JPH0518815B2 - - Google Patents

Info

Publication number
JPH0518815B2
JPH0518815B2 JP56007909A JP790981A JPH0518815B2 JP H0518815 B2 JPH0518815 B2 JP H0518815B2 JP 56007909 A JP56007909 A JP 56007909A JP 790981 A JP790981 A JP 790981A JP H0518815 B2 JPH0518815 B2 JP H0518815B2
Authority
JP
Japan
Prior art keywords
alumina
platinum group
group metal
catalyst
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56007909A
Other languages
Japanese (ja)
Other versions
JPS57122042A (en
Inventor
Haruhiko Myazaki
Yasushi Shiomi
Satoru Fujizu
Katsuro Masunaga
Hiroshi Yanagisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP56007909A priority Critical patent/JPS57122042A/en
Priority to US06/338,242 priority patent/US4410722A/en
Priority to AU79453/82A priority patent/AU545855B2/en
Priority to GB8201005A priority patent/GB2092138B/en
Priority to ZA82299A priority patent/ZA82299B/en
Priority to BR8200333A priority patent/BR8200333A/en
Priority to DE8282100446T priority patent/DE3261642D1/en
Priority to CA000394729A priority patent/CA1187094A/en
Priority to EP82100446A priority patent/EP0056993B1/en
Priority to KR8200289A priority patent/KR870000057B1/en
Publication of JPS57122042A publication Critical patent/JPS57122042A/en
Priority to MY344/87A priority patent/MY8700344A/en
Publication of JPH0518815B2 publication Critical patent/JPH0518815B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、シユウ酸ジエステルの新規な製法
に関する。 シユウ酸ジエステルは、シユウ酸、オキサミ
ド、グリコール類、染料中間体、および医薬など
の合成原料として重要な用途を有している。 一酸化炭素と亜硝酸エステルとを、白金族金属
系触媒に気相で接触させ、シユウ酸ジエステルを
製造する方法は知られている。この白金族金属系
触媒は、通常担体に担持して使用され、その担体
としてシリカ−アルミナ、マグネシア、活性炭、
ゼオライト、さらにはアルミナなどが用いられて
いる。 化学反応における触媒活性は、担体の種類ある
いはその物理的性質により、予想外に変ることが
多い。 この発明者らはこの観点から、一酸化炭素と亜
硝酸エステルとの気相接触反応によるシユウ酸ジ
エステルの製造に使用される白金族金属系触媒に
最も適した担体を開発することを目的とし、多く
の担体を対象とし、白金族金属系触媒に与える影
響につき、鋭意検索を行つた。 その結果、意外にも比表面積が79m2/g以下の
アルミナを担体として用いれば、他の公知の担体
さらには79m2/gより大きい比表面積を有するア
ルミナを用いた場合に比較し、極めて高収率、高
選択率でシユウ酸ジエステルを得ることができる
ことを見い出し、この発明に到達した。 すなわちこの発明は、比表面積が79m2/g以下
のアルミナに担持した白金族金属系触媒の存在下
に、一酸化炭素と亜硝酸エステルとを気相で接触
反応させることを特徴とする、シユウ酸ジエステ
ルの工業的に優れた製法を提供するものである。 なお、この明細書において、比表面積(m2
g)は、窒素ガス吸着方法によるB.E.T法で測定
した値を意味する。 この発明における白金属金属系触媒としては、
パラジウムが最も有効であるが、白金、ロジウ
ム、ルテニウム、イリジウムなども有用で、これ
ら金属の硝酸塩、硫酸塩、リン酸塩、ハロゲン化
物および酢酸塩、シユウ酸塩、安息香酸塩などの
塩類も使用に供される。 この発明ではこれら白金族金属系触媒を、比表
面積が79m2/g以下であるアルミナに担持して用
いる。比表面積が79m2/gより大きいアルミナを
担体として用いた場合には、一酸化炭素と亜硝酸
エステルとの反応速度が遅くなり、シユウ酸ジエ
ステルの空時収量が著しく低下し、しかも炭酸ジ
エステルなどの副生量が多くなる。アルミナの比
表面積が余り小さいと、白金族金属系触媒の担持
が難しくなるので、その下限値は0.05m2/g程度
までが好ましい。 なお、比表面積が79m2/g以下のアルミナは、
必ずしも純粋である必要はなく、不純物として例
えばシリカ、炭素、炭化ケイ素、酸化鉄、酸化カ
ルシウム、酸化ナトリウム、酸化カリウムなどが
約20重量%程度までは含まれていてもよい。 白金族金属系触媒の担持量は、白金族金属換算
で比表面積79m2/g以下のアルミナに対して、
0.01〜10重量%が好ましい。 白金族金属系触媒を、比表面積79m2/g以下の
アルミナに担持する方法については、特に制限は
なく、公知の担持法を採用することができるが、
次の方法で担持すれば、特に優れた結果が得られ
る。 まず、白金族金属塩類の水溶液を比表面積79
m2/g以下のアルミナに含浸させる。 白金族金属塩類としては、水溶性の塩類であれ
ばいずれも有用である。その例としては、パラジ
ウム、白金、ロジウム、イリジウムなどの白金族
金属の塩酸塩、硝酸塩、硫酸塩、酢酸塩、リン酸
塩、塩化物ナトリウム錯塩などが挙げられる。 含浸は、白金族金属塩類の水溶液にアルミナを
通常0〜90℃の温度で0.1〜10時間浸漬すること
によつて行われるが、場合によつてはアルミナ
に、白金族金属塩類の水溶液を撒布することによ
つても行うことができる。なお、白金族金属塩類
の水溶液としては、白金族金属塩類を、酸性化合
物を0.01〜10wt%含む酸性水溶液に溶かしたもの
を使用するのが好ましい。すなわち酸性水溶液を
用いれば、白金族金属が溶けやすくなり、しかも
加水分解による白金族金属の水酸化物、酸化物の
生成およびその沈殿化を防止することができる。
上記酸性化合物としては、白金族金属塩の陰イオ
ン基を有するものが一般に使用される。 次に、白金族金属塩類の水溶液を含浸したアル
ミナを分取し、場合により水洗、さらには風乾、
減圧乾燥、加熱乾燥などにより乾燥した後、アル
カリ処理に供する。 アルカリ処理は、白金族金属塩類の水溶液を含
浸したアルミナを、アルカリ性化合物を0.5〜
10wt%含むアルカリ性水溶液中に加え、10〜90
℃の温度で0.5〜10時間攪拌することによつて行
われる。使用に供されるアルカリ水溶液として
は、水酸化ナトリウム、水酸化カリウム、水酸化
カルシウム、水酸化バリウム、炭酸ナトリウム、
炭酸水素ナトリウム、炭酸カリウムなどのアルカ
リ金属またはアルカリ土類金属の水酸化物や塩類
の水溶液が有用で、これらは併用することもでき
る。これらアルカリ性化合物の使用量には特に制
限はないが、白金族金属塩類1モルに対し、アル
カリ性化合物を2〜40モル用いるのが好ましい。 アルカリ処理後、白金族金属塩類を担持したア
ルミナを、必要に応じて洗浄、乾燥後、還元処理
しさらに洗浄、乾燥する。この還元処理は、例え
ば、1〜10wt%のヒドラジン、ギ酸ソーダある
いはホルムアルデヒドなどの水溶液中に白金族金
属塩類を担持したアルミナを加え、10〜50℃の温
度で0.5〜10時間攪拌する。いわゆる液相還元で
行つてもよい。また、白金族金属塩類を担持した
アルミナに、水素、一酸化炭素、アンモニアなど
のガスを50〜500℃の温度で1〜10時間接触させ
る、いわゆる気相還元で行うこともできる。 この発明の方法に使用する亜硝酸エステルは、
炭素原子1〜8個を有する飽和の1価脂肪族アル
コールまたは脂環族アルコールと亜硝酸とのエス
テルであつて、アルコール成分としては例えばメ
タノール、エタノール、n−(およびiso−)プロ
パノール、n−(iso−,sec−,tert−)ブタノー
ル、n−(およびiso−)アミルアルコール、ヘキ
サノール、オクタノールのような脂肪族アルコー
ル、およびシクロヘキサノール、メチルシクロヘ
キサノールのような脂環族アルコールなどを挙げ
ることができ、これらのアルコールには、例えば
アルコキシ基のような反応を阻害しない置換基を
含んでいてもよい。 この反応は、反応域に液相が形成されない条件
で実施することが必要である。反応域に液相が形
成されない条件は、反応温度、反応圧力および亜
硝酸エステルの種類、使用濃度などの条件の関連
で変わるので、それぞれを一律に定めることはで
きない。 しかし反応温度については、反応は低温でも充
分速やかに進行し、また反応温度が低いほど副反
応が少いため、所望の空時収量が維持される限り
比較的低温、すなわち通常50〜200℃、好ましく
は80〜150℃の温度で実施される。また反応圧力
については、通常、常圧ないし10Kg/cm2(ゲージ
圧)、好ましくは常圧ないし5Kg/cm2(ゲージ圧)
の圧力で実施され、場合によつては常圧よりやゝ
低い圧力であつてもよい。 亜硝酸エステルの使用濃度は、広範囲に変える
ことができるが、満足すべき反応速度を得るため
には、反応器に導入される原料ガス中の亜硝酸エ
ステル濃度を1容量%以上となるように存在させ
ることが必要であり、通常5〜30容量%である。 この発明の方法に使用する一酸化炭素は純粋な
ものでもまた、例えば窒素のような不活性ガスで
希釈されていてもよい。また、反応帯における一
酸化炭素の濃度は、広範囲に変わつてよく、通常
10〜90容量%の範囲が選ばれる。 この発明の方法は、例えば固定床または流動床
