JPH05187987A - Method and device for inspecting density distribution in substrate - Google Patents

Method and device for inspecting density distribution in substrate

Info

Publication number
JPH05187987A
JPH05187987A JP345692A JP345692A JPH05187987A JP H05187987 A JPH05187987 A JP H05187987A JP 345692 A JP345692 A JP 345692A JP 345692 A JP345692 A JP 345692A JP H05187987 A JPH05187987 A JP H05187987A
Authority
JP
Japan
Prior art keywords
substrate
light
density distribution
base plate
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP345692A
Other languages
Japanese (ja)
Inventor
Yoshihiko Tagawa
良彦 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP345692A priority Critical patent/JPH05187987A/en
Publication of JPH05187987A publication Critical patent/JPH05187987A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to detect scattering of density distribution in a base plate simply, speedily and accurately by hypothetically quantitating qualitative density distribution in the base plate with the duplicate use of a Schlieren method and polarization method (cross Nicol method). CONSTITUTION:If an inspection base plate 1 is arranged on the point of the solid line or the chained line in the Cassegrain optical system constituted of a concave mirror 22 having a hole for laser beam penetration and a convex mirror 23 put at the focus point and Schlieren method is performed, the density distribution in the base plate 1 is projected on a screen 14 like a silhouette. Then, a beam from a laser source 20 is polarized linearly with one of pair of Nicol prisms (polarizer) arranged on both sides of the base plate 1 and passed in the base plate 1, it is taken out of the other Nicol prism (analyzer) and projected on the screen 14. Other distribution information and phase change information which can not be confirmed, are obtained. By this, qualitative density distribution in the base plate can be hypothetically quantitated and the existence of distribution scattering is judged speedily and exactly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水晶、Lib3等か
ら成る弾性表面波(以下SAWと称する)素子用基板の
密度分布を非接触式に検査する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact method for inspecting the density distribution of a surface acoustic wave (hereinafter referred to as SAW) element substrate made of quartz, L i N b O 3 or the like.

【0002】[0002]

【従来の技術】SAW素子用基板内の密度分布を事前に
検査してその歪みを検出することは、製品品質及び歩留
まりの向上を図る上で重要な要素となる。
2. Description of the Related Art It is an important factor to improve the product quality and the yield by inspecting the density distribution in the SAW element substrate in advance and detecting the distortion.

【0003】そのため、従来は、SAW素子の加工前
に、目視あるいはX線トポグラフや光散乱トモグラフ等
を用いて基板の歪みの有無を非破壊で検査していた。
Therefore, conventionally, before processing the SAW element, the presence or absence of distortion of the substrate has been inspected non-destructively by visual inspection or by using an X-ray topograph or a light scattering tomograph.

【0004】ここに、X線トポグラフとは、基板にX線
を照射してその反射光に基づいて内部構造を映像化する
ものであり、光散乱トモグラフとは、基板内の光の散乱
を利用し、散乱強度に比例した断層写真をとるものであ
る。
Here, the X-ray topograph refers to irradiating a substrate with X-rays to visualize the internal structure based on the reflected light thereof, and the light scattering tomograph utilizes the scattering of light within the substrate. However, a tomographic image proportional to the scattering intensity is taken.

【0005】[0005]

【発明が解決しようとする課題】上記検査方法のうち、
X線トポグラフによると、基板内の結晶格子の乱れを確
認できる反面、検査に数時間を要する問題があった。検
査時間を短縮化しようとすると、かなりの高出力線源が
必要となり、コストが飛躍的に上昇する。また、トポグ
ラフの性質上、基板内の反射が重なり合った情報となる
ので、平均化された映像となる問題もあった。
Of the above inspection methods,
According to the X-ray topography, although the disorder of the crystal lattice in the substrate can be confirmed, there is a problem that the inspection takes several hours. In order to shorten the inspection time, a considerably high power radiation source is required, and the cost increases dramatically. Further, due to the nature of the topography, the information in the reflection on the substrate overlaps with each other, resulting in an averaged image.

【0006】また、光散乱トモグラフでは、検査時の表
面散乱防止のため、光が通る程度の基板表面の光学ポリ
ッシュを行わなければならず、そのための前処理に時間
がかかるのに加え、高価な装置が必要となる問題があっ
た。
Further, in the light scattering tomograph, in order to prevent surface scattering during inspection, it is necessary to optically polish the surface of the substrate to the extent that light can pass therethrough. Therefore, pretreatment for that purpose takes time and is expensive. There was a problem that a device was required.

