JPH0518845Y2 - - Google Patents

Info

Publication number
JPH0518845Y2
JPH0518845Y2 JP11797887U JP11797887U JPH0518845Y2 JP H0518845 Y2 JPH0518845 Y2 JP H0518845Y2 JP 11797887 U JP11797887 U JP 11797887U JP 11797887 U JP11797887 U JP 11797887U JP H0518845 Y2 JPH0518845 Y2 JP H0518845Y2
Authority
JP
Japan
Prior art keywords
inductively coupled
coupled plasma
mass spectrometer
frequency
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11797887U
Other languages
Japanese (ja)
Other versions
JPS6423868U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11797887U priority Critical patent/JPH0518845Y2/ja
Publication of JPS6423868U publication Critical patent/JPS6423868U/ja
Application granted granted Critical
Publication of JPH0518845Y2 publication Critical patent/JPH0518845Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)

Description

【考案の詳細な説明】 <産業上の利用分野> 本考案は、アルゴン関連分子イオンによるスペ
クトル干渉を減少させた高周波誘導結合プラズマ
質量分析計に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a high frequency inductively coupled plasma mass spectrometer that reduces spectral interference due to argon-related molecular ions.

<従来の技術> 高周波誘導結合プラズマ質量分析計は、高周波
誘導結合プラズマを用いて試料を励起させ、生じ
たイオンをノズルとスキマーからなるインターフ
エイスを介して質量分析計に導いて電気的に検出
し該イオン量を精密に測定することにより、試料
中の被測定元素を高精度に分析するように構成さ
れている。第2図は、このような高周波誘導結合
プラズマ質量分析計の従来例構成説明図である。
この図において、プラズマトーチ1の外室1bと
最外室1cにはガス調節器2を介してアルゴンガ
ス供給源3からアルゴンガスが供給され、内室1
aには試料槽4内の試料がネブライザ5で霧化さ
れてのちアルゴンガスによつて搬入されるように
なつている。また、プラズマトーチ1に巻回され
た高周波誘導コイル6には高周波電源10によつ
て高周波電流が流され、該コイル6の周囲に高周
波磁界(図示せず)が形成されている。一方、ノ
ズル8とスキマー9に挟まれたフオアチヤンバー
11内は、真空ポンプ12によつて例えば
1Torr.に吸引されている。また、センターチヤ
ンバー13内には中心軸上に光の進入を阻止する
小円板14aと該小円板と一定距離を保つように
配置されたイオンレンズ14b,14cが設けら
れると共に、該センターチヤンバー13の内部は
第1油拡散ポンプ15によつて例えば10-4Torr.
に吸引され、マスフイルタ(例えば四重極マスフ
イルタ)16を収容しているリアチヤンバー17
内は第2油拡散ポンプ18によつて例えば10-5
Torr.に吸引されている。この状態で上記高周波
磁界の近傍でアルゴンガス中に電子かイオンが植
え付けられると、該高周波磁界の作用によつて瞬
時に高周波誘導プラズマ7が生じる。該プラズマ
7内のイオンは、ノズル8やスキマー9を経由し
てのち小円板14aとイオンレンズ14b,14
cの間を通つて収束されてのちマスフイルタ16
を通り二次電子増倍管19に導かれて検出され、
該検出信号が信号処理部20に送出されて演算・
処理されることによつて前記試料中の被測定元素
分析値が求められる。
<Conventional technology> A high-frequency inductively coupled plasma mass spectrometer uses high-frequency inductively coupled plasma to excite a sample, and the generated ions are guided to a mass spectrometer through an interface consisting of a nozzle and a skimmer, where they are electrically detected. By precisely measuring the amount of ions, the element to be measured in the sample is analyzed with high precision. FIG. 2 is an explanatory diagram of the configuration of a conventional example of such a high frequency inductively coupled plasma mass spectrometer.
In this figure, argon gas is supplied from an argon gas supply source 3 to an outer chamber 1b and an outermost chamber 1c of a plasma torch 1 via a gas regulator 2, and an inner chamber 1
A sample in a sample tank 4 is atomized by a nebulizer 5, and then introduced by argon gas. Further, a high frequency current is passed through a high frequency induction coil 6 wound around the plasma torch 1 by a high frequency power source 10, and a high frequency magnetic field (not shown) is formed around the coil 6. On the other hand, the inside of the fore chamber 11 sandwiched between the nozzle 8 and the skimmer 9 is operated by a vacuum pump 12, for example.
It is attracted to 1Torr. Further, inside the center chamber 13, there is provided a small disk 14a for blocking light from entering on the center axis, and ion lenses 14b and 14c arranged at a constant distance from the small disk. The inside of the chamber 13 is heated to, for example, 10 -4 Torr by the first oil diffusion pump 15.
a rear chamber 17 containing a mass filter (e.g. quadrupole mass filter) 16;
For example, the inside is 10 -5 by the second oil diffusion pump 18.
Being attracted to Torr. In this state, when electrons or ions are planted in the argon gas near the high frequency magnetic field, high frequency induced plasma 7 is instantaneously generated by the action of the high frequency magnetic field. The ions in the plasma 7 pass through the nozzle 8 and the skimmer 9, and then enter the small disk 14a and the ion lenses 14b, 14.
After converging through the mass filter 16
is guided to the secondary electron multiplier 19 and detected,
The detection signal is sent to the signal processing section 20 for calculation and processing.
Through the processing, the analysis value of the element to be measured in the sample is obtained.

