JPH0518844Y2 - - Google Patents

Info

Publication number
JPH0518844Y2
JPH0518844Y2 JP11797687U JP11797687U JPH0518844Y2 JP H0518844 Y2 JPH0518844 Y2 JP H0518844Y2 JP 11797687 U JP11797687 U JP 11797687U JP 11797687 U JP11797687 U JP 11797687U JP H0518844 Y2 JPH0518844 Y2 JP H0518844Y2
Authority
JP
Japan
Prior art keywords
inductively coupled
coupled plasma
frequency inductively
mass spectrometer
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11797687U
Other languages
Japanese (ja)
Other versions
JPS6423866U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11797687U priority Critical patent/JPH0518844Y2/ja
Publication of JPS6423866U publication Critical patent/JPS6423866U/ja
Application granted granted Critical
Publication of JPH0518844Y2 publication Critical patent/JPH0518844Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)

Description

【考案の詳細な説明】 <産業上の利用分野> 本考案は、アルゴン関連分子イオンによるスペ
クトル干渉を減少させた高周波誘導結合プラズマ
質量分析計に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a high frequency inductively coupled plasma mass spectrometer that reduces spectral interference due to argon-related molecular ions.

<従来の技術> 高周波誘導結合プラズマ質量分析計は、高周波
誘導結合プラズマを用いて試料を励起させ、生じ
たイオンをノズルとスキマーからなるインターフ
エイスを介して質量分析計に導いて電気的に検出
し該イオン量を精密に測定することにより、試料
中の被測定元素を高精度に分析するように構成さ
れている。第2図は、このような高周波誘導結合
プラズマ質量分析計の従来例構成説明図である。
この図において、プラズマトーチ1の外室1bと
最外室1cにはガス調整器2を介してアルゴンガ
ス供給源3からアルゴンガスが供給され、内室1
aには試料槽4内の試料がネブライザ5で霧化さ
れてのちアルゴンガスによつて搬入されるように
なつている。また、プラズマトーチ1に巻回され
た高周波誘導コイル6には高周波電源10によつ
て高周波電流が流され、該コイル6の周囲に高周
波磁界(図示せず)が形成されている。一方、ノ
ズル8とスキマー9に挟まれたフオアチヤンバー
11内は、真空ポンプ12によつて例えば
1Torr.に吸引されている。また、センターチヤ
ンバー13内には中心軸上に光の進入を阻止する
小円板14aと該小円板と一定距離を保つように
配置されたイオンレンズ14b,14cが設けら
れると共に、該センターチヤンバー13の内部は
第1油拡散ポンプ15によつて例えば10-4torr.に
吸引され、マスフイルタ(例えば四重極マスフイ
ルタ)16を収容しているリアチヤンバー17内
は第2油拡散ポンプ18によつて例えば10-5torr.
に吸引されている。この状態で上記高周波磁界の
近傍でアルゴンガス中に電子かイオンが植え付け
られると、該高周波磁界の作用によつて瞬時に高
周波誘導フラズマ7が生ずる。該プラズマ7内の
イオンは、ノズル8やスキマー9を経由してのち
例えば小円板14aとイオンレンズ14b,14
c(若しくはダブレツト四重極レンズ)の間を通
つて収束されてのちマスフイルタ16を通り二次
電子増倍管19に導かれて検出され、該検出信号
が信号処理部20に送出されて演算・処理される
ことによつて前記試料中の被測定元素分析値が求
められるようになつている。
<Conventional technology> A high-frequency inductively coupled plasma mass spectrometer uses high-frequency inductively coupled plasma to excite a sample, and the generated ions are guided to a mass spectrometer through an interface consisting of a nozzle and a skimmer, where they are electrically detected. By precisely measuring the amount of ions, the element to be measured in the sample is analyzed with high precision. FIG. 2 is an explanatory diagram of the configuration of a conventional example of such a high frequency inductively coupled plasma mass spectrometer.
In this figure, argon gas is supplied from an argon gas supply source 3 to an outer chamber 1b and an outermost chamber 1c of a plasma torch 1 via a gas regulator 2, and an inner chamber 1
A sample in a sample tank 4 is atomized by a nebulizer 5, and then introduced by argon gas. Further, a high frequency current is passed through a high frequency induction coil 6 wound around the plasma torch 1 by a high frequency power source 10, and a high frequency magnetic field (not shown) is formed around the coil 6. On the other hand, the inside of the fore chamber 11 sandwiched between the nozzle 8 and the skimmer 9 is operated by a vacuum pump 12, for example.
It is attracted to 1Torr. Further, inside the center chamber 13, there is provided a small disk 14a for blocking light from entering on the center axis, and ion lenses 14b and 14c arranged at a constant distance from the small disk. The inside of the chamber 13 is suctioned to, for example, 10 −4 torr. by the first oil diffusion pump 15 , and the inside of the rear chamber 17 accommodating a mass filter (for example, a quadrupole mass filter) 16 is sucked to a second oil diffusion pump 18 . For example, 10 -5 torr.
is attracted to. In this state, when electrons or ions are implanted in the argon gas near the high frequency magnetic field, a high frequency induced plasma 7 is instantaneously generated by the action of the high frequency magnetic field. The ions in the plasma 7 pass through a nozzle 8 and a skimmer 9, and then enter, for example, a small disk 14a and ion lenses 14b, 14.
c (or a double quadrupole lens), the electrons are converged, passed through a mass filter 16, and guided to a secondary electron multiplier tube 19 for detection, and the detection signal is sent to a signal processing section 20 for calculation and processing. By processing the sample, the analysis value of the element to be measured in the sample can be determined.

