JPH0518840Y2 - - Google Patents
Info
- Publication number
- JPH0518840Y2 JPH0518840Y2 JP725787U JP725787U JPH0518840Y2 JP H0518840 Y2 JPH0518840 Y2 JP H0518840Y2 JP 725787 U JP725787 U JP 725787U JP 725787 U JP725787 U JP 725787U JP H0518840 Y2 JPH0518840 Y2 JP H0518840Y2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic pole
- pole piece
- cylindrical member
- lens
- movable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010894 electron beam technology Methods 0.000 claims description 17
- 230000005284 excitation Effects 0.000 claims description 15
- 230000003287 optical effect Effects 0.000 claims description 6
- 238000001000 micrograph Methods 0.000 description 5
- 238000011109 contamination Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Description
【考案の詳細な説明】
[産業上の利用分野]
本考案は走査電子顕微鏡用対物レンズに関し、
更に詳述すれば単一のレンズで高分解能の走査電
子顕微鏡像の観察と大型試料や大角度傾斜観察等
を可能した走査電子顕微鏡用対物レンズに関す
る。[Detailed description of the invention] [Industrial application field] The present invention relates to an objective lens for a scanning electron microscope.
More specifically, the present invention relates to an objective lens for a scanning electron microscope that enables observation of high-resolution scanning electron microscope images, observation of large samples, large-angle oblique observation, etc. with a single lens.
[従来技術]
近時、単一のレンズで高分解能の走査電子顕微
鏡像の観察と大型試料や大角度傾斜観察等を行な
うための走査電子顕微鏡用対物レンズが開発され
ている(実開昭60−155162号)。[Prior art] Recently, objective lenses for scanning electron microscopes have been developed to enable observation of high-resolution scanning electron microscope images and observation of large samples and large tilted angles using a single lens (1986). −155162).
このような装置では、レンズヨークの下端部に
磁極片間隙を形成する上磁極片と下磁極片を配置
し、前記下磁極片の中央部を他の部分から分割し
て可動磁極片とし、該可動磁極片に電子線通過孔
を形成すると共に、該可動磁極片を上下磁極片間
に移動可能に配置し、この可動磁極片を選択的に
上磁極片又は下磁極片の他部に磁気的に接触させ
るようにしている。このような従来装置において
は、前記可動磁極片を下磁極片に磁気的に接触さ
せることにより、レンズを構成するレンズ磁界を
電子線通過孔から漏洩させないようにすると共
に、ワーキングデイスタンスを長くして大型試料
の観察や、試料を大傾斜させて走査電子顕微鏡像
の観察を行つている。又、前記可動磁極片を上磁
極片に磁気的に接触させることにより、レンズを
構成するレンズ磁界を下磁極片の下方に大きく張
り出させると共に、ワーキングデイスタンスを短
くして高分解能による走査電子顕微鏡像の観察も
行つている。 In such a device, an upper magnetic pole piece and a lower magnetic pole piece that form a magnetic pole piece gap are arranged at the lower end of the lens yoke, and the central part of the lower magnetic pole piece is divided from the other parts to form a movable magnetic pole piece. An electron beam passing hole is formed in the movable magnetic pole piece, and the movable magnetic pole piece is movably arranged between the upper and lower magnetic pole pieces. I try to bring it into contact with. In such conventional devices, by magnetically bringing the movable magnetic pole piece into contact with the lower magnetic pole piece, the lens magnetic field constituting the lens is prevented from leaking from the electron beam passage hole, and the working distance is lengthened. This allows us to observe large samples and to observe scanning electron microscope images by tilting the sample greatly. In addition, by magnetically bringing the movable magnetic pole piece into contact with the upper magnetic pole piece, the lens magnetic field constituting the lens can be greatly extended below the lower magnetic pole piece, and the working distance can be shortened to enable scanning electrons with high resolution. We are also observing microscopic images.
[考案が解決しようとする問題点]
ところで、このにように構成された従来の装置
では、前記可動磁極片を上下させるための駆動機
構(捩子体や傘歯車等)が高真空に排気される試
料近傍に配置されているため、該駆動機構からの
放出ガスによつて、試料近傍が汚染されたり、該
放出ガスが試料表面等に付着するため、試料にコ
ンタミネーシヨンを生じさせ高分解能の走査電子
顕微鏡像が得られない問題があつた。[Problems to be solved by the invention] By the way, in the conventional device configured as described above, the drive mechanism (screw body, bevel gear, etc.) for moving the movable magnetic pole piece up and down is evacuated to a high vacuum. Since the drive mechanism is placed near the sample, the gas emitted from the drive mechanism may contaminate the vicinity of the sample, and the emitted gas may adhere to the sample surface, causing contamination of the sample and impeding high resolution. There was a problem in which scanning electron microscope images could not be obtained.