の反応器を用いて実施され、原料ガスの触媒との
接触時間は、20秒以下、特に0.2〜10秒の範囲が
好ましい。 なお、亜硝酸エステルは、通常、アルコールと
窒素酸化物とを必要に応じて分子状酸素の存在下
に反応させて調製され、そのガス中には亜硝酸エ
ステルの他に、未反応のアルコール、窒素酸化物
(特に一酸化窒素)、場合によつては微量の水や酸
素が含まれている。この発明においては、このよ
うな亜硝酸エステル含有ガスを、亜硝酸エステル
源として使用することができ、比表面積が79m2
g、好ましくは62m2/g以下のアルミナに担持し
た白金族金属系触媒は、このような不純物を含有
する亜硝酸エステルを使用する場合にも極めて高
い触媒活性を示す。 次に、担持触媒の調製例、実施例および比較例
を挙げる。 担持触媒の調製例 塩化パラジウム0.77重量部を0.93wt%の塩酸水
溶液34.2重量部に溶解させた後、比表面積約3.1
m2/gのアルミナ30重量部を浸漬させ、室温で約
2時間攪拌した。 デカンテーシヨンにより取得した塩化パラジウ
ム含浸アルミナを乾燥した後、水酸化ナトリウム
0.5重量部、炭酸水素ナトリウム0.7重量部および
水48.8重量部からなる溶液に浸漬し、約70℃で約
9時間攪拌しアルカリ処理をした。 次いで、アルカリ処理物を洗液が中性になりク
ロルイオンの検出がなくなるまで水洗した後、
85wt%抱水ヒドラジン3重量部、水97重量部か
らなるヒドラジン水溶液に浸漬し、室温で約4時
間攪拌し還元処理をした。 還元処理物を、デカンテーシヨン、水洗および
乾燥し、アルミナにパラジウムが0.44wt%担持さ
れた粒径3mmφの球状担持触媒を得た。 実施例 1 内径20mm、長さ55cmのガラス製反応管に、前記
担持触媒の調製例で調製した担持触媒10mlを充填
し、さらにその上部にガラスビーズを20cm高さ充
填した。 この反応管を垂直に固定し、電気加熱の環状ヒ
ーターをこの外部に取りつけ、触媒層内温度が
110℃になるように加熱制御した。 この反応管上部から、一酸化炭素を4Nl/hr、
ガス状の亜硝酸メチルを3Nl/hr、一酸化窒素を
0.6Nl/hr、ガス状のメタノールを3Nl/hrおよ
び窒素を9.4Nl/hrの速度で供給し、常圧下に反
応させた。 反応管を通過した反応生成物は、まずメタノー
ル中に通してシユウ酸ジメチルを捕集し、メタノ
ールで捕集されない低沸物を次いでドライアイス
−メタノールで捕集し、それぞれの捕集液につい
てガスクロマトグラフイーによつて分析を行なつ
た。 実施例2〜5および比較例1〜3 各種比表面積を有するアルミナを用い、前記担
持触媒の調製例に準じて調製した、粒径3mmφの
球状アルミナ担持パラジウム触媒10mlを用い、実
施例1と同様の操作で実験を行つた。 比較例 4,5 アルミナの代りに、シリカ(71%)−アルミナ
(28%)またはゼオライトを用い、前記担持触媒
の調製例に準じて調製した、直径1mm、高さ4〜
5mmの円柱状シリカ−アルミナ担持パラジウム触
媒(比較例4)、直径2mm、高さ2〜3mmの円柱
状ゼオライト担持パラジウム触媒(比較例5)
を、各10ml用い、実施例1と同様の操作で実険を
行つた。 実施例1〜5および比較例1〜5の結果を、第
1表に示す。
This invention relates to a new method for producing oxalic acid diesters. Oxalic acid diesters have important uses as raw materials for the synthesis of oxalic acid, oxamides, glycols, dye intermediates, and pharmaceuticals. A method for producing oxalic acid diester by bringing carbon monoxide and nitrite into contact with a platinum group metal catalyst in the gas phase is known. This platinum group metal catalyst is usually used supported on a carrier, such as silica-alumina, magnesia, activated carbon, etc.
Zeolite and even alumina are used. Catalytic activity in chemical reactions often changes unexpectedly depending on the type of support or its physical properties. From this point of view, the inventors aimed to develop a support most suitable for a platinum group metal catalyst used in the production of oxalic acid diester through a gas phase catalytic reaction between carbon monoxide and nitrite. We conducted an intensive search for the effects of various carriers on platinum group metal catalysts. As a result, surprisingly, when alumina with a specific surface area of 79 m 2 / g or less is used as a carrier, it has an extremely high It was discovered that oxalic acid diester can be obtained with high yield and high selectivity, and the present invention was achieved. That is, the present invention is characterized in that carbon monoxide and nitrite are subjected to a catalytic reaction in the gas phase in the presence of a platinum group metal catalyst supported on alumina having a specific surface area of 79 m 2 /g or less. The present invention provides an industrially excellent method for producing acid diesters. In this specification, specific surface area (m 2 /
g) means a value measured by the BET method using a nitrogen gas adsorption method. As the platinum metal catalyst in this invention,
Palladium is the most effective, but platinum, rhodium, ruthenium, and iridium are also useful, as are the nitrates, sulfates, phosphates, halides, and salts of these metals, such as acetates, oxalates, and benzoates. served. In this invention, these platinum group metal catalysts are supported on alumina having a specific surface area of 79 m 2 /g or less. When alumina with a specific surface area larger than 79 m 2 /g is used as a carrier, the reaction rate between carbon monoxide and nitrite ester is slowed down, the space-time yield of oxalate diester is significantly reduced, and carbonate diester etc. The amount of by-products increases. If the specific surface area of alumina is too small, it will be difficult to support the platinum group metal catalyst, so the lower limit is preferably about 0.05 m 2 /g. In addition, alumina with a specific surface area of 79 m 2 /g or less is
It does not necessarily need to be pure, and may contain impurities such as silica, carbon, silicon carbide, iron oxide, calcium oxide, sodium oxide, potassium oxide, etc. up to about 20% by weight. The amount of platinum group metal catalyst supported is as follows :
0.01-10% by weight is preferred. There are no particular restrictions on the method of supporting the platinum group metal catalyst on alumina having a specific surface area of 79 m 2 /g or less, and any known supporting method may be employed.