<考案が解決しようとする問題点> 然しながら、上記従来例においては、高周波誘
導結合プラズマとしてアルゴンプラズマが用いら
れており、上記質量分析計検出部の出力に従つて
記録計等に描かれるマススペクトルにはArO+
オンやAr2 +イオン等のアルゴン関連分子のイオ
ンが現れるようになつていた。また、ArO+イオ
ン及びAr2 +イオンの質量数は夫々80及び56であ
るため、ArO+イオンのピークは質量数が夫々80
及び56であるSe+イオン及びFe+イオンのピーク
と夫々重なる等してスペクトル干渉が生じるよう
になつていた。このため、SeやFe(若しくは直接
Ar+イオンやArH+イオンと重なるCaやK+)等を
被測定元素とする分析が困難になつたり、全く不
可能になつたりしていた。
<Problems to be solved by the invention> However, in the above conventional example, argon plasma is used as the high frequency inductively coupled plasma, and the mass spectrum drawn on a recorder etc. according to the output of the mass spectrometer detection section is Ions of argon-related molecules such as ArO + ions and Ar 2 + ions began to appear. Also, since the mass numbers of ArO + ions and Ar 2 + ions are 80 and 56, respectively, the peak of ArO + ions has a mass number of 80 and 56, respectively.
and 56, which overlapped with the peaks of Se + ions and Fe + ions, respectively, causing spectral interference. Therefore, Se and Fe (or direct
Analyzes using elements to be measured such as Ca and K + which overlap with Ar + ions and ArH + ions have become difficult or even impossible.

本考案は、かかる従来例の欠点に鑑みてなされ
たものであり、その目的は、アルゴン関連分子イ
オンの影響を減少若しくは除去して被測定元素を
容易かつ正確に測定できるようにした高周波誘導
結合プラズマ質量分析計を提供することにある。
The present invention was devised in view of the shortcomings of the conventional examples, and its purpose is to reduce or eliminate the influence of argon-related molecular ions and to provide high-frequency inductive coupling that makes it possible to easily and accurately measure the elements to be measured. The purpose of the present invention is to provide a plasma mass spectrometer.

