
場合でも光軸上では参照面の変位δとIの関係がトワイ
マン干渉計の場合と一致するので、干渉領域全体につい
て同時にデータを取り込む時点を光軸上でトワイマン干
渉計の場合と一致するようにし、そうして得られたデー
タから干渉領域内のそれぞれの位置での初期位相φの値
を求める方法を考える。
However, in this method, the point of time when the data is acquired from the image sensor is different depending on the position in the interference area, which makes the procedure extremely complicated. It is much easier to acquire the data from the image sensor at the same time for the entire interference area. Even in the case of the Fizeau interferometer, the relationship between the displacement δ and I of the reference plane on the optical axis matches that of the Twyman interferometer, so the time when data is simultaneously acquired for the entire interference region is the same as that of the Twyman interferometer on the optical axis. Let us consider a method of obtaining the values of the initial phase φ at each position in the interference region from the data thus obtained so as to match.

【0025】図2は、測定の場合の光軸上(図の下側)
と光軸外(図の上側)のデータの関係を示したものであ
る。干渉領域内の任意の位置の光軸からの距離をNA
(測定波面の法線の光軸に対する傾きの角のsine)
で表すことにすると、参照球面の変位量δと位相の変位
量xの関係は(2)に代わって
FIG. 2 is on the optical axis for measurement (lower side of the figure)
And the data outside the optical axis (upper side of the figure) are shown. NA is the distance from the optical axis at any position in the interference area
(Sine of the angle of inclination of the normal of the measured wavefront to the optical axis)
If the relation between the displacement δ of the reference spherical surface and the displacement x of the phase is expressed by, instead of (2),

【0026】[0026]

【外11】 となる。このことから参照面の変位δによる光軸上での
Iの変化の一周期の区間を4等分した場合、その一つの
区間内の位相の変位量は光軸上で
[Outside 11] Becomes From this, when one period of the change of I on the optical axis due to the displacement δ of the reference surface is divided into four equal parts, the amount of phase displacement within the one section is on the optical axis.

【0027】[0027]

【外12】 となるのに対して光軸外では[Outside 12] On the other hand, outside the optical axis

【0028】[0028]

【外13】 と表せる。このεは(5)の関係から次のようになる。[Outside 13] Can be expressed as This ε is as follows from the relationship of (5).

【0029】[0029]

【外14】 このεの値は次のようにして求めることができる。[Outside 14] The value of ε can be obtained as follows.

【0030】干渉領域の周縁に対応するNA値を(N
A)maxとするとき、その干渉領域周縁部の干渉パター
ン強度を一周期変化させるのに必要な参照球面の変位量
δ1は(5)でx=2πとおくことにより
The NA value corresponding to the periphery of the interference area is set to (N
A) When max is set, the displacement amount δ 1 of the reference spherical surface required to change the interference pattern intensity at the peripheral portion of the interference region by one cycle is set to x = 2π in (5).

【0031】[0031]

【外15】 となるのに対して、光軸上の干渉パターン強度を一周期
変化させるのに必要な参照球面の変移量δ0はλ/2で
あるから、参照球面の変位量の差は
[Outside 15] On the other hand, since the displacement amount δ 0 of the reference spherical surface required to change the interference pattern intensity on the optical axis for one cycle is λ / 2, the difference in the displacement amount of the reference spherical surface is

【0032】[0032]

【外16】 という関係で表される。この関係から(NA)2 max[Outside 16] It is expressed by the relationship. From this relationship (NA) 2 max is

【0033】[0033]

【外17】 と書ける。そこで干渉パターン強度Iを一周期変化させ
るのに必要な参照球面の変位量の光軸上のそれに対する
伸び量Δδを測定すれば、干渉領域周縁に対応する(N
A)2 maxの値を(7)により算出することができる。一
方、干渉領域内の任意の位置の座標を光軸の位置を原点
として(x,y)で表すとき、光軸からの距離ρは
[Outside 17] Can be written. Therefore, if the extension amount Δδ of the displacement amount of the reference spherical surface required to change the interference pattern intensity I for one cycle is measured on the optical axis, it corresponds to the peripheral edge of the interference region (N
A) The value of 2 max can be calculated by (7). On the other hand, when the coordinates of an arbitrary position in the interference area are represented by (x, y) with the position of the optical axis as the origin, the distance ρ from the optical axis is