<考案が解決しようとする問題点> 然しながら、上記実施例においては、高周波誘
導結合プラズマとしてアルゴンプラズマが用いら
れており、上記質量分析計検出部の出力に従がつ
て記録計等に描かれるマススペクトルにはArO+
イオンやAr2 +イオン等のアルゴン関連分子のイ
オンが現れるようになつていた。また、ArO+
オン及びAr2 +イオンの質量数は夫々80及び56で
あるため、ArO+イオンのピークは質量数が夫々
80及び56であるSe+イオン及びFe+イオンのピー
クと夫々重なる等してスペクトル干渉が生じるよ
うになつていた。このため、Se+等を被測定元素
とする分析が困難になつたり、全く不可能になつ
たりしていた。一方、上記アルゴンガスを窒素ガ
スに代えて所謂N2プラズマとするだけでは、プ
ラズマトーチに巻回された高周波誘導コイルに高
周波電流を供給する高周波電源内におけるインピ
ーダンス整合の範囲を大きくとつたり供給電流
(若しくは供給パワー)を大きくしたりしなけれ
ばならず結果的に高周波誘導結合プラズマ質量分
析計の製作コストが高くなるという欠点もあつ
た。
<Problems to be solved by the invention> However, in the above embodiment, argon plasma is used as the high frequency inductively coupled plasma, and the mass drawn on the recorder etc. according to the output of the mass spectrometer detection section is ArO + in the spectrum
ions and ions of argon-related molecules such as Ar 2 + ions began to appear. Also, since the mass numbers of ArO + ion and Ar 2 + ion are 80 and 56, respectively, the peak of ArO + ion has a mass number of 80 and 56, respectively.
Spectral interference began to occur, such as overlapping with the peaks of Se + ions and Fe + ions at 80 and 56, respectively. For this reason, analysis using Se + and the like as an element to be measured has become difficult or completely impossible. On the other hand, simply replacing the argon gas with nitrogen gas and creating a so-called N2 plasma will widen the range of impedance matching within the high-frequency power source that supplies high-frequency current to the high-frequency induction coil wound around the plasma torch. Another drawback is that the current (or supplied power) must be increased, resulting in an increase in the manufacturing cost of the high-frequency inductively coupled plasma mass spectrometer.

本考案は、かかる従来例の欠点に鑑みてなされ
たものであり、その目的は、アルゴン関連分子イ
オンの影響を減少させて被測定元素を容易かつ正
確に測定できるようにした高周波誘導結合プラズ
マ質量分析計を提供することにある。
The present invention was devised in view of the shortcomings of the conventional examples, and its purpose is to reduce the influence of argon-related molecular ions and to easily and accurately measure the elements to be measured using high-frequency inductively coupled plasma mass. Our goal is to provide analyzers.