【0007】更に、目視で検査する場合にも、基板表面
の光学ポリッシュを精密に行わなければならず、その準
備に困難を伴う。また、検査は、コヒーレント、インコ
ヒーレント光の両方を用い、光の入射角を微妙に変えな
がら行うので、多大な時間を要する問題があった。
Further, even in the case of visual inspection, the optical polishing of the substrate surface must be carried out precisely, and the preparation thereof is difficult. Further, since the inspection is performed by using both coherent and incoherent light and subtly changing the incident angle of light, there is a problem that it takes a lot of time.

【0008】本発明は、かかる問題点に鑑みて創案した
もので、その目的とするところは、基板内密度分布のば
らつきの有無を、簡易な手法で高速且つ高精度に検出し
得る方法を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to provide a method capable of detecting the presence or absence of variation in the density distribution in a substrate with high speed and high accuracy by a simple method. To do.

【0009】[0009]

【課題を解決するための手段】本発明の検査方法は、被
検査基板を透光した光の屈折率分布を明暗のコントラス
トで表現するシュリーレン法と、被検査基板を透光した
光の位相速度変化を明暗のコントラスト又は色変化によ
り表現する偏光法とを併用する方法であって、これらシ
ュリーレン法と偏光法のいずれか一方を実行した後に他
方を実行することにより、定性的な基板内密度分布を疑
似的に定量化し、これにより、その分布ばらつきの有無
を判定するようにした。
The inspection method of the present invention comprises a Schlieren method for expressing the refractive index distribution of light transmitted through a substrate to be inspected by contrast of light and dark, and a phase velocity of light transmitted through the substrate to be inspected. A method that uses a polarization method that expresses changes by contrast of light and darkness or a color change in combination, and by performing either one of these Schlieren method and polarization method and then the other, a qualitative density distribution in the substrate Was quasi-quantified, and the presence or absence of the distribution variation was determined by this.

【0010】また、本発明の検査装置は、被検査基板を
透光した光の屈折率分布を明暗のコントラストで表現す
るシュリーレン法を実行する光学系を備えた装置であっ
て、その光学系の集光部近傍にナイフエッジを配してな
るものにおいて、このナイフエッジに代え、所定パター
ンが形成された透光性の空間周波数フィルタを前記集光
部に配してなる。
Further, the inspection apparatus of the present invention is an apparatus having an optical system for executing the Schlieren method for expressing the refractive index distribution of the light transmitted through the substrate to be inspected by the contrast of light and dark. In the case where a knife edge is arranged in the vicinity of the condensing part, a translucent spatial frequency filter having a predetermined pattern is arranged in the condensing part instead of the knife edge.

【0011】[0011]

【作用】シュリーレン法により基板内屈折率分布を影絵
のように映像化し、肉眼では見えない位相変化情報は偏
光法で取得する。これにより、定性的な情報が疑似的に
定量化される。
The refractive index distribution in the substrate is imaged like a shadow by the Schlieren method, and the phase change information that cannot be seen by the naked eye is obtained by the polarization method. As a result, qualitative information is pseudo-quantified.

【0012】また、光学系の集光部に空間周波数フィル
タを置くことで、該集光部に集まった光がこのフィルタ
を透光する際に所定パターンに対応する情報を形成す
る。したがって、この情報を基板内密度分布情報と併せ
て処理することで、より高度の情報に加工することがで
きる。
Further, by placing a spatial frequency filter in the condensing part of the optical system, when the light collected in the condensing part transmits the filter, information corresponding to a predetermined pattern is formed. Therefore, by processing this information together with the in-substrate density distribution information, it is possible to process it into higher-level information.

【0013】[0013]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】本発明の検査方法ではシュリーレン法と偏
光法とを併用するので、まず、図1を参照してシュリー
レン法の原理を説明する。
Since the schlieren method and the polarization method are used together in the inspection method of the present invention, the principle of the schlieren method will be described first with reference to FIG.