【0034】[0034]

【外18】 となるから、干渉領域周縁のρをρmaxと書くことにす
ると、(x,y)に対応するNAの値は
[Outside 18] Therefore, if ρ around the interference region is written as ρ max , the value of NA corresponding to (x, y) is

【0035】[0035]

【外19】 で与えられる。このNAの値を(6)に代入して干渉領
域内の任意の位置でのεの値を求めればよい。図2に示
したように、δによって光軸上のIが一周期変化する区
間を4等分した境界の1、2、3、4の時点における光
軸外のIの値をそれぞれI1、I2、I3、I4とすると、
これらは(1)から導出することができてつぎのように
なる。 I1=a+bcosφ I2=a+b(cosφsinε−sinφcosε) I3=a+b(−cosφcos2ε−sinφsin2ε) I4=a+b(−cosφsin3ε+sinφcos3ε) これらの関係から初期位相φの値がつぎにより求められ
る。
[Outside 19] Given in. This NA value may be substituted into (6) to find the value of ε at an arbitrary position within the interference region. As shown in FIG. 2, the values of I outside the optical axis at the time points 1, 2, 3, and 4 of the boundary obtained by equally dividing the interval in which I on the optical axis changes by one cycle by δ are I 1 , respectively. If I 2 , I 3 , and I 4 ,
These can be derived from (1) and are as follows. The value of I 1 = a + bcosφ I 2 = a + b (cosφsinε-sinφcosε) I 3 = a + b (-cosφcos2ε-sinφsin2ε) I 4 = a + b (-cosφsin3ε + sinφcos3ε) initial phase φ from these relationships are determined by the following.

【0036】[0036]

【外20】 光軸上ではε=0であるから(10)でA0=B0=2、
α0=β0=0となり、(10)はトワイマン干渉計につ
いて求めた(3)と一致する。このことから(10)は
フィゾー干渉計の光軸上を含む干渉領域全体に対して適
用できることが分かる。この初期位相φを各位置(x,
y)について求めることにより、被測定球面と参照球面
との間の光路長情報が被測定球面全域に関して求められ
る。
[Outside 20] Since ε = 0 on the optical axis, A 0 = B 0 = 2 in (10),
α 0 = β 0 = 0, and (10) coincides with (3) obtained for the Twyman interferometer. From this, it can be seen that (10) can be applied to the entire interference region including the optical axis of the Fizeau interferometer. This initial phase φ is set at each position (x,
By obtaining y), the optical path length information between the measured spherical surface and the reference spherical surface is calculated for the entire measured spherical surface.

【0037】次に本発明の第2実施例の原理について説
明する。
Next, the principle of the second embodiment of the present invention will be described.

【0038】[0038]

【外21】 これらの関係から初期位相φの値は次に示す三つの方法
のどれを用いても求めることができる。
[Outside 21] From these relationships, the value of the initial phase φ can be obtained using any of the following three methods.

【0039】[0039]

【外22】 もしくは[Outside 22] Or

【0040】[0040]

【外23】 もしくは[Outside 23] Or

【0041】[0041]

【外24】 光軸上ではε=0であるから、A1=B1=A2=B2
2、A3=B3=4;α=1=β1=α2=β2=α3=β3
=0となり(11a)、(11b)、(11c)は、そ
れぞれトワイマン干渉計についての(4a)、(4
b)、(4c)と一致する。このことから(11a)〜
(11c)はフィゾー干渉計の光軸上を含む干渉領域全
体について成立することが分かる。第1の実施例同様、
この初期位相φを各位置(x,y)について求めること
により、被測定球面と参照球面との間の光路長情報が被
測定球面全域に関して求められる。
[Outside 24] Since ε = 0 on the optical axis, A 1 = B 1 = A 2 = B 2 =
2, A 3 = B 3 = 4; α = 1 = β 1 = α 2 = β 2 = α 3 = β 3
= 0, and (11a), (11b), and (11c) are (4a) and (4) for the Twyman interferometer, respectively.
b) and (4c). From this (11a)
It can be seen that (11c) holds for the entire interference region including the optical axis of the Fizeau interferometer. Similar to the first embodiment,
By obtaining the initial phase φ for each position (x, y), the optical path length information between the measured spherical surface and the reference spherical surface is obtained for the entire measured spherical surface.