Particularly excellent results can be obtained if supported in the following manner. First, an aqueous solution of platinum group metal salts with a specific surface area of 79
Impregnate into alumina of m 2 /g or less. As platinum group metal salts, any water-soluble salts are useful. Examples include hydrochlorides, nitrates, sulfates, acetates, phosphates, and sodium chloride complex salts of platinum group metals such as palladium, platinum, rhodium, and iridium. Impregnation is carried out by immersing alumina in an aqueous solution of platinum group metal salts at a temperature of usually 0 to 90°C for 0.1 to 10 hours, but in some cases, alumina is soaked with an aqueous solution of platinum group metal salts. This can also be done by: As the aqueous solution of platinum group metal salts, it is preferable to use a solution in which platinum group metal salts are dissolved in an acidic aqueous solution containing 0.01 to 10 wt% of an acidic compound. That is, when an acidic aqueous solution is used, the platinum group metal becomes easily soluble, and furthermore, the formation of hydroxides and oxides of the platinum group metal due to hydrolysis and their precipitation can be prevented.
As the acidic compound, those having an anionic group of platinum group metal salts are generally used. Next, the alumina impregnated with an aqueous solution of platinum group metal salts is separated, optionally washed with water, and further air-dried.
After drying by vacuum drying, heat drying, etc., it is subjected to alkali treatment. In the alkali treatment, alumina impregnated with an aqueous solution of platinum group metal salts is treated with an alkaline compound of 0.5~
Added to alkaline aqueous solution containing 10wt%, 10~90
It is carried out by stirring for 0.5-10 hours at a temperature of °C. Examples of aqueous alkaline solutions that can be used include sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate,
Aqueous solutions of alkali metal or alkaline earth metal hydroxides and salts such as sodium hydrogen carbonate and potassium carbonate are useful, and these can also be used in combination. Although there is no particular restriction on the amount of these alkaline compounds used, it is preferable to use 2 to 40 moles of the alkaline compound per mole of the platinum group metal salt. After the alkali treatment, the alumina carrying the platinum group metal salts is washed and dried if necessary, and then subjected to a reduction treatment, and further washed and dried. In this reduction treatment, for example, alumina carrying a platinum group metal salt is added to an aqueous solution of 1 to 10 wt % of hydrazine, sodium formate, or formaldehyde, and the mixture is stirred at a temperature of 10 to 50° C. for 0.5 to 10 hours. It may also be carried out by so-called liquid phase reduction. Alternatively, so-called gas phase reduction can be carried out by contacting alumina carrying platinum group metal salts with a gas such as hydrogen, carbon monoxide, or ammonia at a temperature of 50 to 500° C. for 1 to 10 hours. The nitrite ester used in the method of this invention is
An ester of nitrous acid with a saturated monohydric aliphatic alcohol or alicyclic alcohol having 1 to 8 carbon atoms, and alcohol components include, for example, methanol, ethanol, n-(and iso-)propanol, n- Aliphatic alcohols such as (iso-, sec-, tert-) butanol, n-(and iso-) amyl alcohol, hexanol, octanol, and alicyclic alcohols such as cyclohexanol, methylcyclohexanol, etc. These alcohols may contain substituents such as alkoxy groups that do not inhibit the reaction. This reaction needs to be carried out under conditions such that no liquid phase is formed in the reaction zone. The conditions under which a liquid phase is not formed in the reaction zone vary depending on conditions such as reaction temperature, reaction pressure, type of nitrite ester, and concentration used, and cannot be uniformly determined. However, regarding the reaction temperature, the reaction proceeds sufficiently quickly even at low temperatures, and the lower the reaction temperature, the fewer side reactions occur, so as long as the desired space-time yield is maintained, the reaction temperature is relatively low, that is, usually 50 to 200°C, preferably. is carried out at a temperature of 80-150°C. The reaction pressure is usually normal pressure to 10Kg/cm 2 (gauge pressure), preferably normal pressure to 5Kg/cm 2 (gauge pressure).