<問題点を解決するための手段> 上述のような問題点を解決する本考案の特徴
は、高周波誘導結合プラズマ質量分析計におい
て、高周波誘導結合プラズマを生じさせる三重管
構造のプラズマトーチへ、アルゴンガス供給源か
ら第1減圧弁、第1流量計、第1流量調節弁、及
び流体混合部を通つて供給されるアルゴンガス
と、窒素ガス供給源から第2減圧弁、第2流量
計、第2流量調節弁、及び流体混合部を通つて供
給される窒素ガスとが一定の混合比で混合されて
供給されるように構成したことにある。
<Means for Solving the Problems> The feature of the present invention that solves the above-mentioned problems is that, in a high frequency inductively coupled plasma mass spectrometer, argon is injected into a triple tube structure plasma torch that generates high frequency inductively coupled plasma. Argon gas is supplied from a gas supply source through a first pressure reducing valve, a first flow meter, a first flow control valve, and a fluid mixing section, and a nitrogen gas supply is supplied from a nitrogen gas source through a first pressure reducing valve, a first flow meter, a first flow rate regulating valve, and a second flow meter. The nitrogen gas supplied through the two flow control valves and the fluid mixing section is configured to be mixed at a constant mixing ratio and supplied.

<実施例> 以下、本考案について図を用いて詳細に説明す
る。第1図は本考案実施例の要部構成説明図であ
り、図中、第2図と同一記号は同一意味をもたせ
て使用しここでの重複説明は省略する。また、2
1は窒素ガス供給源、22a,22bは第1、第
2の減圧弁、23a,23bは第1、第2の流量
計、24a,24bは第1、第2の流量調節弁、
25は流体混合部である。
<Example> Hereinafter, the present invention will be described in detail using figures. FIG. 1 is an explanatory diagram of the main structure of an embodiment of the present invention. In the figure, the same symbols as in FIG. 2 are used with the same meanings, and redundant explanation will be omitted here. Also, 2
1 is a nitrogen gas supply source, 22a and 22b are first and second pressure reducing valves, 23a and 23b are first and second flow meters, 24a and 24b are first and second flow rate regulating valves,
25 is a fluid mixing section.

このような構成からなる本考案の実施例におい
て、最初、第1減圧弁22aが開(即ち、吐出圧
力が一定の設定圧力となる)で第2減圧弁22b
が閉(即ち、吐出圧力が零となる)とされる。ま
た、第1、第2の流量計23a,23bは夫々一
定流量に設定される。この状態で、プラズマトー
チ1の内室1aには、アルゴンガス供給源3から
アルゴンガスが、第1減圧弁22a→第1流量計
23a→第1流量調節弁24a→流体混合部25
→ネブライザ5を通り霧化した試料と共に供給さ
れている。また、外室1b及び最外室1cには、
アルゴンガス供給源3からアルゴンガスが、第1
減圧弁22a→第1流量計23a→第1流量調節
弁24a→流体混合部25を通つて供給されてい
る。このような状態で高周波電源10から高周波
誘導コイル6に高周波エネルギーが供給され、該
コイル6の周囲に高周波磁界(図示せず)が形成
され、該磁界の作用でプラズマ7が生じる。この
プラズマ7内のイオンは、ノズル11及びスキマ
ー12を通つてセンターチヤンバー15内に引き
出され、その後、極子17で検出される。該検出
信号は二次電子増倍管20で増幅されてのち信号
処理部21に送出され、所定の信号処理が施こさ
れてのち図示しない記録計等にマススペクトルを
描いて試料の分析値を与えるようになる。
In the embodiment of the present invention having such a configuration, first, the first pressure reducing valve 22a is opened (that is, the discharge pressure becomes a constant set pressure) and the second pressure reducing valve 22b is opened.
is closed (that is, the discharge pressure becomes zero). Further, the first and second flowmeters 23a and 23b are each set to a constant flow rate. In this state, argon gas is supplied to the inner chamber 1a of the plasma torch 1 from the argon gas supply source 3.
→It is supplied together with the atomized sample through the nebulizer 5. In addition, in the outer chamber 1b and the outermost chamber 1c,
Argon gas is supplied from the argon gas supply source 3 to the first
The fluid is supplied through the pressure reducing valve 22a, the first flow meter 23a, the first flow control valve 24a, and the fluid mixing section 25. In this state, high frequency energy is supplied from the high frequency power supply 10 to the high frequency induction coil 6, a high frequency magnetic field (not shown) is formed around the coil 6, and plasma 7 is generated by the action of the magnetic field. The ions in the plasma 7 are extracted into the center chamber 15 through the nozzle 11 and the skimmer 12, and then detected by the pole element 17. The detection signal is amplified by the secondary electron multiplier tube 20 and then sent to the signal processing section 21, where it is subjected to predetermined signal processing, and then a mass spectrum is drawn on a recorder (not shown) to record the analysis value of the sample. Start giving.