【0042】図3は本発明の上述第1及び第2実施例の
原理に従って、位相変移干渉法をフィゾー干渉計に適用
する場合の干渉計各部の位置関係を示したもので1はレ
ーザー、2はレーザーからの光を十分な径の平面波に変
換するためのビームエクスパンダー、3はビームスプリ
ッター、4はレーザーからの平面波を球面波に変換する
収束レンズ、5は収束レンズ4の最終面で同時に参照球
面としての役割をも兼ねる面、6は参照球面5を含む収
束レンズ4を光軸方向に微少量変位させるための圧電素
子などから成るアクチュエーター、7は参照球面5と同
心状に配置される被測定球面、8は干渉領域内各位置の
干渉パターンの情報を検出するイメージ検出部、9はア
クチュエーター6やイメージ検出部8などの働きを制御
する制御部、10はイメージ検出部8から送られてきた
干渉パターンの情報から干渉領域内各位置における初期
位相φの値を算出するための計算処理部で、干渉パター
ン観察用のモニターを備えているものとする。位相変移
干渉法による測定はつぎのようにして行われるものとす
る。
FIG. 3 shows the positional relationship of each part of the interferometer when the phase shift interferometry is applied to the Fizeau interferometer according to the principles of the first and second embodiments of the present invention. Is a beam expander for converting the light from the laser into a plane wave having a sufficient diameter, 3 is a beam splitter, 4 is a converging lens for converting the plane wave from the laser into a spherical wave, and 5 is the final surface of the converging lens 4 at the same time. A surface also serving as a reference spherical surface, 6 is an actuator formed of a piezoelectric element or the like for displacing the convergent lens 4 including the reference spherical surface 5 in the optical axis direction by a small amount, and 7 is arranged concentrically with the reference spherical surface 5. The measured spherical surface, 8 is an image detection unit that detects information on the interference pattern at each position in the interference region, 9 is a control unit that controls the functions of the actuator 6, the image detection unit 8, and the like. The calculation processing unit for calculating the value of the initial phase φ in the interference region in each position from the information of the interference pattern sent from the image detection unit 8, and shall have a monitor for interference patterns observed. The measurement by the phase shift interferometry shall be performed as follows.

【0043】まず、被測定球面7を所定の位置に設置し
た後、アクチュエーター6で参照球面5を含む収束レン
ズ4を光軸方向に変位させ、イメージ検出部8で検出さ
れる干渉パターンの強度Iが一周期分変化するのに必要
とする収束レンズの変位量δが干渉領域周縁部で光軸上
よりも増加する量Δδを測定して(7)により干渉領域
周縁部に対応する(NA)maxの値を決定する。また、
それと併行して光軸上のIの変化の一周期の区間を4等
分する境界に対応する収束レンズの変位量δを確認して
おく。つぎにアクチュエーター6により収束レンズを光
軸上の干渉パターン強度が一周期変化するだけ変位さ
せ、その間変位の区間を4等分した境界の4個所の時
点、すなわち図3の1〜4と印した時点でのIの値I1
〜I4、もしくは4
First, after the measured spherical surface 7 is installed at a predetermined position, the actuator 6 displaces the converging lens 4 including the reference spherical surface 5 in the optical axis direction, and the intensity I of the interference pattern detected by the image detecting section 8 is detected. The displacement amount δ of the converging lens required to change by one cycle is increased from the optical axis on the optical axis at the peripheral edge of the interference region, and measured (7) to correspond to the peripheral edge of the interference region (NA). Determine the value of max . Also,
In parallel with this, the displacement amount δ of the converging lens corresponding to the boundary that divides a period of one cycle of change of I on the optical axis into four equal parts is confirmed. Next, the converging lens is displaced by the actuator 6 by one cycle of the intensity of the interference pattern on the optical axis, and the interval of displacement is equally divided into four parts, that is, four points at the boundary, that is, marks 1 to 4 in FIG. Value of I at time I 1
~ I 4 or 4

【0044】[0044]