The pressure may be slightly lower than normal pressure depending on the case. The concentration of nitrite ester used can vary over a wide range, but in order to obtain a satisfactory reaction rate, the concentration of nitrite ester in the raw material gas introduced into the reactor should be at least 1% by volume. It is necessary to have it present, usually in an amount of 5 to 30% by volume. The carbon monoxide used in the method of the invention may be pure or diluted with an inert gas, such as nitrogen. Also, the concentration of carbon monoxide in the reaction zone can vary over a wide range and is usually
A range of 10-90% by volume is chosen. The method of the present invention is carried out using, for example, a fixed bed or fluidized bed reactor, and the contact time of the raw material gas with the catalyst is preferably 20 seconds or less, particularly in the range of 0.2 to 10 seconds. Note that nitrite ester is usually prepared by reacting alcohol and nitrogen oxide in the presence of molecular oxygen if necessary, and the gas contains, in addition to nitrite ester, unreacted alcohol, Contains nitrogen oxides (particularly nitric oxide) and sometimes trace amounts of water and oxygen. In this invention, such a nitrite-containing gas can be used as a nitrite source, and the specific surface area is 79 m 2 /
The platinum group metal-based catalyst supported on alumina, preferably 62 m 2 /g or less, exhibits extremely high catalytic activity even when using a nitrite ester containing such impurities. Next, preparation examples, examples, and comparative examples of supported catalysts will be given. Preparation example of supported catalyst After dissolving 0.77 parts by weight of palladium chloride in 34.2 parts by weight of 0.93 wt% aqueous hydrochloric acid solution, the specific surface area was approximately 3.1.
30 parts by weight of alumina of m 2 /g was immersed and stirred at room temperature for about 2 hours. After drying the alumina impregnated with palladium chloride obtained by decantation, sodium hydroxide
The sample was immersed in a solution consisting of 0.5 parts by weight, 0.7 parts by weight of sodium hydrogen carbonate, and 48.8 parts by weight of water, and stirred at about 70° C. for about 9 hours to perform alkali treatment. Next, the alkali-treated product was washed with water until the washing liquid became neutral and no chlorine ions were detected.
It was immersed in an aqueous hydrazine solution consisting of 3 parts by weight of 85 wt% hydrazine hydrate and 97 parts by weight of water, and was stirred at room temperature for about 4 hours for reduction treatment. The reduced product was decanted, washed with water, and dried to obtain a spherical supported catalyst having a particle size of 3 mm in which 0.44 wt% of palladium was supported on alumina. Example 1 A glass reaction tube with an inner diameter of 20 mm and a length of 55 cm was filled with 10 ml of the supported catalyst prepared in the above Preparation Example of a Supported Catalyst, and glass beads were further filled above the tube to a height of 20 cm. This reaction tube is fixed vertically, and an electrically heated annular heater is attached to the outside of the tube to maintain the temperature inside the catalyst layer.
Heating was controlled to 110°C. From the top of this reaction tube, carbon monoxide was added at 4Nl/hr.
Gaseous methyl nitrite at 3Nl/hr, nitric oxide at
Gaseous methanol was supplied at a rate of 0.6 Nl/hr, gaseous methanol was supplied at a rate of 3 Nl/hr, and nitrogen was supplied at a rate of 9.4 Nl/hr, and the reaction was carried out under normal pressure. The reaction product that has passed through the reaction tube is first passed through methanol to collect dimethyl oxalate, then low-boiling substances that cannot be collected with methanol are collected with dry ice-methanol, and each collected liquid is subjected to gas chromametry. Analysis was performed by tography. Examples 2 to 5 and Comparative Examples 1 to 3 The same procedure as in Example 1 was carried out using 10 ml of a spherical alumina-supported palladium catalyst with a particle size of 3 mm, which was prepared according to the preparation example of the supported catalyst using alumina having various specific surface areas. The experiment was conducted using the following operations. Comparative Example 4, 5 A catalyst with a diameter of 1 mm and a height of 4 to 4 mm was prepared according to the preparation example of the supported catalyst using silica (71%)-alumina (28%) or zeolite instead of alumina.
5 mm cylindrical silica-alumina supported palladium catalyst (Comparative Example 4), 2 mm diameter, 2 to 3 mm height cylindrical zeolite supported palladium catalyst (Comparative Example 5)
The experiment was carried out in the same manner as in Example 1 using 10 ml of each. The results of Examples 1 to 5 and Comparative Examples 1 to 5 are shown in Table 1.