【0015】図1はシュリーレン法を実行するための装
置の基本構成図であり、光源10からの光を一方のシュ
リーレンレンズ11で一定方向に進行する光束に変換
し、被検査基板1をこの光束中に置いて光を通過させ
る。通過光を含む光束は、他方のシュリーレンレンズ1
2の集光部(焦点)に収束するが、このとき、被検査基
板1の内部密度が不均質の場合は通過光が屈折率の勾配
に従って曲げられる。このとき焦点近傍にナイフエッジ
13を置き、適当な明るさの視野に絞ると、ナイフエッ
ジ13の刃に近づく方向に屈折された部分は暗く、刃か
ら遠ざかる部分は明るくなり、これによって被検査基板
1内の密度分布が影絵のような明暗のコントラストとし
てスクリーン14上に投影される。この投影状態を確認
することで、基板内密度分布のばらつきの有無を迅速且
つ容易に判定することができる。
FIG. 1 is a basic configuration diagram of an apparatus for executing the Schlieren method. Light from a light source 10 is converted into a light flux that travels in a certain direction by one of the Schlieren lenses 11, and the substrate 1 to be inspected has this light flux. Put it inside and let the light pass through. The luminous flux including the passing light is the other Schlieren lens 1
The light is converged on the second condensing portion (focal point), but at this time, when the internal density of the substrate 1 to be inspected is inhomogeneous, the passing light is bent according to the gradient of the refractive index. At this time, if the knife edge 13 is placed near the focus and the field of view is adjusted to an appropriate brightness, the portion of the knife edge 13 refracted in the direction approaching the blade becomes dark and the portion away from the blade becomes bright, whereby the substrate to be inspected. The density distribution within 1 is projected on the screen 14 as a contrast of light and dark like a shadow picture. By checking this projection state, it is possible to quickly and easily determine whether or not there is a variation in the density distribution within the substrate.

【0016】上記シュリーレン法では、一般に光学系の
構成が長くなる(数メートル)が、シュミットカメラや
カセグレイン式の望遠鏡等に用いられるF値の小さなレ
ンズ・鏡を用いることにより、光学系はコンパクトにな
る。本実施例では、図2に示す構成のカセグレイン式光
学系を組むことで、よりコンパクト化を図っている。
In the Schlieren method, the optical system generally has a long structure (several meters), but the optical system can be made compact by using a lens / mirror having a small F value used in a Schmidt camera or a Cassegrain telescope. Become. In the present embodiment, the Cassegrain type optical system having the configuration shown in FIG. 2 is assembled to achieve further compactness.

【0017】図2のカセグレイン式の構成と図1の原理
図とを対比すると、レーザー光源20及びスペイシャル
フィルタ21が光源10に、レーザー光を通す孔部が形
成された凹面鏡22とその焦点位置に配された凸面鏡2
3が一対のシュリーレンレンズ11,12に夫々対応す
る。なお、被検査基板1は、図2の実線で示した位置の
外、一点鎖線で示した位置に配することもできる。
Comparing the structure of the Cassegrain system of FIG. 2 with the principle diagram of FIG. 1, the laser light source 20 and the spatial filter 21 are provided in the light source 10, and the concave mirror 22 having a hole through which the laser light passes and the focal position thereof. Convex mirror 2 placed on
3 corresponds to the pair of Schlieren lenses 11 and 12, respectively. The board 1 to be inspected may be arranged at the position shown by the alternate long and short dash line in addition to the position shown by the solid line in FIG.

【0018】次に偏光法について説明する。Next, the polarization method will be described.

【0019】本実施例では、一般にクロスニコル法と呼
ばれる方法を用いる。この方法は、基板内位相分布に対
応してその場の光の伝搬状態が異なり、位相速度が変化
する性質を利用したもので、例えば、一対のニコル(Ni
col)プリズムの間に被検査基板を配し、光源から出射さ
れた光を一方のニコルプリズム(偏光子)で直線偏光し
て基板中を通した後、これを偏光軸をクロスした他方の
ニコルプリズム(検光子)から取り出し、結像レンズを
介してあるいは直接にスクリーン上へ投影するものであ
る。ニコルプリズムの代わりにポラロイド板を用いるこ
ともできる。
In this embodiment, a method generally called the crossed Nicol method is used. This method utilizes the property that the propagation state of light in the field differs depending on the phase distribution in the substrate and the phase velocity changes. For example, a pair of Nicols (Ni
col) The substrate to be inspected is placed between the prisms, the light emitted from the light source is linearly polarized by one Nicol prism (polarizer) and passed through the substrate, and then the other Nicol with the polarization axis crossed. It is taken out from a prism (analyzer) and projected onto a screen through an imaging lens or directly. A polaroid plate may be used instead of the Nicol prism.