【外25】 面上)の各位置(x,y)について検出する。計算処理
部10では干渉領域内の各位置(x,y)について、す
でに求めた(NA)maxの値から(8)、(9)によっ
て(NA)の値を算出し、さらにそれを(6)に代入し
てεの値を求める。そして、イメージ検出部8でI1
4の値が検出されるようになっている場合には、各
(x,y)の位置でのそれらの値と今求めたεの値を
(10)に代入して初期位相φの値を算出する。また、
もし上記収束レンズの変位の区間を4等分した4区間内
でのIの積分値
[Outside 25] Detection is performed for each position (x, y) on the surface. The calculation processing unit 10 calculates the value of (NA) for each position (x, y) in the interference region from the value of (NA) max already obtained by (8) and (9), and further calculates it by (6 ) To obtain the value of ε. Then, in the image detection unit 8, I 1 ~
When the value of I 4 is to be detected, those values at each (x, y) position and the value of ε thus obtained are substituted into (10) to obtain the value of the initial phase φ. To calculate. Also,
If the displacement of the converging lens is divided into four equal parts, the integral value of I in four intervals

【0045】[0045]

【外26】 がイメージ検出部8で検出されるようになっている場合
には、各(x,y)の位置でのそれらの値とεの値を
(11a)〜(11c)の中の何れかに代入して初期位
相φの値を算出する。
[Outside 26] Is detected by the image detection unit 8, those values at each (x, y) position and the value of ε are substituted into any of (11a) to (11c). Then, the value of the initial phase φ is calculated.

【0046】最後に、干渉領域内の各位置(x,y)に
対応する被測定球面上の各点における参照球面と被測定
球面との間の光路長の光軸上でのそれに対する変化量Δ
(OPD)は、こうして求めた各位置(x,y)での初
期位相φの値の光軸上のそれに対するずれ量Δφから次
式により簡単に算出できる。
Finally, the amount of change in the optical path length between the reference spherical surface and the measured spherical surface at each point on the measured spherical surface corresponding to each position (x, y) in the interference region relative to that on the optical axis. Δ
(OPD) can be easily calculated by the following equation from the amount Δφ of deviation of the value of the initial phase φ at each position (x, y) thus obtained from that on the optical axis.

【0047】[0047]

【外27】 [Outside 27]

【0048】先の実施例では干渉領域の周縁部に対応す
る(NA)maxの値を、参照球面の光軸方向の変位によ
る干渉パターン強度変化の一周期が干渉領域の周縁部と
光軸上とでずれる量を測定し、そのずれ量から算出する
方法を採用しているが、これに代わるものとしてつぎの
ような方法が考えられる。すなわち参照球面を含む収束
レンズに写真レンズに用いられているような絞り、もし
くはそれと同等の働きをする機構を設け、それを操作
(絞りの大きさを設定、即ち(NA)maxを設定)する
ことによって干渉領域の周縁部がモニター上で確認でき
るようにし、その時の(NA)maxの値に関する情報が
制御部9を介して計算処理部に送られるようにする。
In the above embodiment, the value of (NA) max corresponding to the peripheral portion of the interference area is set so that one cycle of the change in the interference pattern intensity due to the displacement of the reference spherical surface in the optical axis direction is on the optical axis and the peripheral portion of the interference area. The method of measuring the amount of deviation and calculating from the amount of deviation is adopted, but the following method can be considered as an alternative method. That is, a converging lens including a reference spherical surface is provided with a diaphragm used in a photographic lens, or a mechanism having an equivalent function, and is operated (the size of the diaphragm is set, that is, (NA) max is set). As a result, the peripheral portion of the interference region can be confirmed on the monitor, and information regarding the value of (NA) max at that time is sent to the calculation processing unit via the control unit 9.

【0049】[0049]

【発明の効果】以上述べた様に、本願発明によって現在
考え得る限りの最も高精度、かつ信頼性の高い面形状誤
差検出が可能となり、ステッパー用レンズなど技術の最
先端に位置する光学系の性能の一層の向上に役立つ筈で
ある。
As described above, according to the present invention, it is possible to detect the surface shape error with the highest accuracy and reliability as far as currently conceivable, and it is possible to detect the optical system at the leading edge of the technology such as a lens for a stepper. It should help further improve performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1及び第2実施例の原理説明とし
て、フィゾー干渉計に位相変移干渉法を適用した場合の
参照球面の変位δと干渉パターン強度Iの関係を光軸上
(下)と光軸外(上)について示した図である。
FIG. 1 illustrates the relationship between the displacement δ of a reference spherical surface and the interference pattern intensity I on the optical axis when a phase shift interferometer is applied to a Fizeau interferometer as a principle explanation of the first and second embodiments of the present invention. ) And an off-axis (upper) axis.