【表】 第1表から、この発明では極めて高収率、高選
択率でシユウ酸ジエステルが得られ、他の公知担
体およびこの発明で特定した以外のアルミナを担
体とした場合には、シユウ酸ジエステルの収率お
よび選択率が極めて低いことが認識される。 実施例 6 前記担持触媒の調製例において、アルカリ処理
を施さないで得たアルミナにパラジウムが0.44wt
%担持された粒径3mmφの球状担持触媒10mlを用
い、実施例1と同様の操作で実験を行つた。 その結果、シユウ酸ジメチルが371g/・hr
の空時収量で得られ、一酸化炭素基準の選択率は
シユウ酸ジメチル97.9%、炭酸ジメチル1.4%、
炭酸ガス0.7%であつた。 実施例 7 純度85.5%〔残部の主成分:シリカ(13%)〕
で比表面積1m2/gのアルミナを用い、前記担持
触媒の調製例に準じて調製した、アルミナにパラ
ジウムが0.41wt%担持された粒径3mmφの球状担
持触媒10mlを用い反応温度を120℃とした以外は
実施例1と同様な操作により実験を行つた。 その結果、シユウ酸ジメチル、炭酸ジメチル、
炭酸ガスの生成量はそれぞれ32.42mmol/hr(空
時収量383g/・hr)、1.25mmol/hr、
0.23mmol/hrであり、一酸化炭素基準の選択率
はそれぞれ97.8%、1.9%、0.4%であつた。 実施例 8 内径20mm、長さ55cmのガラス製反応管に、前記
担持触媒の調製法に準じて調製した比表面積8.7
m2/gのアルミナに担持した粒径3mmφの球状パ
ラジウム触媒10mlを充填し、さらにその上部にガ
ラスビーズを20cm高さ充填した。 この反応管を垂直に固定し、電気加熱の環状ヒ
ーターをこの外部に取りつけ、触媒層内温度が
110℃になるように加熱制御した。 この反応管上部から、一酸化炭素20Vol%、亜
硝酸メチル15Vol%および窒素65Vol%からなる
混合ガスを20Nl/hrの速度で供給し、常圧下に
反応させた。 その後の操作は、実施例1と同様に行なつた。 実施例 9 比表面積79m2/gのアルミナに担持した直径3
mm、高さ3mmの円柱状パラジウム触媒を10ml用い
た他は、実施例8と同様の操作によつて実験を行
つた。 実施例8および9の結果を、第2表に示す。
[Table] From Table 1, oxalic acid diester can be obtained with extremely high yield and high selectivity in this invention. It is recognized that diester yield and selectivity are extremely low. Example 6 In the preparation example of the supported catalyst, 0.44wt of palladium was added to alumina obtained without alkali treatment.
An experiment was carried out in the same manner as in Example 1 using 10 ml of spherical supported catalyst with a particle diameter of 3 mm. As a result, dimethyl oxalate was 371g/hr
The selectivity based on carbon monoxide is 97.9% for dimethyl oxalate, 1.4% for dimethyl carbonate,
The carbon dioxide content was 0.7%. Example 7 Purity 85.5% [Remaining main component: silica (13%)]
Using alumina with a specific surface area of 1 m 2 /g, 10 ml of a spherical supported catalyst with a particle size of 3 mmφ and 0.41 wt% palladium supported on alumina prepared according to the above-mentioned supported catalyst preparation example was used, and the reaction temperature was set to 120°C. The experiment was conducted in the same manner as in Example 1 except for the following. As a result, dimethyl oxalate, dimethyl carbonate,
The amount of carbon dioxide produced is 32.42 mmol/hr (space-time yield 383 g/hr), 1.25 mmol/hr, and
The selectivity based on carbon monoxide was 97.8%, 1.9%, and 0.4%, respectively. Example 8 A glass reaction tube with an inner diameter of 20 mm and a length of 55 cm was prepared with a specific surface area of 8.7 according to the method for preparing the supported catalyst described above.
10 ml of a spherical palladium catalyst with a particle size of 3 mmφ supported on alumina of m 2 /g was filled, and glass beads were further filled on top of the spherical palladium catalyst to a height of 20 cm. This reaction tube is fixed vertically, and an electrically heated annular heater is attached to the outside of the tube to maintain the temperature inside the catalyst layer.
Heating was controlled to 110°C. A mixed gas consisting of 20 vol% carbon monoxide, 15 vol% methyl nitrite, and 65 vol% nitrogen was supplied from the upper part of the reaction tube at a rate of 20 Nl/hr, and the reaction was carried out under normal pressure. The subsequent operations were performed in the same manner as in Example 1. Example 9 Diameter 3 supported on alumina with a specific surface area of 79 m 2 /g
An experiment was conducted in the same manner as in Example 8, except that 10 ml of a cylindrical palladium catalyst with a diameter of 3 mm and a height of 3 mm was used. The results of Examples 8 and 9 are shown in Table 2.