本考案は以上の点に鑑みなれたもので、前記可
動磁極片を上下させるための駆動機構を真空外に
設けることにより、試料近傍を清浄に保つて試料
のコンタミネーシヨンの防止を図つた装置を提供
することを目的としている。 The present invention was developed in view of the above points, and is an apparatus that prevents contamination of the sample by keeping the vicinity of the sample clean by providing a drive mechanism for moving the movable magnetic pole piece up and down outside the vacuum. is intended to provide.
[問題点を解決するための手段]
以上の目的を達成するための本考案は、レンズ
ヨークと、励磁コイルと、前記ヨークに接続され
た上下磁極片と、該上下磁極片に設けられた電子
線通過孔と、該上磁極片の電子線通過孔に挿入さ
れた筒状部材とを備え、該筒状部材の内部は真空
排気された試料近傍に連通されている走査電子顕
微鏡用対物レンズにおいて、前記下磁極片の中央
部が他の部分から分割されて可動磁極片とされて
おり、該可動磁極片が前記筒状部材の下端部に取
り付けられており、前記筒状部材は大気側に対し
て気密を保持した状態で電子線光軸に沿つて移動
自在にされており、該筒状部材の駆動機構が大気
側に配置されており、該駆動機構による該筒状部
材の上下移動により前記可動磁極片が選択的に上
磁極片又は下磁極片の他部に磁気的に接触するこ
とを特徴としている。[Means for Solving the Problems] The present invention for achieving the above objects includes a lens yoke, an excitation coil, upper and lower magnetic pole pieces connected to the yoke, and electronics provided on the upper and lower magnetic pole pieces. An objective lens for a scanning electron microscope comprising a beam passage hole and a cylindrical member inserted into the electron beam passage hole of the upper magnetic pole piece, the inside of the cylindrical member communicating with the vicinity of an evacuated sample. , a central part of the lower magnetic pole piece is divided from other parts to form a movable magnetic pole piece, the movable magnetic pole piece is attached to the lower end of the cylindrical member, and the cylindrical member faces toward the atmosphere. The cylindrical member is movable along the electron beam optical axis while being kept airtight, and a drive mechanism for the cylindrical member is disposed on the atmosphere side, and the cylindrical member is moved up and down by the drive mechanism. The movable magnetic pole piece is characterized in that the movable magnetic pole piece selectively comes into magnetic contact with other parts of the upper magnetic pole piece or the lower magnetic pole piece.
[実施例] 以下本考案の実施例を図面に基づき詳述する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.
第1図は本考案の一実施例の構成断面図で、第
2図及び第3図は本考案の動作状態を説明するた
めの図である。第1図において、1はレンズヨー
クで内部に励磁コイル2が巻回されている。3は
上磁極片、4は下磁極片で、5は下磁極片4の中
央部を他の部分から分割して形成された可動磁極
片で、該可動磁極片5は前記下磁極片4に形成さ
れた孔4aに嵌合するように形成されている。6
は非磁性体で形成された励磁コイル2の固定金具
であり、この固定金具6は前記上磁極片3と下磁
極片4に半田付け等で取り付けられており、前記
励磁コイル2を真空側から封じるための働きをし
ている。7は上磁極片3の孔3aに挿入され、内
部は電子線EBが通過すると共に高真空に排気さ
れるパイプである。該パイプ7は非磁性体で形成
され下端部は他の部分より細く形成されており、
該下端部には前記可動磁極片5が取り付けられて
いる。8は鏡筒であり、前記パイプ7は該鏡筒8
に配置されたOリング9,10及び前記上磁極片
3の一端に配置されたOリング11によつて大気
側に対して気密を保持した状態で移動可能に配置
されている。12は前記パイプ7の真空外上端部
に取り付けられたラツクで、該ラツク12には、
パイプ7を電子線光軸Zに沿つて移動させるため
のピニオン13が噛み合つており、該ピニオン1
3は大気側より回転できるように配置されてい
る。14,15はパイプ7の上、下の位置を検出
するためのリミツトスイツチである。16,1
6′は電子線EBが照射される試料である。17,
18は鏡筒8に真空を保持して取り付けられた2
次電子検出器である。尚、第1図においては、電
子線光軸Zを中心に紙面左側には前記パイプ7が
下方の規定の位置まで移動した場合を示してお
り、紙面右側には前記パイプ7が上方の規定の位