【図2】本発明の第1及び第2実施例の原理説明とし
て、フィゾー干渉計に位相変移干渉法を適用した場合
の、干渉パターン強度変化の初期位相を検出するための
データ取り込みの関係を光軸上(下)と光軸外(上)に
ついて示す図である。
FIG. 2 illustrates a relationship of data acquisition for detecting an initial phase of an interference pattern intensity change when a phase shift interferometer is applied to a Fizeau interferometer as a principle explanation of the first and second embodiments of the present invention. It is a figure shown about an optical axis (bottom) and an optical axis off (up).

【図3】本発明の第1及び第2実施例にもとづく干渉計
の全体としての配置を示す図である。
FIG. 3 is a diagram showing the overall arrangement of an interferometer based on the first and second embodiments of the present invention.

【図4】位相変移干渉法を適用するトワイマン干渉計の
主要部を示す図である。
FIG. 4 is a diagram showing a main part of a Twyman interferometer to which the phase shift interferometry is applied.

【図5】位相変移干渉法を適用するフィゾー干渉計の主
要部を示す図である。
FIG. 5 is a diagram showing a main part of a Fizeau interferometer to which the phase shift interferometry is applied.

【図6】トワイマン干渉計に位相変移干渉法を適用した
場合の参照面の変位δと干渉パターン強度Iの関係を光
軸上(下)と光軸外(上)について示した図である。
FIG. 6 is a diagram showing the relationship between the displacement δ of the reference surface and the interference pattern intensity I when the phase shift interferometry is applied to the Twyman interferometer on the optical axis (bottom) and off the optical axis (top).

【図7】トワイマン干渉計に位相変移干渉法を適用して
干渉パターン強度変化の初期位相を検出するためのデー
タ取り込みの関係を示す図である。
FIG. 7 is a diagram showing a relationship of data acquisition for detecting an initial phase of an interference pattern intensity change by applying a phase shift interferometry to a Twyman interferometer.

【符号の説明】[Explanation of symbols]

