JPH0518795B2 - - Google Patents

Info

Publication number
JPH0518795B2
JPH0518795B2 JP59200220A JP20022084A JPH0518795B2 JP H0518795 B2 JPH0518795 B2 JP H0518795B2 JP 59200220 A JP59200220 A JP 59200220A JP 20022084 A JP20022084 A JP 20022084A JP H0518795 B2 JPH0518795 B2 JP H0518795B2
Authority
JP
Japan
Prior art keywords
substrate
diamond
screen mesh
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59200220A
Other languages
Japanese (ja)
Other versions
JPS6177697A (en
Inventor
Kazutaka Fujii
Nobuaki Shohata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59200220A priority Critical patent/JPS6177697A/en
Publication of JPS6177697A publication Critical patent/JPS6177697A/en
Publication of JPH0518795B2 publication Critical patent/JPH0518795B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、気相からダイヤモンドを基板上に析
出させる方法および装置に関する。 (従来技術とその問題点) 炭素化合物気体の熱分解によつてダイヤモンド
を合成する方法として、従来いくつかの方法が知
られている。 たとえば、1980年発行のジヤーナル・オブ・ノ
ン・クリスタリン・ソリツズ誌(Journal of
Nou−Crystalline Solids)第35&36巻第435ベー
ジ記載の論文には、ガラス又はモリブデンを蒸着
したガラスを基板に用い、圧力0.9トール、ガス
流量毎分0.5〜7.0c.c.基板温度25〜375℃、放電電
流0.8〜2mA、放電電圧300〜400Vの条件下で、
アセチレンを直流グロー放電により分解し、アモ
ルフアス・カーボン膜を得たことを述べている。
前記のアモルフアスカーボン膜の電気抵抗率は、
最大1016Ωcmであり、絶縁性のカーボン膜が得ら
れている点では優れているが、膜厚が1μmを越え
たり、熱処理したりすると、カーボン膜が基板か
らはがれる欠点がある。また、基板温度が高い場
合には、カーボン膜は黒色になり、グラフアイト
状になる欠点がある。更に、結晶性のダイヤモン
ド膜を合成できない欠点を有している。 更に別な方法として、減圧状態の反応気体をマ
イクロ波放電ないしは高周波放電によつてプラズ
マを発生せしめ、直接プラズマ中にないしはプラ
ズマのアフターグロー中に基板を設置し、基板上
にダイヤモンドを析出させる方法や、イオン化し
た炭素を基板に衝突させることによつて膜状ダイ
ヤモンドを合成する方法もあるが、前者の方法は
ダイヤモンド相を得るには、基板を高温にしなけ
ればならない欠点を有している。更に、プラズマ
中に基板を設置する為、基板のプラズマ損傷が避
けられない。後者の方法は、常温付近でダイヤモ
ンドを合成できる方法で優れた方法であるが、装
置が高価である欠点を有している。更に、ビーム
状にイオンを引き出す為ビーム強度にむらがあり
広い面積に均一なダイヤモンド相を得られない欠
点を有している。 また、通常の直流グロー放電装置は、対向した
2枚の電極を備えており、一方の電極上に基板を
設置して、電極間に直流電圧を印加し直流グロー
放電を発生せしめて、基板上に薄膜を合成する構
成となつている。 上述の構成では、基板に直接加速されたイオン
が入射し基板のスパツタが生じ、基板を構成する
原子が合成しようとする薄膜に混入する欠点があ
る。更に、絶縁性の薄膜を基板に成長させると、
放電が持続しにくい欠点がある。 (本発明の目的) 本発明の目的は、このような従来の欠点を除去
せしめて、平坦な表面を有し、基板との付着力も
強固な、透明なダイヤモンド薄膜を基板原子の混
入を阻止して、低温で製造できるダイヤモンドの
合成法及び装置を提供することにある。 (発明の構成) すなわち、本発明は炭素化合物の気体ないしは
蒸気を直流グロー放電中で分解及び励起させ、ダ
イヤモンドを基板上に形成する方法において、対
向した2つの電極の間にスクリーン・メツシユを
設置し、一方の電極と該スクリーン・メツシユの
間に直流電圧を印加し、直流グロー放電を発生せ
しめ、他方の独立した直流電圧を印加した電極上
に基板を設置し、該基板上にダイヤモンドを形成
することを特徴とするダイヤモンドの気相合成法
と、ガス供給部と真空排気系とが接続した真空槽
と、該真空槽内部に対向した二枚の電極とを備え
一方の電極上に基板を設置したダイヤモンドの気
相合成装置において、対向した二枚の電極の間に
移動可能なスクリーン・メツシユを備えたことを
特徴とするダイヤモンドの気相合成装置である。 (構成の詳細な説明) 本発明は、上述の構成をとることにより従来技
術の問題点を解決した。 一般に、気相からダイヤモンドを合成せしめる
には、炭素源として、炭素化合物の気体ないしは
蒸気を使用する。ところが、気相からのダイヤモ
ンド析出プロセスは、熱力学的に準安定な相を安
定化せしめる人工的操作を要求される。反応ガス
の熱分解からだけ遊離炭素原子を得ようとすると
基板上に非ダイヤモンド炭素が析出するのは、自