【0020】この方法によれば、基板内位相分布が均一
の場合にはスクリーン上の投影が均一に暗くなるが、密
度分布が不均一の場合は光路のレターデーションにより
楕円偏光になってスクリーン上の投影に明暗のコントラ
ストが生じたり、色変化が生じることから、容易に基板
内密度の分布状態を検査することができる。
According to this method, when the phase distribution in the substrate is uniform, the projection on the screen is uniformly dark, but when the density distribution is not uniform, it becomes elliptically polarized light due to the retardation of the optical path and on the screen. Since a contrast of light and darkness is generated in the projection of, and a color change is generated, it is possible to easily inspect the distribution state of the density in the substrate.

【0021】なお、一対のニコルプリズムは、図1ある
いは図2に示した基本構成の系において、被検査基板1
の入射側と出射側の両側に配することで、前記シュリー
レン法と偏光法とを併用することができる。
The pair of Nicol prisms are the same as the substrate 1 to be inspected in the system having the basic structure shown in FIG. 1 or 2.
The Schlieren method and the polarization method can be used in combination by arranging them on both sides of the incident side and the emitting side.

【0022】そこで、本実施例では、これらプリズムの
偏光面を同一(パラニコル)にしてシュリーレン法を実
行し、被検査基板1内の屈折率分布をまず影絵模様とし
て確認する。次いで、クロスニコル法を実行する。な
お、これらの順序は逆であっても良い。シュリーレン法
とともにクロスニコル法を併用する意義は、シュリーレ
ン法からは得られない光路の位相変化情報がクロスニコ
ル法で得られる点、及び肉眼(影絵)では確認できない
位相分布のばらつきを確認できる点にある。
Therefore, in the present embodiment, the Schlieren method is performed with the polarization planes of these prisms being the same (paranicols), and the refractive index distribution in the substrate 1 to be inspected is first confirmed as a shadow pattern. Then, the crossed Nicols method is executed. The order of these may be reversed. The significance of using the crossed Nicols method together with the schlieren method is that the phase change information of the optical path, which cannot be obtained by the schlieren method, can be obtained by the crossed nicols method, and that the variation of the phase distribution that cannot be confirmed by the naked eye (shadow picture) can be confirmed. is there.

【0023】これにより定性的な基板内密度分布を疑似
的に定量化でき、その分布ばらつきの有無を迅速且つ確
実に判定することができる。
As a result, the qualitative density distribution in the substrate can be quasi-quantified, and the presence or absence of the variation in the distribution can be determined quickly and reliably.

【0024】ところで、SAW素子に用いられる基板
は、通常、Si2、Lia3、Lib3等の単結晶で
あり、これらは透過域の長い方(例えば80[%]透
過)では4〜5[μm]の波長の赤外光まで透光させ
る。
By the way, the substrate used in the SAW device is usually a S i O 2, L i T a O 3, L i N b O 3 or the like of the single crystal, they longer transmittance region (e.g. 80 In [%] transmission, infrared light having a wavelength of 4 to 5 [μm] is transmitted.

【0025】したがって、上記方法において、光源に可
視光とともに赤外光をも用い、目視検査を行う場合はス
クリーン7への投影前に赤外光可視化装置を通すこと
で、0.4〜0.7[μm]の波長の可視光のみを用いる
場合に比べて被検査基板1の表面ポリッシュの作業を簡
略化し得る。これにより、従来の方法では必要不可欠で
あった高価な光学ポリッシュ装置が不要となり、低コス
ト化が図れる。また、検査時間もより短縮化される。
Therefore, in the above method, infrared light as well as visible light is used as the light source, and in the case of visual inspection, the infrared light visualization device is used before the projection on the screen 7 to give 0.4 to 0. The work of surface polishing of the inspected substrate 1 can be simplified as compared with the case where only visible light having a wavelength of 7 [μm] is used. This eliminates the need for an expensive optical polishing device, which was indispensable in the conventional method, and enables cost reduction. Moreover, the inspection time is further shortened.

【0026】なお、図1の構成の装置において、ナイフ
エッジ13に代え、集光部に透光性の空間周波数フィル
タを配置することにより、画像情報の種々の処理を光学
的に実現できる。例えば、空間周波数フィルタに所定の
パターンを形成することで、透光の際に該パターンに対
応する情報が得られる。この情報をシュリーレン法及び
クロスニコル法(偏光法)で得た情報と併せて処理すれ
ば、基板内分布密度のパターン認識や輪郭抽出、ひいて
は、四則演算や微分等の数学的処理も可能となる。
In the apparatus having the structure shown in FIG. 1, various processing of image information can be optically realized by disposing a translucent spatial frequency filter in the condensing portion instead of the knife edge 13. For example, by forming a predetermined pattern on the spatial frequency filter, information corresponding to the pattern can be obtained when transmitting light. If this information is processed together with the information obtained by the Schlieren method and the crossed Nicols method (polarization method), pattern recognition of the distribution density in the substrate, contour extraction, and mathematical processing such as four arithmetic operations and differentiation are also possible. ..