置まで移動した場合を示している。 FIG. 1 is a cross-sectional view of the structure of an embodiment of the present invention, and FIGS. 2 and 3 are diagrams for explaining the operating state of the present invention. In FIG. 1, reference numeral 1 denotes a lens yoke within which an excitation coil 2 is wound. 3 is an upper magnetic pole piece, 4 is a lower magnetic pole piece, and 5 is a movable magnetic pole piece formed by dividing the center part of the lower magnetic pole piece 4 from other parts, and the movable magnetic pole piece 5 is attached to the lower magnetic pole piece 4. It is formed to fit into the formed hole 4a. 6
is a fixing fitting for the excitation coil 2 made of a non-magnetic material, and this fixing fitting 6 is attached to the upper magnetic pole piece 3 and the lower magnetic pole piece 4 by soldering etc. It works to contain it. 7 is a pipe inserted into the hole 3a of the upper magnetic pole piece 3, through which the electron beam EB passes and which is evacuated to a high vacuum. The pipe 7 is made of a non-magnetic material, and the lower end is thinner than the other parts.
The movable magnetic pole piece 5 is attached to the lower end. 8 is a lens barrel, and the pipe 7 is connected to the lens barrel 8.
O-rings 9 and 10 disposed at the upper magnetic pole piece 3 and an O-ring 11 disposed at one end of the upper magnetic pole piece 3 allow the upper magnetic pole piece 3 to be movably arranged in an airtight state. Reference numeral 12 denotes a rack attached to the upper end of the pipe 7 outside the vacuum, and the rack 12 includes:
A pinion 13 for moving the pipe 7 along the electron beam optical axis Z is engaged with the pinion 1.
3 is arranged so that it can rotate from the atmospheric side. 14 and 15 are limit switches for detecting the upper and lower positions of the pipe 7. 16,1
6' is a sample irradiated with electron beam EB. 17,
18 is 2 attached to the lens barrel 8 while maintaining a vacuum.
It is a secondary electron detector. In FIG. 1, the left side of the page shows the case where the pipe 7 has moved to the specified position below, and the right side of the page shows the case where the pipe 7 has moved to the specified position above. This shows the case where the camera moves to the desired position.
このように構成された装置において、パイプ7
をモータ等の駆動機構によつて上方、又は下方に
移動させた場合の動作を以下に説明する。 In the device configured in this way, the pipe 7
The operation when the is moved upward or downward by a drive mechanism such as a motor will be described below.
先ず、ピニオン13を図示外の駆動機構によつ
て回転させると、パイプ7は真空を保持して光軸
Zに沿つて下方に移動を開始する。このパイプ7
の移動によつて、パイプ7の先端部に取り付けら
れた下磁極片5は、下磁極片4に形成された孔4
aに嵌まつた状態となる。やがて、可動磁極片5
が規定の位置まで移動するとラツク12の下端部
がリミツトスイツチ14に当り、該リミツトスイ
ツチ14が開状態となるため、ピニオン13の回
転が止まりパイプ7の移動が停止する。この状態
が孔4aと可動磁極片5の嵌合が完了した状態で
あり、可動磁極片5と下磁極片4とが一体化す
る。このパイプ7の位置移動に連動して駆動する
図示しない励磁電源より前記励磁コイル2に比較
的小さい励磁電流が供給され、該励磁コイル2は
弱励磁に励磁される。第2図はこのような状態を
示している。この状態では、可動磁極片5の先端
部が円錐形に形成されているため、該レンズから
の漏れ磁束を最小限にする。従つて、レンズ磁界
φは電子線通過孔aから漏洩して試料16の方向
に張り出すことはなく、又ワーキングデイスタン
スを長くすることができる。更に、下磁極片4の
形状は図からも明らかなように、すり鉢型に形成
することにより、大型試料16を大きく傾斜させ
た場合でも傾斜制限されないようにしている。従
つて、大型試料16を大きく傾斜させても、該電
子線EBの走査に伴つて試料16より発生する2
次電子eを下磁極片4に沿つて配置された2次電
子検出器18の集束電界Eによつて捕獲し検出す
ることができる。又、この状態では、レンズ磁界
φが電子線通過孔aから漏洩して試料16の方向
に張出していないため、磁性試料等の観察も行な
うことができる。 First, when the pinion 13 is rotated by a drive mechanism not shown, the pipe 7 starts to move downward along the optical axis Z while maintaining a vacuum. This pipe 7