【表】 実施例 10 前記担持触媒の調製法に準じて調製した、比表
面積6.3m2/gのアルミナにパラジウム0.44wt%
を担持した粒径3mmφの球状パラジウム触媒10ml
を用い、反応管上部から一酸化炭素を4Nl/hr、
ガス状の亜硝酸エチルを1.2Nl/hr、一酸化窒素
を0.6Nl/hr、ガス状のエタノールを3Nl/hrお
よび窒素を11.2Nl/hrの速度で供給した他は、実
施例1と同様の操作で実験を行つた。 その結果、シユウ酸ジエチルが18.67mmol/hr
(空時収量:273g/・hr)生成し、炭酸ジエチ
ルは0.47mmol/hr、炭酸ガスは0.53mmol/hrし
か副生していなかつた。 実施例 11 前記担持触媒の調製法に準じて調製した、比表
面積8.7m2/gのアルミアにパラジウム0.5wt%を
担持した粒径3mmφの球状パラジウム触媒10ml
を、内径23mm、長さ55cmのステンレス製反応管に
充填し、さらにその上部にガラスビーズを20cm高
さ充填した。この反応管を垂直に固定し、電気加
熱の環状ヒーターをこの外部に取りつけ、触媒層
内の温度を110℃に保持した。 反応管上部から一酸化炭素20Vol%、亜硝酸メ
チル15Vol%、一酸化窒素3Vol%、メタノール
4Vol%および窒素58Vol%からなる混合ガスを
18.6Nl/hrの速度で供給し、2.0Kg/cm2(ゲージ
圧)の加圧下に反応させた。 反応管を通過した反応生成物は、まずメタノー
ル中に通してシユウ酸ジメチルを捕集し、メタノ
ールで捕集されない低沸物を次いでドライアイス
−メタノールで捕集し、それぞれの捕集液につい
てガスクロマトグラフイーによつて分析を行つ
た。 その結果、シユウ酸ジメチルが342g/・hr
の空時収量で得られ、一酸化炭素基準の選択率
は、シユウ酸ジメチル95.5%、炭酸ジメチル2.0
%、炭酸ガス0.7%であつた。 実施例 12 実施例11で用いた触媒と同じ担持パラジウム触
媒10mlを用い、反応管上部から一酸化炭素20Vol
%、亜硝酸メチル9.2Vol%、一酸化窒素3Vol%、
メタノール2Vol%、および窒素65.8Vol%からな
る混合ガスを38.7Nl/hrの速度で供給し、4.6
Kg/cm2(ゲージ圧)の加圧下に反応させた他は、
実施例11と同様の実験を行つた。 その結果、シユウ酸ジメチルが336g/・hr
の空時収量で得られ、一酸化炭素基準の選択率は
シユウ酸ジメチル95.8%、炭酸ジメチル2.4%、
炭酸ガス2.1%であつた。
[Table] Example 10 0.44 wt% palladium in alumina with a specific surface area of 6.3 m 2 /g prepared according to the method for preparing the supported catalyst described above.
10ml of spherical palladium catalyst with a particle size of 3mmφ supported on
4Nl/hr of carbon monoxide from the top of the reaction tube using
The same procedure as in Example 1 was carried out, except that gaseous ethyl nitrite was supplied at a rate of 1.2 Nl/hr, nitric oxide at 0.6 Nl/hr, gaseous ethanol at 3 Nl/hr, and nitrogen at a rate of 11.2 Nl/hr. We conducted an experiment by manipulating. As a result, diethyl oxalate was 18.67 mmol/hr.
(Space-time yield: 273 g/hr), and only 0.47 mmol/hr of diethyl carbonate and 0.53 mmol/hr of carbon dioxide were produced as by-products. Example 11 10 ml of a spherical palladium catalyst with a particle size of 3 mmφ and 0.5 wt% of palladium supported on aluminum with a specific surface area of 8.7 m 2 /g, prepared according to the method for preparing the supported catalyst described above.
was filled into a stainless steel reaction tube with an inner diameter of 23 mm and a length of 55 cm, and the top of the tube was filled with glass beads to a height of 20 cm. This reaction tube was fixed vertically, and an electrically heated annular heater was attached to the outside to maintain the temperature inside the catalyst layer at 110°C. Carbon monoxide 20Vol%, methyl nitrite 15Vol%, nitrogen monoxide 3Vol%, methanol from the top of the reaction tube
Mixed gas consisting of 4Vol% and nitrogen 58Vol%
It was fed at a rate of 18.6 Nl/hr and reacted under a pressure of 2.0 Kg/cm 2 (gauge pressure). The reaction product that has passed through the reaction tube is first passed through methanol to collect dimethyl oxalate, then low-boiling substances that cannot be collected with methanol are collected with dry ice-methanol, and each collected liquid is subjected to gas chromametry. Analysis was carried out by tography. As a result, dimethyl oxalate was 342g/hr
The selectivity based on carbon monoxide is 95.5% for dimethyl oxalate and 2.0% for dimethyl carbonate.
%, and carbon dioxide gas was 0.7%. Example 12 Using 10ml of the same supported palladium catalyst used in Example 11, 20Vol of carbon monoxide was added from the top of the reaction tube.
%, methyl nitrite 9.2Vol%, nitric oxide 3Vol%,
A mixed gas consisting of 2 Vol% methanol and 65.8 Vol% nitrogen was supplied at a rate of 38.7 Nl/hr.
The reaction was carried out under pressure of Kg/cm 2 (gauge pressure).
An experiment similar to Example 11 was conducted. As a result, dimethyl oxalate was 336g/hr
The selectivity based on carbon monoxide was 95.8% for dimethyl oxalate, 2.4% for dimethyl carbonate,
The carbon dioxide content was 2.1%.