【0027】[0027]

【発明の効果】以上詳述したように本発明では、シュリ
ーレン法と偏光法とを併用して基板内密度分布を非接触
式に検査するようにしたので、以下のような効果を有す
る。
As described above in detail, in the present invention, the schlieren method and the polarization method are used in combination to inspect the density distribution in the substrate in a non-contact manner, so that the following effects are obtained.

【0028】(1)定性的な基板内密度分布を疑似的に定
量化し得るので、目視であっても基板の歪みの有無を迅
速且つ確実に判定できる。
(1) Since the qualitative density distribution in the substrate can be quantified in a pseudo manner, the presence or absence of distortion of the substrate can be promptly and reliably determined even by visual inspection.

【0029】(2)X線トポグラフや光散乱トモグラフで
は、電磁波の入射方法に依存して基板内部を検査するこ
とになるので、入射方向によっては隠れてしまう情報が
あるが、本発明によれば、その影響がなくなる。
(2) In the X-ray topograph and the light scattering tomograph, since the inside of the substrate is inspected depending on the incident method of electromagnetic waves, some information may be hidden depending on the incident direction, but according to the present invention. , Its effect disappears.

【0030】(3)簡易な光学系で実現でき、しかも、カ
セグレイン式の光学系も組めることから、汎用性に優
れ、その小型化も図れる。
(3) It can be realized by a simple optical system, and since a cassegrain type optical system can also be assembled, it is excellent in versatility and can be downsized.

【0031】(4)光学系を一度セットすればその位置調
整をすることなく、且つ、被検査基板を光路内にラフに
挿入するだけでその密度分布を確認できるので、扱いが
極めて容易であり、ライン化が図れる。また、シュリー
レン法及び偏光法は、いずれも自動化やコンピュータ画
像処理が図れるので、自動計測が可能になる。
(4) Once the optical system is set, its density distribution can be confirmed without adjusting its position and simply by roughly inserting the substrate to be inspected into the optical path, which is extremely easy to handle. The line can be achieved. Further, since both the schlieren method and the polarization method can be automated and computer image processing can be performed, automatic measurement is possible.

【0032】(5)光学系の集光部に空間周波数フィルタ
を配することで、密度分布のばらつきのみならず、より
高度の処理を光学的に実現することができる。
(5) By arranging the spatial frequency filter in the condensing part of the optical system, not only the variation of the density distribution but also higher-level processing can be optically realized.

【0033】なお、本発明はSAW素子用基板のみなら
ず、他の種類の基板にも適用することができる。
The present invention can be applied not only to the SAW element substrate but also to other types of substrates.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を構成するシュリーレン法の実行装置の
基本構成図である。
FIG. 1 is a basic configuration diagram of a schlieren method execution apparatus constituting the present invention.

【図2】上記シュリーレン法をカセグレイン式の光学系
を用いて実行する装置の基本構成図である。
FIG. 2 is a basic configuration diagram of an apparatus that executes the Schlieren method using a Cassegrain type optical system.

【符号の説明】[Explanation of symbols]