<問題点を解決するための手段> 上述のような問題点を解決する本考案の特徴
は、高周波誘導結合プラズマ質量分析計におい
て、高周波誘導結合プラズマを生じさせる三重管
構造のプラズマトーチへ、アルゴンガス供給源か
ら第1減圧弁、第1流量計、第1流量調節弁、及
び流体混合部を通つて供給されるアルゴンガス
が、窒素ガス供給源から第2減圧弁、第2流量
計、第2流量調節弁、及び流体混合部を通つて供
給される窒素ガスに徐々におきかえられるように
構成すると共に、前記プラズマトーチに巻回され
た高周波誘導コイルに高周波電流を供給する高周
波電源内で前記おきかえに対応させてインピーダ
ンスの整合が行われるように構成したことにあ
る。
<Means for Solving the Problems> The feature of the present invention that solves the above-mentioned problems is that, in a high frequency inductively coupled plasma mass spectrometer, argon is injected into a triple tube structure plasma torch that generates high frequency inductively coupled plasma. Argon gas is supplied from a gas supply source through a first pressure reducing valve, a first flow meter, a first flow control valve, and a fluid mixing section; The nitrogen gas is gradually replaced by nitrogen gas supplied through two flow rate control valves and a fluid mixing section, and the nitrogen gas is supplied within a high frequency power source that supplies a high frequency current to a high frequency induction coil wound around the plasma torch. The reason is that it is configured so that impedance matching is performed in response to replacement.

<実施例> 以下、本考案について図を用いて詳細に説明す
る。第1図は本考案実施例の要部構成説明図であ
り、図中、第2図と同一記号は同一意味をもたせ
て使用しここでの重複説明は省略する。また、2
1は窒素ガス供給源、22a,22bは第1、第
2の減圧弁、23a,23cは第1、第2の流量
計、24a,24bは第1、第2の流量調節弁、
25は流体混合部である。
<Example> Hereinafter, the present invention will be described in detail using figures. FIG. 1 is an explanatory diagram of the main structure of an embodiment of the present invention. In the figure, the same symbols as in FIG. 2 are used with the same meanings, and redundant explanation will be omitted here. Also, 2
1 is a nitrogen gas supply source, 22a and 22b are first and second pressure reducing valves, 23a and 23c are first and second flowmeters, 24a and 24b are first and second flow rate regulating valves,
25 is a fluid mixing section.

このような構成からなる本考案の実施例におい
て、最初、第1減圧弁22aが開(即ち、吐出圧
力が一定の設定圧力となる)で第2減圧弁22b
が閉(即ち、吐出圧力が零となる)とされる。ま
た、第1、第2の流量計23a,23bは夫々一
定流量に設定される。この状態で、プラズマトー
チ1の内室1aには、アルゴンガス供給源3から
アルゴンガスが、第1減圧弁22a→第1流量計
23a→第1流量調節弁24a→流体混合部25
→ネブライザ5を通り霧化した試料と共に供給さ
れている。また、外室1b及び最外室1cには、
アルゴンガス供給源3からアルゴンガスが、第1
減圧弁22a→第1流量計23a→第1流量調節
弁24a→流体混合部25を通つて供給されてい
る。このような状態で高周波電源10から高周波
誘導コイル6に高周波エネルギーが供給され、該
コイル6の周囲に高周波磁界(図示せず)が形成
され、該磁界の作用でプラズマ7が生じる。この
プラズマ7内のイオンは、ノズル11及びスキマ
ー12を通つてセンターチヤンバー15内に引き
出され、その後、極子17で検出される。該検出
信号は二次電子増倍管20で増幅されてのち信号
処理部21に送出され、所定の信号処理が施こさ
れてのち図示しない記録計等にマススペクトルを
描いて試料の分析値を与えるようになる。
In the embodiment of the present invention having such a configuration, first, the first pressure reducing valve 22a is opened (that is, the discharge pressure becomes a constant set pressure) and the second pressure reducing valve 22b is opened.
is closed (that is, the discharge pressure becomes zero). Further, the first and second flowmeters 23a and 23b are each set to a constant flow rate. In this state, argon gas is supplied to the inner chamber 1a of the plasma torch 1 from the argon gas supply source 3.
→It is supplied together with the atomized sample through the nebulizer 5. In addition, in the outer chamber 1b and the outermost chamber 1c,
Argon gas is supplied from the argon gas supply source 3 to the first
The fluid is supplied through the pressure reducing valve 22a, the first flow meter 23a, the first flow control valve 24a, and the fluid mixing section 25. In this state, high frequency energy is supplied from the high frequency power supply 10 to the high frequency induction coil 6, a high frequency magnetic field (not shown) is formed around the coil 6, and plasma 7 is generated by the action of the magnetic field. The ions in the plasma 7 are extracted into the center chamber 15 through the nozzle 11 and the skimmer 12, and then detected by the pole element 17. The detection signal is amplified by the secondary electron multiplier tube 20 and then sent to the signal processing section 21, where it is subjected to predetermined signal processing, and then a mass spectrum is drawn on a recorder (not shown) to record the analysis value of the sample. Start giving.