ところで、上述のようなアルゴンを用いたプラ
ズマが生じたのち、第2減圧弁22bを徐々に開
く(即ち、吐出圧力が一定の設定圧力に徐々に達
するようにする)と共に第1減圧弁22aを徐々
に閉じてゆき、該第1減圧弁22aの吐出圧力が
一定の設定圧力に達するようにする。このため、
プラズマトーチ1の最外室1c、外室1b、及び
内室1aへは、アルゴンガス供給源3から第1減
圧弁22a→第1流量計23a→第1流量調節弁
24a→流体混合部25を通つて供給されるアル
ゴンガスの量が徐々に減少し、窒素ガス供給源2
1から第2減圧弁22b→第2流量計23b→第
2流量調節弁24bを通つて供給される窒素ガス
の量が徐々に増加するようになり、最終的にアル
ゴンガスと窒素ガスとが一定の混合比で混合され
た状態で供給されるようになる。その後、高周波
電源10内の整合回路(図示せず)が調節されイ
ンピーダンスの整合がとられる。第4図はこのよ
うな状態で信号処理部21の出力信号を図示しな
い記録計等に導いて描かせたスペクトル図であ
る。また、第3図は第2図を用いて詳述した前記
従来例の状態で信号処理部20の出力信号を図示
しない記録計等に導いて描かせたスペクトル図で
ある。第3図と第4図を比較すれば明らかなよう
に、第4図では、Ar+イオン、ArO+イオン、
ArO+イオン、及びAr2 +イオン等のアルゴン関連
イオンのピークが減少し、特に、ArO+イオンと
Ar2 +イオンのピークは顕著に減少して良好なバ
ツクグランド状態となつている。従つて、ArO+
イオン及びAr2 +イオンと質量数が夫々等しいSe+
イオン及びFe+イオンについてもスペクトル干渉
が生ぜず、SeやFe等を被測定元素とする分析も
正確に行えるようになる。尚、本考案は上述の実
施例に限定されることなく種々の変形が可能であ
り、例えば高周波電源とは別に整合器を設け該整
合器で上述のようなインピーダンスの整合を行う
ようにしても良いものとする。また、第1図のプ
ラズマトーチ1の最室1cへ徐々に窒素ガスを供
給する機構を外室1b及び内室1cについても設
けるようにしても良い。
By the way, after the plasma using argon as described above is generated, the second pressure reducing valve 22b is gradually opened (that is, the discharge pressure gradually reaches a certain set pressure), and the first pressure reducing valve 22a is opened. It is gradually closed so that the discharge pressure of the first pressure reducing valve 22a reaches a constant set pressure. For this reason,
The outermost chamber 1c, the outer chamber 1b, and the inner chamber 1a of the plasma torch 1 are connected to the argon gas supply source 3 through a first pressure reducing valve 22a, a first flow meter 23a, a first flow control valve 24a, and a fluid mixing section 25. The amount of argon gas supplied through the nitrogen gas source 2 gradually decreases.
1, the amount of nitrogen gas supplied through the second pressure reducing valve 22b → second flow meter 23b → second flow rate regulating valve 24b gradually increases, and eventually the argon gas and nitrogen gas become constant. It will be supplied in a mixed state at a mixing ratio of . Thereafter, a matching circuit (not shown) within the high frequency power supply 10 is adjusted to achieve impedance matching. FIG. 4 is a spectrum diagram drawn by guiding the output signal of the signal processing section 21 to a recorder or the like (not shown) in such a state. Further, FIG. 3 is a spectrum diagram drawn by guiding the output signal of the signal processing section 20 to a recorder or the like (not shown) in the state of the conventional example described in detail using FIG. 2. As is clear from comparing Figures 3 and 4, in Figure 4 Ar + ions, ArO + ions,
The peaks of argon-related ions such as ArO + ions and Ar 2 + ions are reduced, especially when compared with ArO + ions.
The peak of Ar 2 + ions has decreased significantly and is in a good background state. Therefore, ArO +
Se + with the same mass number as the ion and Ar 2 + ion, respectively
Spectral interference does not occur for ions and Fe + ions, and analysis using Se, Fe, etc. as the measured elements can be performed accurately. Note that the present invention is not limited to the above-described embodiments, and can be modified in various ways. For example, a matching box may be provided separately from the high-frequency power source, and the impedance matching as described above may be performed using the matching box. Make it good. Further, a mechanism for gradually supplying nitrogen gas to the outermost chamber 1c of the plasma torch 1 shown in FIG. 1 may also be provided for the outer chamber 1b and the inner chamber 1c.