As a result of the movement of the lower magnetic pole piece 5 attached to the tip of the pipe 7, the hole 4 formed in the lower magnetic pole piece
It will be in a state where it is stuck in a. Eventually, the movable magnetic pole piece 5
When the rack 12 moves to a specified position, the lower end of the rack 12 hits the limit switch 14 and the limit switch 14 is opened, so that the rotation of the pinion 13 is stopped and the movement of the pipe 7 is stopped. In this state, the fitting between the hole 4a and the movable magnetic pole piece 5 is completed, and the movable magnetic pole piece 5 and the lower magnetic pole piece 4 are integrated. A relatively small excitation current is supplied to the excitation coil 2 from an excitation power source (not shown) which is driven in conjunction with the positional movement of the pipe 7, and the excitation coil 2 is weakly excited. FIG. 2 shows such a situation. In this state, since the tip of the movable magnetic pole piece 5 is formed into a conical shape, leakage magnetic flux from the lens is minimized. Therefore, the lens magnetic field φ does not leak from the electron beam passage hole a and project toward the sample 16, and the working distance can be increased. Furthermore, as is clear from the figure, the shape of the lower magnetic pole piece 4 is formed into a mortar shape so that even when the large sample 16 is tilted greatly, the tilt is not restricted. Therefore, even if the large sample 16 is tilted greatly, the 2
The secondary electrons e can be captured and detected by the focused electric field E of the secondary electron detector 18 disposed along the lower pole piece 4. Furthermore, in this state, since the lens magnetic field φ does not leak from the electron beam passage hole a and project toward the sample 16, it is possible to observe a magnetic sample and the like.
次に、ピニオン13を前記とは逆に回転させ、
該パイプ7を電子線光軸Zに沿つて上方に移動さ
せる。このパイプ7の移動によつて、下磁極片5
は、孔4aより抜けて上磁極片3の孔3a方向に
移動し、やがて可動磁極片5が先端部3bに密着
し上磁極片3と可動磁極片5が磁気的に接合され
る。この位置でリミツトスイツチ15がラツク1
2の上端部に当るためピニオン13の回転が止ま
りパイプ7の移動が停止する。このパイプ7の移
動に連動して図示しない励磁電源より前記励磁コ
イル2に比較的大きい励磁電流が供給され励磁コ
イル2は強励磁に励磁される。第3図はこのよう
な状態を示している。このような状態では、可動
磁極片5は上磁極片として作用するが、該可動磁
極片5の先端部は円錐形に形成されているため、
該該可動磁極片5と下磁極片4の先端部4bの間
で強い磁界が発生すると共に磁場の集中が図ら
れ、短焦点レンズが形成される。又、該レンズを
構成するレンズ磁界φは下磁極端部4bの下方に
大きく張り出し、該試料16′はレンズ磁界φの
中に配置されることとなる。勿論、試料16′は
必要に応じ可動磁極片5と下磁極片先端部4bの
間に配置することも可能である。従つて、ワーキ
ングデイスタンスが極めて短くなる。このような
状態で、試料16′を電子線EBによつて走査(電
子線EBの2段走査コイルは省略している)する
と、該試料16′より2次電子eは、該レンズの
強い漏れ磁界によつて電子線光軸Zの周囲を螺旋
状に回転しながら上方に移動する。そして、パイ
プ7に形成された開口部7aを貫通して2次電子
検出器17によつて検出されるため高分解能の走
査電子顕微鏡像の観察が可能となる。 Next, the pinion 13 is rotated in the opposite direction to that described above,
The pipe 7 is moved upward along the electron beam optical axis Z. By this movement of the pipe 7, the lower magnetic pole piece 5
The movable magnetic pole piece 5 passes through the hole 4a and moves toward the hole 3a of the upper magnetic pole piece 3, and eventually the movable magnetic pole piece 5 comes into close contact with the tip portion 3b, and the upper magnetic pole piece 3 and the movable magnetic pole piece 5 are magnetically joined. In this position, the limit switch 15 is easily set.