Claims (1)

【特許請求の範囲】[Claims] 1 比表面積が79m2/g以下のアルミナに担持し
た白金族金属系触媒の存在下に、一酸化炭素と亜
硝酸エステルとを気相で接触反応させることを特
徴とする、シユウ酸ジエステルの製法。
1. A method for producing an oxalic acid diester, which is characterized by carrying out a catalytic reaction between carbon monoxide and a nitrite ester in the gas phase in the presence of a platinum group metal catalyst supported on alumina having a specific surface area of 79 m 2 /g or less. .
JP56007909A 1981-01-23 1981-01-23 Preparation of oxalic acid diester Granted JPS57122042A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP56007909A JPS57122042A (en) 1981-01-23 1981-01-23 Preparation of oxalic acid diester
US06/338,242 US4410722A (en) 1981-01-23 1982-01-11 Process for preparing oxalic acid diesters using platinum group metals supported on alumina
AU79453/82A AU545855B2 (en) 1981-01-23 1982-01-12 Oxalate esters from carbon monoxide
GB8201005A GB2092138B (en) 1981-01-23 1982-01-14 Process for preparing oxalic acid diesters
ZA82299A ZA82299B (en) 1981-01-23 1982-01-18 Process for preparing oxalic acid diesters
BR8200333A BR8200333A (en) 1981-01-23 1982-01-22 PROCESS TO PREPARE AN OXALIC ACID DIESTER
DE8282100446T DE3261642D1 (en) 1981-01-23 1982-01-22 Process for preparing oxalic acid diesters
CA000394729A CA1187094A (en) 1981-01-23 1982-01-22 Process for preparing oxalic acid diesters
EP82100446A EP0056993B1 (en) 1981-01-23 1982-01-22 Process for preparing oxalic acid diesters
KR8200289A KR870000057B1 (en) 1981-01-23 1982-01-23 Process for preparing oxalic acid diester
MY344/87A MY8700344A (en) 1981-01-23 1987-12-30 Process for preparing oxalic acid diesters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56007909A JPS57122042A (en) 1981-01-23 1981-01-23 Preparation of oxalic acid diester