<考案の効果> 以上詳しく説明したような本考案の実施例によ
れば、プラズマトーチ1の最外室1c、外室1
b、及び内室1aに供給されるアルゴンガスに代
えて徐々に窒素ガスを供給して一定の混合比に保
つような構成であるため、アルゴン関連イオンの
影響を減少させて被測定元素を容易にかつ正確に
測定できるようにした高周波誘導結合プラズマ質
量分析計が実現する。
<Effects of the invention> According to the embodiment of the invention as described in detail above, the outermost chamber 1c and the outer chamber 1 of the plasma torch 1
In place of the argon gas supplied to the inner chamber 1a, nitrogen gas is gradually supplied to maintain a constant mixing ratio, reducing the influence of argon-related ions and making it easier to measure the elements to be measured. A high-frequency inductively coupled plasma mass spectrometer that enables quick and accurate measurements will be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案実施例の構成説明図、第2図は
従来例の構成説明図、第3図及び第4図はスペク
トル図である。 1……プラズマトーチ、3……アルゴンガス供
給源、7……高周波誘導結合プラズマ、8……ノ
ズル、9……スキマー、11……フオアチヤンバ
ー、13……センターチヤンバー、16……マス
フイルタ、17……リアチヤンバー、20……信
号処理部、21……窒素ガス供給源、22a,2
2b……減圧弁、23a,23b……流量計、2
4a,24b……流量調節弁、25……流体混合
部。
FIG. 1 is an explanatory diagram of the configuration of an embodiment of the present invention, FIG. 2 is an explanatory diagram of the configuration of a conventional example, and FIGS. 3 and 4 are spectrum diagrams. DESCRIPTION OF SYMBOLS 1... Plasma torch, 3... Argon gas supply source, 7... High frequency inductively coupled plasma, 8... Nozzle, 9... Skimmer, 11... Foa chamber, 13... Center chamber, 16... Mass filter, 17 ... Rear chamber, 20 ... Signal processing section, 21 ... Nitrogen gas supply source, 22a, 2
2b...Pressure reducing valve, 23a, 23b...Flow meter, 2
4a, 24b...flow control valve, 25...fluid mixing section.