ところで、上述のようなアルゴンを用いたプラ
ズマが生じたのち、第2減圧弁22bを徐々に開
く(即ち、吐出圧力が一定の設定圧力に徐々に達
するようにする)と共に第1減圧弁22aを徐々
に閉じてゆく(即ち、吐出圧力が徐々に零になる
ようにする)。プラズマトーチ1の最外室1c、
外室1b、及び内室1aへは、アルゴンガス供給
源3から第1減圧弁22a→第1流量計23a→
第1流量調節弁24a→流体混合部25を通つて
供給されるアルゴンガスの量が徐々に減少し、窒
素ガス供給源21から第2減圧弁22b→第2流
量計23b→第2流量調節弁24bを通つて供給
される窒素ガスの量が徐々に増加するようにな
る。この間、高周波電源10内の整合回路(図示
せず)が調節されインピーダンスの整合がとられ
る。このようにして、最終的に、プラズマトーチ
1の最外室1c、外室1b、及び内室1aには、
アルゴンガス供給源3から第1減圧弁22a→第
1流量計23a→第1流量調節弁24a→流体混
合部25を通つて供給されるアルゴンガスの量が
零となり、窒素ガス供給源21から第2減圧弁2
2b→第2流量計23b→第2流量調節弁24b
を通つて窒素ガスだけが供給されるようになる。
第4図はこのような状態で信号処理部21の出力
信号を図示しない記録計等に導いて描かせたスペ
クトル図である。また、第3図は第2図を用いて
詳述した前記従来例の状態で信号処理部21の出
力信号を図示しない記録計等に導いて描かせたス
ペクトル図である。第3図と第4図を比較すれば
明らかなように、第4図では、ArO+イオンや
Ar2 +イオン等のアルゴン関連分子のイオンが消
失し質量数28(即ち、N2)以上の原子を測定
するのに良好なバツクグランド状態となつてい
る。従つて、ArO+イオン及びAr2 +イオンと質量
数が夫々等しいSe+イオン及びFe+イオンについ
てもスペクトル干渉が生ぜず、SeやFe(若しくは
CaやK)等を被測定元素とする分析も正確に行
えるようになる。尚、本考案は上述の実施例に限
定されることなく種々の変形が可能であり、例え
ば第1図のプラズマトーチ1の最外室1c、外室
1b、及び内室1cへ徐々に空気を供給するよう
にしても良いものとする。
By the way, after the plasma using argon as described above is generated, the second pressure reducing valve 22b is gradually opened (that is, the discharge pressure gradually reaches a certain set pressure), and the first pressure reducing valve 22a is opened. It closes gradually (that is, the discharge pressure gradually decreases to zero). outermost chamber 1c of plasma torch 1,
To the outer chamber 1b and the inner chamber 1a, from the argon gas supply source 3, the first pressure reducing valve 22a → the first flow meter 23a →
The amount of argon gas supplied through the first flow rate control valve 24a → fluid mixing part 25 gradually decreases, and the amount of argon gas supplied from the nitrogen gas supply source 21 → second pressure reducing valve 22b → second flow meter 23b → second flow rate control valve The amount of nitrogen gas supplied through 24b will gradually increase. During this time, a matching circuit (not shown) in the high frequency power supply 10 is adjusted to match the impedance. In this way, finally, the outermost chamber 1c, the outer chamber 1b, and the inner chamber 1a of the plasma torch 1 have the following:
The amount of argon gas supplied from the argon gas supply source 3 through the first pressure reducing valve 22a → first flowmeter 23a → first flow rate regulating valve 24a → fluid mixing section 25 becomes zero, and the amount of argon gas supplied from the nitrogen gas supply source 21 through 2 pressure reducing valve 2
2b → second flow meter 23b → second flow control valve 24b
Only nitrogen gas is supplied through the
FIG. 4 is a spectrum diagram drawn by guiding the output signal of the signal processing section 21 to a recorder or the like (not shown) in such a state. Further, FIG. 3 is a spectral diagram drawn by guiding the output signal of the signal processing section 21 to a recorder or the like (not shown) in the state of the conventional example described in detail using FIG. 2. As is clear from comparing Figures 3 and 4, in Figure 4 ArO + ions and
Ions of argon-related molecules such as Ar 2 + ions have disappeared, creating a good background condition for measuring atoms with a mass number of 28 (ie, N 2 ) or more. Therefore, spectral interference does not occur even for Se + ions and Fe + ions, which have the same mass numbers as ArO + ions and Ar 2 + ions, respectively, and Se and Fe (or
Analyzes using elements to be measured such as Ca and K) can also be performed accurately. Note that the present invention is not limited to the above-mentioned embodiments, and can be modified in various ways. For example, air may be gradually introduced into the outermost chamber 1c, outer chamber 1b, and inner chamber 1c of the plasma torch 1 shown in FIG. It is permitted to supply the same.