Publications (2)

Publication Number Publication Date
JPS57122042A JPS57122042A (en) 1982-07-29
JPH0518815B2 true JPH0518815B2 (en) 1993-03-15

Family

ID=11678668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56007909A Granted JPS57122042A (en) 1981-01-23 1981-01-23 Preparation of oxalic acid diester

Country Status (2)

Country Link
JP (1) JPS57122042A (en)
ZA (1) ZA82299B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102219680B (en) * 2010-04-15 2013-09-18 中国石油化工股份有限公司 Method for preparing oxalic ester by CO gas-phase process

Also Published As

Publication number Publication date
JPS57122042A (en) 1982-07-29
ZA82299B (en) 1982-12-29

Similar Documents

Publication Publication Date Title
US4242235A (en) Supports for silver catalysts utilized in the production of ethylene oxide
EP0361484B1 (en) Process for preparation of allyl acetate
EP0949965B1 (en) Improved process for the production of supported palladium-gold catalysts
RU1836144C (en) Method of preparing argent catalyst for oxidating ethylene into ethyleneoxide
KR870000057B1 (en) Process for preparing oxalic acid diester
KR100516259B1 (en) A catalyst comprising palladium and gold deposited on a copper containing carrier for production of vinyl acetate
US4874888A (en) Process for the preparation of a diester of oxalic acid
US6274531B1 (en) Vinyl acetate catalyst comprising metallic palladium and gold, and cupric acetate
US4507494A (en) Process for the production of a diester of oxalic acid
JPH0518815B2 (en)
KR870000036B1 (en) Process for the preparation of oxalic acid diesters
US3592840A (en) Production of vinyl acetate
EP0108359B1 (en) Process for the preparation of a diester of oxalic acid
EP0133778B1 (en) Methanol conversion process
JPS6113689B2 (en)
CA1139789A (en) Process for the manufacture of ethanol from synthesis gas
EP0056994B1 (en) Process for preparation of oxalic acid diesters
JPS58134040A (en) Manufacture of acetic acid, acetaldehyde and ethanol
JPH0155265B2 (en)
JPH0764781B2 (en) Method for producing allyl acetate
JP2940917B2 (en) Method for producing allyl acetate
JPS607939B2 (en) Production method of platinum group metal catalyst for oxalic acid diester synthesis
JP3820709B2 (en) Acetal or ketal manufacturing method
JPS6237028B2 (en)
JPS6260376B2 (en)