2, the pinion 13 stops rotating and the pipe 7 stops moving. In conjunction with the movement of the pipe 7, a relatively large excitation current is supplied to the excitation coil 2 from an excitation power source (not shown), and the excitation coil 2 is strongly excited. FIG. 3 shows such a situation. In this state, the movable magnetic pole piece 5 acts as an upper magnetic pole piece, but since the tip of the movable magnetic pole piece 5 is formed into a conical shape,
A strong magnetic field is generated between the movable magnetic pole piece 5 and the tip 4b of the lower magnetic pole piece 4, and the magnetic field is concentrated to form a short focus lens. Further, the lens magnetic field φ constituting the lens extends largely below the lower magnetic pole end portion 4b, and the sample 16' is placed within the lens magnetic field φ. Of course, the sample 16' can also be placed between the movable magnetic pole piece 5 and the lower magnetic pole piece tip 4b if necessary. Therefore, the working distance becomes extremely short. In this state, when the sample 16' is scanned by the electron beam EB (the two-stage scanning coil of the electron beam EB is omitted), the secondary electrons e from the sample 16' are absorbed by the strong leakage of the lens. The electron beam moves upward while rotating spirally around the optical axis Z due to the magnetic field. Since the electrons pass through the opening 7a formed in the pipe 7 and are detected by the secondary electron detector 17, it becomes possible to observe a high-resolution scanning electron microscope image.
ところで、このように構成された装置では、パ
イプ7内部は図示しない排気機構によつて高真空
に排気されるが、可動磁極片5を上下移動させる
ための駆動機構が真空側ではなく大気側に設けら
れているため、従来装置のように駆動機構等から
の放出ガスが試料に付着するようなことはなく、
更に試料近傍が清浄な雰囲気に排気されるから試
料のコンタミネーシヨンを防止することができ
る。 By the way, in the device configured as described above, the inside of the pipe 7 is evacuated to a high vacuum by an exhaust mechanism (not shown), but the drive mechanism for moving the movable magnetic pole piece 5 up and down is not on the vacuum side but on the atmosphere side. This eliminates the possibility of gas released from the drive mechanism adhering to the sample, unlike in conventional devices.
Furthermore, since the vicinity of the sample is evacuated to a clean atmosphere, contamination of the sample can be prevented.
尚、上記実施例は例示である。上記実施例で
は、可動磁極片の位置に応じて励磁コイルの励磁
電流を変化させるようにしたが、可動磁極片の位
置に応じてワーキングデイスタンスを変化させる
ように構成しても良い。 Note that the above embodiments are merely illustrative. In the above embodiment, the excitation current of the excitation coil is changed according to the position of the movable magnetic pole piece, but the working distance may be changed according to the position of the movable magnetic pole piece.
[考案の効果]
以上詳述したように本考案によれば、可動磁極
片を上下させるための駆動機構を真空外に設けた
ため、試料近傍を清浄に保つことができ、それに
より試料のコンタミネーシヨンの防止を図つた走
査電子顕微鏡等の対物レンズが提供される。[Effects of the invention] As detailed above, according to the invention, since the drive mechanism for moving the movable magnetic pole piece up and down is provided outside the vacuum, the vicinity of the sample can be kept clean, thereby reducing contamination of the sample. An objective lens for a scanning electron microscope or the like is provided which is designed to prevent the occurrence of irradiation.
第1図は本考案の一実施例の構成図、第2図及
び第3図は本考案を説明するための図である。
1……レンズヨーク、2……励磁コイル、3…
…上磁極片、3a……孔、3b……上磁極片先端
部、4……下磁極片、4a……孔、4b……下磁
極片先端部、5……可動磁極片、6……固定金
具、7……パイプ、7a……開口部、8……鏡
筒、9,10,11……Oリング、12……ラツ
ク、13……ピニオン、14,15……リミツト
スイツチ、16,16′……試料、17,18…
…2次電子検出器、a……電子線通過孔。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIGS. 2 and 3 are diagrams for explaining the present invention. 1... Lens yoke, 2... Excitation coil, 3...
...Upper magnetic pole piece, 3a...hole, 3b...upper magnetic pole piece tip, 4...lower magnetic pole piece, 4a...hole, 4b...lower magnetic pole piece tip, 5...movable magnetic pole piece, 6... Fixing bracket, 7... Pipe, 7a... Opening, 8... Lens barrel, 9, 10, 11... O ring, 12... Rack, 13... Pinion, 14, 15... Limit switch, 16, 16 '... Sample, 17, 18...