1 レーザー 2 ビームエクスパンダー 3 ビームスプリッター 4,4′ 収束レンズ 5,5′ 参照面 6 圧電素子などから成るアクチュエーター 7 被測定球面 8 イメージ検出部もしくはイメージセンサー面 9 制御部 10 モニターを備えた計算処理部 1 laser 2 beam expander 3 beam splitter 4,4 'convergent lens 5,5 'reference plane Actuator composed of 6 piezoelectric elements 7 Measured sphere 8 Image detector or image sensor surface 9 control unit 10 Calculation unit with monitor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被検球面からの光束と参照球面からの光
束とを少なくとも一方の面を光軸方向に振動させた状態
で干渉させて干渉領域の干渉パターンの強度変化を測定
するフィゾー型の干渉測定方法において、 あらかじめ前記面振動をさせた際の前記干渉領域の非光
軸上各点における強度変化の光軸からの距離に起因する
位相ずれ情報を記憶する過程と、 前記各点における光軸上干渉パターン強度変化一周期間
内での干渉パターンの強度変化を検出する過程と、 該検出された強度変化を複数期間に分割した場合の各期
間の代表時点における強度または各期間内での強度の積
分値を検出する過程と、 該各期間毎の代表時点における強度または強度の積分値
と、前記記憶された位相ずれ情報とより、前記各点ごと
の干渉パターンの強度変化の初期位相の値を算出する過
程と、 を有することを特徴とするフィゾー干渉測定方法。
1. A Fizeau type for measuring a change in intensity of an interference pattern in an interference region by causing a light beam from a test spherical surface and a light beam from a reference spherical surface to interfere with each other while vibrating at least one surface in the optical axis direction. In the interference measurement method, a step of storing phase shift information due to the distance from the optical axis of the intensity change at each point on the non-optical axis of the interference region when the surface vibration is performed in advance, and the light at each point On-axis interference pattern intensity change The process of detecting the intensity change of the interference pattern within one cycle, and the intensity at the representative time point of each period or the intensity within each period when the detected intensity change is divided into multiple periods. Of the intensity change of the interference pattern at each point based on the process of detecting the integral value of the intensity, the intensity or the intensity integral value at the representative time point for each period, and the stored phase shift information. Fizeau interferometric measuring method characterized by comprising the step of calculating the value of the phase, the.
【請求項2】 前記検出された強度変化は4つの期間に
分割され、前記代表時点は前記各期間の境界時点であ
り、該各期間の境界時点での検出強度をそれぞれI1
2、I3、I4とし、被測定点における強度変化の光軸
からの距離に起因する前記各期間内での位相ずれをεと
すると、初期位相φを 【外1】 ただしA0=1+cos2ε B0=cosε+cos3ε α0=sin2ε β0=sinβ+sin3ε より求めることを特徴とする請求項1のフィゾー干渉測
定方法。
2. The detected intensity change is divided into four periods, the representative time point is a boundary time point of each period, and the detected strength at the boundary time point of each period is I 1 , respectively.
Let I 2 , I 3 , and I 4, and let ε be the phase shift within each period due to the distance from the optical axis of the intensity change at the measured point, then the initial phase φ is However, the Fizeau interference measuring method according to claim 1, wherein it is obtained from A 0 = 1 + cos 2 ε B 0 = cos ε + cos 3 ε α 0 = sin 2 ε β 0 = sin β + sin 3 ε.
【請求項3】 前記検出された強度変化は4つの期間に
分割され、該各期間の検出強度の積分値をそれぞれ 【外2】 とし、被測定点における強度変化の光軸からの距離に起
因する前記各期間内での位相ずれをεとすると、初期位
相φを 【外3】 ただしA1=2cosε−sin2ε B1=2cos2ε+sinε−sin3ε α1=−1+cos2ε+2sinε β1=2sin2ε+cos3ε−cosε または 【外4】 ただしA2=2cos3ε+sin2ε−sin4ε B2=1+cos4ε−sinε+sin3ε α2=2sin3ε+cos4ε−cos2ε β2=sin4ε+cosε−cos3ε または 【外5】 ただしA3=2cosε+2cos3ε−sin4ε B3=1+2cos2ε+cos4ε α3=−1+cos4ε+2sinε+2sin3ε β3=2sin2ε+sin4ε より求めることを特徴とする請求項1のフィゾー干渉測
定方法。
3. The detected change in intensity is divided into four periods, and the integrated value of the detected intensity in each period is calculated as And the phase shift within each period due to the distance from the optical axis of the intensity change at the measured point is ε, the initial phase φ is However, A 1 = 2 cos ε-sin 2 ε B 1 = 2 cos 2 ε + sin ε-sin 3 ε α 1 = −1 + cos 2 ε + 2 sin ε β 1 = 2 sin 2 ε + cos 3 ε-cos ε or [external 4] However, A 2 = 2cos3ε + sin2ε−sin4ε B 2 = 1 + cos4ε−sinε + sin3ε α 2 = 2sin3ε + cos4ε−cos2εβ 2 = sin4ε + cosε−cos3ε or [External 5] However, the Fizeau interference measurement method according to claim 1, wherein A 3 = 2 cos ε + 2 cos 3 ε-sin 4 ε B 3 = 1 + 2 cos 2 ε + cos 4 ε α 3 = −1 + cos 4 ε + 2 sin ε + 2 sin 3 ε β 3 = 2 sin 2 ε + sin 4 ε.
【請求項4】 参照面を光軸方向に微小量変位させるこ
とによって干渉領域全体の干渉パターンの強度を変化さ
せる形式の位相変移干渉法を適用したフィゾー干渉測定
装置において、干渉測定に先立って、参照面の光軸方向
の変位により光軸上の干渉パターンの強度が一周期変化
する間に干渉領域周縁部の干渉パターンの強度変化の位
相が系統的に遅れる量を、実際に測定するか、またはそ
れと同等の位相の遅れ量を干渉領域周縁部に対応する入
射光の開口数の値から計算により求めておき、干渉測定
の際には、参照面の光軸方向の変位に伴う光軸上の干渉
パターンの強度変化の一周期の区間を4等分し、その最
初の時点とそれに続く三つの分割時点における干渉パタ
ーンの強度、または4分割した各区間内での強度の積分
値を、干渉領域内の各部分についてイメージセンサーを
備えた干渉パターン検出部で同時に測定し、前記干渉領
域周縁部での干渉パターンの強度変化の系統的な遅れ量
と、干渉領域内の各部分について得られた前記各時点の
干渉パターンの強度または前記各区間の強度の積分値と
から、干渉領域各部分における干渉パターンの強度変化
の初期位相の値を算出する計算処理機構を有することを
特徴とするフィゾー干渉測定装置。
4. A Fizeau interferometer using a phase-shifting interferometer of the type in which the intensity of an interference pattern in the entire interference region is changed by displacing a reference surface by a small amount in the optical axis direction, prior to the interference measurement. The amount by which the phase of the intensity change of the interference pattern in the peripheral area of the interference region is systematically delayed while the intensity of the interference pattern on the optical axis changes for one cycle due to the displacement of the reference surface in the optical axis direction, or Or the equivalent phase delay is calculated from the numerical value of the numerical aperture of the incident light corresponding to the peripheral part of the interference region, and during the interference measurement, on the optical axis due to the displacement of the reference plane in the optical axis direction. The interval of one cycle of the intensity change of the interference pattern is divided into four equal parts, and the intensity of the interference pattern at the first time point and three subsequent time points, or the integrated value of the intensities in each of the four divided time intervals, Within the area Simultaneously measuring each part with an interference pattern detection part equipped with an image sensor, the systematic delay amount of the intensity change of the interference pattern at the peripheral part of the interference region, and the time points obtained for each part in the interference region. 2. The Fizeau interferometer according to claim 1, further comprising a calculation processing mechanism for calculating a value of an initial phase of the intensity change of the interference pattern in each part of the interference region from the intensity of the interference pattern or the integrated value of the intensity of each section.
JP3171287A 1991-07-11 1991-07-11 Fizeau interference measuring device applying phase deviation interference method Pending JPH0518857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3171287A JPH0518857A (en) 1991-07-11 1991-07-11 Fizeau interference measuring device applying phase deviation interference method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3171287A JPH0518857A (en) 1991-07-11 1991-07-11 Fizeau interference measuring device applying phase deviation interference method