<考案の効果> 以上詳しく説明したような本考案の実施例によ
れば、プラズマトーチ1の最外室1c、外室1
b、及び内室1aに供給されるアルゴンガスに変
えて徐々に窒素ガスを供給するような構成である
ため、アルゴン関連分子イオンの影響を減少若し
くは除去して被測定元素を容易かつ正確に測定で
きるようにした高周波誘導結合プラズマ質量分析
計が実現する。
<Effects of the invention> According to the embodiment of the invention as described in detail above, the outermost chamber 1c and the outer chamber 1 of the plasma torch 1
Since the structure is such that nitrogen gas is gradually supplied in place of the argon gas supplied to the inner chamber 1a, the influence of argon-related molecular ions is reduced or eliminated, and the element to be measured can be easily and accurately measured. A high-frequency inductively coupled plasma mass spectrometer has been realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案実施例の構成説明図、第2図は
従来例の構成説明図、第3図及び第4図はスペク
トル図である。 1……プラズマトーチ、3……アルゴンガス供
給源、7……高周波誘導結合プラズマ、8……ノ
ズル、9……スキマー、11……フオアチヤンバ
ー、13……センターチヤンバー、16……マス
フイルタ、17……リアチヤンバー、20……信
号処理部、21……窒素ガス供給源、22a,2
2b……減圧弁、23a,23b……流量計、2
4a,24b……流量調節弁、25……流体混合
部。
FIG. 1 is an explanatory diagram of the configuration of an embodiment of the present invention, FIG. 2 is an explanatory diagram of the configuration of a conventional example, and FIGS. 3 and 4 are spectrum diagrams. DESCRIPTION OF SYMBOLS 1... Plasma torch, 3... Argon gas supply source, 7... High frequency inductively coupled plasma, 8... Nozzle, 9... Skimmer, 11... Foa chamber, 13... Center chamber, 16... Mass filter, 17 ... Rear chamber, 20 ... Signal processing section, 21 ... Nitrogen gas supply source, 22a, 2
2b...Pressure reducing valve, 23a, 23b...Flow meter, 2
4a, 24b...flow control valve, 25...fluid mixing section.

Claims (1)