...Secondary electron detector, a...Electron beam passage hole.
Claims (1)
接続された上下磁極片と、該上下磁極片に設けら
れた電子線通過孔と、該上磁極片の電子線通過孔
に挿入された筒状部材とを備え、該筒状部材の内
部は真空排気された試料近傍に連通されている走
査電子顕微鏡用対物レンズにおいて、前記下磁極
片の中央部が他の部分から分割されて可動磁極片
とされており、該可動磁極片が前記筒状部材の下
端部に取り付けられており、前記筒状部材は大気
側に対して気密を保持した状態で電子線光軸に沿
つて移動自在にされており、該筒状部材の駆動機
構が大気側に配置されており、該駆動機構による
該筒状部材の上下移動により前記可動磁極片が選
択的に上磁極片又は下磁極片の他部に磁気的に接
触することを特徴とする走査電子顕微鏡用対物レ
ンズ。 A lens yoke, an excitation coil, upper and lower magnetic pole pieces connected to the yoke, an electron beam passage hole provided in the upper and lower magnetic pole pieces, and a cylindrical member inserted into the electron beam passage hole of the upper magnetic pole piece. In an objective lens for a scanning electron microscope, the interior of the cylindrical member being communicated with the vicinity of the evacuated sample, the central portion of the lower magnetic pole piece is separated from the other portion to form a movable magnetic pole piece. the movable magnetic pole piece is attached to the lower end of the cylindrical member, and the cylindrical member is movable along the electron beam optical axis while maintaining airtightness with respect to the atmosphere; A driving mechanism for the cylindrical member is disposed on the atmosphere side, and as the cylindrical member is moved up and down by the driving mechanism, the movable magnetic pole piece is selectively magnetically moved to the other part of the upper magnetic pole piece or the lower magnetic pole piece. An objective lens for a scanning electron microscope characterized by a contact lens.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP725787U JPH0518840Y2 (en) | 1987-01-21 | 1987-01-21 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP725787U JPH0518840Y2 (en) | 1987-01-21 | 1987-01-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63117049U JPS63117049U (en) | 1988-07-28 |
JPH0518840Y2 true JPH0518840Y2 (en) | 1993-05-19 |
Family
ID=30790544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP725787U Expired - Lifetime JPH0518840Y2 (en) | 1987-01-21 | 1987-01-21 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0518840Y2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110431649A (en) * | 2017-03-29 | 2019-11-08 | 株式会社日立高新技术 | Charged particle beam apparatus |
-
1987
- 1987-01-21 JP JP725787U patent/JPH0518840Y2/ja not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110431649A (en) * | 2017-03-29 | 2019-11-08 | 株式会社日立高新技术 | Charged particle beam apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS63117049U (en) | 1988-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9741527B2 (en) | Specimen holder for a charged particle microscope | |
JP3133307B2 (en) | electronic microscope | |
JP5351634B2 (en) | Electron beam equipment | |
JP5746284B2 (en) | System and method for machining an object | |
US4460827A (en) | Scanning electron microscope or similar equipment with tiltable microscope column | |
US7253408B2 (en) | Environmental cell for a scanning probe microscope | |
US5105932A (en) | Linear and rotary positioning device | |
JPS62223957A (en) | Hybrid charged particle optical system | |
US20180061613A1 (en) | Charged-particle microscope with exchangeable pole piece extending element | |
JPH0518840Y2 (en) | ||
KR20090010771A (en) | Stage unit of sem | |
JPH10214583A (en) | Scanning electron microscope | |
JP2019129210A (en) | Stage device and processing device | |
JP6450153B2 (en) | X-ray image capturing unit, electron microscope, and sample image acquiring method | |
JP3926208B2 (en) | X-ray microscope sample chamber | |
JPH0451415Y2 (en) | ||
JP2006252994A (en) | Scanning electron microscope | |
JPH0532926Y2 (en) | ||
JPH055841A (en) | Vacuum microscope | |
JPS6321886Y2 (en) | ||
JPS5849568Y2 (en) | Sample equipment for electron microscopes, etc. | |
JP3702685B2 (en) | Charged particle beam equipment | |
JP3401158B2 (en) | Ultra-high vacuum surface observation device | |
JP2895673B2 (en) | Sample equipment such as electron microscope | |
JPS63298947A (en) | Magnetic domain observing device |