Publications (1)

Publication Number Publication Date
JPH0518857A true JPH0518857A (en) 1993-01-26

Family

ID=15920520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3171287A Pending JPH0518857A (en) 1991-07-11 1991-07-11 Fizeau interference measuring device applying phase deviation interference method

Country Status (1)

Country Link
JP (1) JPH0518857A (en)

Similar Documents

Publication Publication Date Title
US6847458B2 (en) Method and apparatus for measuring the shape and thickness variation of polished opaque plates
JP4302512B2 (en) Interferometric scanning for aspheric surfaces and wavefronts
US6879402B2 (en) Scanning interferometer for aspheric surfaces and wavefronts
US7492469B2 (en) Interferometry systems and methods using spatial carrier fringes
EP1717546B1 (en) Interferometer and method of calibrating the interferometer
US5218424A (en) Flying height and topography measuring interferometer
JP2679221B2 (en) Interferometer
US20050179911A1 (en) Aspheric diffractive reference for interferometric lens metrology
JPH0996589A (en) Method and apparatus for measuring performance of lens
JP4799766B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
JPH0518857A (en) Fizeau interference measuring device applying phase deviation interference method
JP5208681B2 (en) Calibration method of measurement sensitivity in oblique incidence interferometer
JP2002214076A (en) Interference measuring system, method for measuring transmission wave front and projection lens
JP5894464B2 (en) Measuring device
JP3493329B2 (en) Planar shape measuring device, planar shape measuring method, and storage medium storing program for executing the method
JP2000275021A (en) Apparatus for measuring shape of face
JP2003065895A (en) Eccentricity measuring device and eccentricity measuring method
JPH03156305A (en) Aspherical-shape measuring apparatus
JPH05223540A (en) Measuring system of shape of toric surface
JP2000088547A (en) Shape measuring apparatus
JPH09329427A (en) Aspherical surface shape measuring method
JPH11325818A (en) Apparatus and method for absolute correction
JP2001021327A (en) Surface form measuring apparatus
JPH0562923B2 (en)
JP2002340539A (en) Shape measuring instrument