【実用新案登録請求の範囲】 (1) 高周波誘導結合プラズマを用いて試料を励起
し生じたイオンを真空中に導入しイオン光学系
を通して質量分析計検出器に導いて検出するこ
とにより前記試料中の被測定元素を分析する分
析計において、前記高周波誘導結合プラズマを
生じさせる三重管構造のプラズマトーチへ、ア
ルゴンガス供給源から第1減圧弁、第1流量
計、第1流量調節弁、及び流体混合部を通つて
供給されるアルゴンガスが、窒素ガス供給源か
ら第2減圧弁、第2流量計、第2流量調節弁、
及び流体混合部を通つて供給される窒素ガスに
徐々におきかえられるように構成すると共に、
前記プラズマトーチに巻回された高周波誘導コ
イルに高周波電流を供給する高周波電源内で前
記おきかえに対応させてインピーダンスの整合
が行われるように構成したことを特徴とする高
周波誘導結合プラズマ質量分析計。 (2) 前記プラズマトーチは、流量調節された第1
〜第3の圧縮ガスが夫々導かれる最外室、外
室、及び内室を有する三重管構造のプラズマト
ーチでなる実用新案登録請求範囲第(1)項記載の
高周波誘導結合プラズマ質量分析計。
[Claims for Utility Model Registration] (1) Ions produced by exciting a sample using high-frequency inductively coupled plasma are introduced into a vacuum, guided to a mass spectrometer detector through an ion optical system, and detected. In the analyzer for analyzing elements to be measured, a plasma torch having a triple tube structure that generates the high-frequency inductively coupled plasma is connected from an argon gas supply source to a first pressure reducing valve, a first flow meter, a first flow rate regulating valve, and a fluid. Argon gas supplied through the mixing section is supplied from a nitrogen gas supply source to a second pressure reducing valve, a second flow meter, a second flow control valve,
and is configured to be gradually replaced by nitrogen gas supplied through the fluid mixing section, and
A high-frequency inductively coupled plasma mass spectrometer, characterized in that the high-frequency inductively coupled plasma mass spectrometer is configured such that impedance matching is performed in correspondence with the replacement within a high-frequency power source that supplies high-frequency current to a high-frequency induction coil wound around the plasma torch. (2) The plasma torch has a first
- A high-frequency inductively coupled plasma mass spectrometer according to claim 1, which is a plasma torch having a triple tube structure having an outermost chamber, an outer chamber, and an inner chamber through which a third compressed gas is introduced.
JP11797887U 1987-07-31 1987-07-31 Expired - Lifetime JPH0518845Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11797887U JPH0518845Y2 (en) 1987-07-31 1987-07-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11797887U JPH0518845Y2 (en) 1987-07-31 1987-07-31

Publications (2)

Publication Number Publication Date
JPS6423868U JPS6423868U (en) 1989-02-08
JPH0518845Y2 true JPH0518845Y2 (en) 1993-05-19

Family

ID=31361924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11797887U Expired - Lifetime JPH0518845Y2 (en) 1987-07-31 1987-07-31

Country Status (1)

Country Link
JP (1) JPH0518845Y2 (en)

Also Published As

Publication number Publication date
JPS6423868U (en) 1989-02-08

Similar Documents

Publication Publication Date Title
JPH0518845Y2 (en)
JPH0518844Y2 (en)
JPH0615392Y2 (en) High frequency inductively coupled plasma mass spectrometer
JP2000164169A (en) Mass spectrometer
JPH0736324B2 (en) High frequency inductively coupled plasma / mass spectrometer
JP2836190B2 (en) High frequency inductively coupled plasma analyzer
JPH07123035B2 (en) High frequency inductively coupled plasma / mass spectrometer
JPH0541496Y2 (en)
JPS62208535A (en) High-frequency inductive coupling plasma/mass analyzer
JPS62184755A (en) High frequency induction-coupled plasma mass spectrometer
JPS63308857A (en) Inductive coupling plasma mass spectrograph
JPS62213056A (en) Analyzer using high frequency inductive coupling plasma
JPH0638372Y2 (en) High frequency inductively coupled plasma mass spectrometer
JPH0518842Y2 (en)
JPH04104449A (en) High-frequency induction plasma mass spectrograph
JPS6398948A (en) High frequency inductive coupling plasma/mass spectrometer
JP3038839B2 (en) High frequency inductively coupled plasma mass spectrometer
JPH03145051A (en) High frequency inductive coupling plasma mass analyzing meter
JPH02227653A (en) Inductively coupled plasma mass spectrometer
JPH01117262A (en) Analyzer of high frequency induction coupled plasma
JPH05121041A (en) High frequency induction coupling plasma mass spectrometer
JPH06102249A (en) High frequency induction coupling plasma mass spectroscope
JPH0412448A (en) High-frequency induction-coupled plasma mass spectrometer
JPH0264449A (en) High frequency inductive coupling plasma mass analyzer
JP3118004B2 (en) High frequency inductively coupled plasma mass spectrometer