Claims (1)

【実用新案登録請求の範囲】 (1) 高周波誘導結合プラズマを用いて試料を励起
し生じたイオンを真空中に導入しイオン光学系
を通して質量分析計検出器に導いて検出するこ
とにより前記試料中の被測定元素を分析する分
析計において、前記高周波誘導結合プラズマを
生じさせる三重管構造のプラズマトーチへ、ア
ルゴンガス供給源から第1減圧弁、第1流量
計、第1流量調節弁、及び流体混合部を通つて
供給されるアルゴンガスと、窒素ガス供給源か
ら第2減圧弁、第2流量計、第2流量調節弁、
及び流体混合部を通つて供給される窒素ガスと
が一定の混合比で混合されて供給されるように
構成したことを特徴とする高周波誘導結合プラ
ズマ質量分析計。 (2) 前記プラズマトーチは、流量調節された第1
〜第3の圧縮ガスが夫々導かれる最外室、外
室、及び内室を有する三重管構造のプラズマト
ーチでなる実用新案登録請求範囲第(1)項記載の
高周波誘導結合プラズマ質量分析計。
[Claims for Utility Model Registration] (1) Ions produced by exciting a sample using high-frequency inductively coupled plasma are introduced into a vacuum, guided to a mass spectrometer detector through an ion optical system, and detected. In the analyzer for analyzing elements to be measured, a plasma torch having a triple tube structure that generates the high-frequency inductively coupled plasma is connected from an argon gas supply source to a first pressure reducing valve, a first flow meter, a first flow rate regulating valve, and a fluid. A second pressure reducing valve, a second flow meter, a second flow control valve, from the argon gas and nitrogen gas supply sources supplied through the mixing section
A high frequency inductively coupled plasma mass spectrometer, characterized in that the high frequency inductively coupled plasma mass spectrometer is configured such that nitrogen gas and nitrogen gas supplied through a fluid mixing section are mixed at a constant mixing ratio. (2) The plasma torch has a first
- A high-frequency inductively coupled plasma mass spectrometer according to claim 1, which is a plasma torch having a triple tube structure having an outermost chamber, an outer chamber, and an inner chamber through which a third compressed gas is introduced.
JP11797687U 1987-07-31 1987-07-31 Expired - Lifetime JPH0518844Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11797687U JPH0518844Y2 (en) 1987-07-31 1987-07-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11797687U JPH0518844Y2 (en) 1987-07-31 1987-07-31

Publications (2)

Publication Number Publication Date
JPS6423866U JPS6423866U (en) 1989-02-08
JPH0518844Y2 true JPH0518844Y2 (en) 1993-05-19

Family

ID=31361920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11797687U Expired - Lifetime JPH0518844Y2 (en) 1987-07-31 1987-07-31

Country Status (1)

Country Link
JP (1) JPH0518844Y2 (en)

Also Published As

Publication number Publication date
JPS6423866U (en) 1989-02-08

Similar Documents

Publication Publication Date Title
Jin et al. A microwave plasma torch assembly for atomic emission spectrometry
US10096457B2 (en) Oxidation resistant induction devices
JPH0518844Y2 (en)
JPH0518845Y2 (en)
JPH0615392Y2 (en) High frequency inductively coupled plasma mass spectrometer
Gordon et al. Use of a water-cooled low-flow torch in inductively coupled plasma mass spectrometry
JPH07123035B2 (en) High frequency inductively coupled plasma / mass spectrometer
JPH0518842Y2 (en)
JP2836190B2 (en) High frequency inductively coupled plasma analyzer
JPH0541496Y2 (en)
JP3118004B2 (en) High frequency inductively coupled plasma mass spectrometer
JPH01117262A (en) Analyzer of high frequency induction coupled plasma
JP3038839B2 (en) High frequency inductively coupled plasma mass spectrometer
JPH0638372Y2 (en) High frequency inductively coupled plasma mass spectrometer
JPS63308857A (en) Inductive coupling plasma mass spectrograph
JPH02227653A (en) Inductively coupled plasma mass spectrometer
JPH04104449A (en) High-frequency induction plasma mass spectrograph
JPS62184755A (en) High frequency induction-coupled plasma mass spectrometer
JPS62208535A (en) High-frequency inductive coupling plasma/mass analyzer
JPS6398948A (en) High frequency inductive coupling plasma/mass spectrometer
JPH03145051A (en) High frequency inductive coupling plasma mass analyzing meter
JPH06102249A (en) High frequency induction coupling plasma mass spectroscope
JPH0412448A (en) High-frequency induction-coupled plasma mass spectrometer
JPH04112442A (en) High frequency induction coupling plasma mass-spectrometer
JP2789641B2 (en) High frequency inductively coupled plasma mass spectrometer