1…被検査基板、10…光源、11,12…シュリーレ
ンレンズ、13…ナイフエッジ、14…スクリーン、2
0…レーザー光源、21…スペイシャルフィルタ、22
…凹面鏡、23…凸面鏡。
DESCRIPTION OF SYMBOLS 1 ... Inspected substrate, 10 ... Light source, 11, 12 ... Schlieren lens, 13 ... Knife edge, 14 ... Screen, 2
0 ... Laser light source, 21 ... Spatial filter, 22
… Concave mirror, 23… Convex mirror.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検査基板を透光した光の屈折率分布を
明暗のコントラストで表現するシュリーレン法と、被検
査基板を透光した光の位相速度変化を明暗のコントラス
ト又は色変化により表現する偏光法とを併用する方法で
あって、これらシュリーレン法と偏光法のいずれか一方
を実行した後に他方を実行することにより、定性的な基
板内密度分布を疑似的に定量化し、その分布ばらつきの
有無を判定するようにしたことを特徴とする基板内密度
分布の検査方法。
1. A Schlieren method for expressing a refractive index distribution of light transmitted through a substrate to be inspected with a contrast of light and dark, and a phase velocity change of light transmitted through a substrate to be inspected by contrast of light and dark or a color change. This is a method that uses the polarization method in combination, and by performing one of these Schlieren method and polarization method and then the other, the qualitative density distribution in the substrate is quasi-quantified and the distribution variation A method for inspecting a density distribution in a substrate, characterized in that the presence or absence is judged.
【請求項2】 前記シュリーレン法及び前記偏光法の光
源に可視光及び赤外光を用いたことを特徴とする請求項
1記載の基板内密度分布の検査方法。
2. The method for inspecting the density distribution within a substrate according to claim 1, wherein visible light and infrared light are used as light sources for the schlieren method and the polarization method.
【請求項3】 被検査基板を透光した光の屈折率分布を
明暗のコントラストで表現するシュリーレン法を実行す
る検査装置であって、その光学系の集光部近傍にナイフ
エッジを配してなるものにおいて、 このナイフエッジに代え、所定パターンが形成された透
光性の空間周波数フィルタを前記集光部に配してなるこ
とを特徴とする基板内密度分布の検査装置。
3. An inspection apparatus for executing a schlieren method for expressing a refractive index distribution of light transmitted through a substrate to be inspected by contrast of light and dark, wherein a knife edge is arranged in the vicinity of a condensing part of the optical system. In addition, in place of the knife edge, a translucent spatial frequency filter having a predetermined pattern is arranged in the condensing portion, and the in-substrate density distribution inspection device is characterized.
JP345692A 1992-01-13 1992-01-13 Method and device for inspecting density distribution in substrate Pending JPH05187987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP345692A JPH05187987A (en) 1992-01-13 1992-01-13 Method and device for inspecting density distribution in substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP345692A JPH05187987A (en) 1992-01-13 1992-01-13 Method and device for inspecting density distribution in substrate

Publications (1)

Publication Number Publication Date
JPH05187987A true JPH05187987A (en) 1993-07-27

Family

ID=11557830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP345692A Pending JPH05187987A (en) 1992-01-13 1992-01-13 Method and device for inspecting density distribution in substrate

Country Status (1)

Country Link
JP (1) JPH05187987A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106323809A (en) * 2016-11-07 2017-01-11 浙江师范大学 Device for determining density continuous distribution of uniform-thickness transparent high polymer product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106323809A (en) * 2016-11-07 2017-01-11 浙江师范大学 Device for determining density continuous distribution of uniform-thickness transparent high polymer product

Similar Documents

Publication Publication Date Title
WO2020215199A1 (en) Surface defect detection system and method
JPH095252A (en) Inspecting equipment of foreign substance on mask
CN110044931B (en) Detection apparatus for curved surface glass surface and internal defect
US6215549B1 (en) Apparatus for measuring optical characteristics
TW479127B (en) Method and device for measuring thickness of test object
CN107561007A (en) A kind of measured thin film apparatus and method
US5694217A (en) Interferometer for testing forms of surface and stress and strain
CN110530821B (en) Measuring device and measuring method for refractive index of optical material
CN108572160B (en) Refractometer for measuring refractive index distribution
JP2017090581A (en) Lighting device and observation system
JPH10281876A (en) Polarizing imaging system
JPH05187987A (en) Method and device for inspecting density distribution in substrate
JP2000329535A (en) Simiultaneous measuring apparatus for phase-shifting interference fringes
GB2135448A (en) Inspection apparatus and method
US20030151749A1 (en) Interferometric optical surface comparison apparatus and method thereof
JP3219462B2 (en) Thin film measuring instrument
CN110044932A (en) A kind of detection method on bend glass surface and internal flaw
JPH09281401A (en) Object inspecting instrument
US2880648A (en) Half-shade devices for use with polarizing instruments
KR102517637B1 (en) Polarization analysis apparatus and method for lens quality inspection, and polarization analysis system using the same
JPH0783845A (en) Inspection device
WO2021039900A1 (en) Sample measurement device and sample measurement method
RU2179789C2 (en) Laser centering mount for x-ray radiator
JP2001228471A (en) Inspecting method, repairing method and repairing device for reflection type liquid crystal display device
JP2014167414A (en) Object surface inspection device