明である。また、プラズマを利用する方法におい
ても、単一の励起過程だけでダイヤモンドを合成
するプロセスでは、エネルギーが不足しており、
ダイヤモンドが安定に析出するには、高温を必要
とし、更に非ダイヤモンド炭素の副生も生じる結
果となる。従つてダイヤモンドを気相から合成す
る過程において、反応ガスを分解及び励起する過
程と併せて、該分解・励起種に更にエネルギーを
付加せしめる過程が存在すると、効果的に、低温
でダイヤモンドを合成できる。 本発明の方法は、炭素化合物の気体ないしは蒸
気を対向する電極間に設置されたスクリーン・メ
ツシユと基板を設置していない電極の間で直流グ
ロー放電領域を形成させ、もう一つの電極上に設
置した基板に電荷中性の活性種を拡散させ、ない
しは該基板に独立した電位を印加させることによ
つて、正または負に帯電した活性種を加速ないし
は減速して基板に衝突させることによつて基板上
にダイヤモンドとして析出させる方法である。 即ち、本発明の原理は、まずダイヤモンドの気
相合成に必要な活性種をスクリーン・メツシユと
基板を設置していない電極の間の直流グロー放電
領域で生じせしめた後、もう一つの電極上に設置
した基板まで拡散せしめる。ここで、スクリーン
メツシユと基板を設置した電極間にグロー放電を
発生させないため、及び正または負に帯電した活
性種を加速ないし減速するために、基板を設置し
た電極に適切な電位を印加することによつて、基
板上にこれらの活性種を衝突せしめ、化学的に安
定なSP結合やSP2結合を切り、SP3結合を持つた
ダイヤモンドのみを基板上に析出させる。帯電し
た活性種が基板に衝突することによつて、ダイヤ
モンド薄膜の基板との密着性は良好となる。ダイ
ヤモンドを成長させる過程における水素の役割は
複雑であるが、主としてプラズマ中で原子状水素
となり、基板上に析出したSP,SP2結合を有する
炭素、即ち、非ダイヤモンド炭素を炭化水素化し
除去すると考えられているので、炭素化合物の気
体ないし蒸気に水素ガスを混入したものを反応ガ
スとして用いると、非ダイヤモンド炭素の除去に
一層効果があると考えられる。 従来、直流グロー放電法で用いることのできる
基板及び合成物質は、グロー放電を安定に持続さ
せるために抵抗の低い物質、すなわち導体ないし
は半導体に限られていた。本発明では直流グロー
放電は基板を設置していない電極とスクリーン・
メツシユの間で発生せしめ、スクリーン・メツシ
ユと基板を設置した電極間にはグロー放電を発生
させない条件であるため、従来、困難であつた絶
縁性の基板も用いることができる。更に、絶縁性
の薄膜も安定に析出させ得る。 放電を容易にするガスとして希ガスを炭素化合
物の気体ないし蒸気中に混入することが考えられ
るが、特に放電し易いアルゴンガスを用いれば放
電圧力範囲を拡大できる。 ダイヤモンドを気相から合成する手法には、原
子状水素が重要な役割を果すことが云われており
炭素化合物の気体ないしは蒸気中に水素を混入す
ることによつても効率的にダイヤモンドを合成で
きる。 本発明の方法においては、適当なバイアス電圧
を印加したスクリーン・メツシユと基板を設置し
た電極の距離の選定は、減速ないしは加速され、
帯電した活性種が反応ガス中を運動して基板に衝
突する条件を決定したり、直流グロー放電領域内
で発生した電荷中性活性種の拡散状態を決定する
要因となるため、ダイヤモンドの合成条件として
重要な因子である。 該距離は短かい方が望ましいが、具体的には対
向した電極の中央から基板を設置した電極直上に
スクリーンメツシユを設置することが望ましい。 また、直流グロー放電を安定に維持するために
スクリーンメツシユの制御も重要である。即ち、
スクリーンメツシユ上には、炭化水素の分解生成
物である高抵抗ないしは絶縁性物質が析出し易く
スクリーンメツシユの孔をつまらせたり、電荷の
蓄積が生じたりして、直流グロー放電条件の変動
を招き、安定な成長を防げているのが現状である
が、本発明の装置の構成のように、スクリーンメ
ツシユを平行に対向した二枚の電極面に平行に移
動し、常に新しい面を電極に向けるようにすれば
上述の欠点を除去できる。 移動機構としては、種々の方法が考えられる
が、長時間の稼動が可能な点を考慮して二つのロ
ールを用い、片方のロールにスクリーンメツシユ
を巻いておきもう一つのロールで巻きとるような
機構が考えられる。 以下、図面を用いて本発明に使用した装置例お
よび製造工程を詳細に説明する。本発明において
使用した基板は、前処理として基板に適したエツ
チング剤を用いて表面を清浄にしたものを用い
る。 図において、洗浄後の基板5を電極6上に設置
後、真空槽1内を10-3トールまでロータリーポン
プ9により予備真空し、ヒーター7を用いて所定
の温度まで加熱する。炭化水素ガスボンベ10、
水素ガスボンベ11又は希ガスボンベ12からコ
ツク13,14,15を開いて所定の反応ガスを
真空槽1内に導入し、圧力調整器8を用いて所定
の圧力に保つ。 直流グロー放電は接地したスクリーンメツシユ
3と電極6の間にグロー放電が発生しない様に適
当なバイアス電圧を印加し、電極2に数百ボルト
の正また負の直流電圧を印加せしめ、発生させ
る。バイアス電圧は±100ボルトまでが有効であ
る。スクリーンメツシユ3は、二つのロール1
6,17よりなるスクリーンメツシユ移動機構4
により電極2と6に平行に移動させることができ
る。 さらに最適なスクリーンメツシユ位置を決定す
る為に、スクリーンメツシユ3及びスクリーンメ
ツシユ移動機構4を電極2と6に垂直に移動させ
ることができる。 (実施例) 直流グロー放電は、基板を設置していない電極
に正または負の数百ボルトの直流電圧を印加せし
め、接地したスクリーンメツシユの間で発生せし
めた。放電電流密度は1mA/cm2とした。基板に
は、+100ボルトから−100Vまでの電圧を印加し
た。圧力は1トール、反応時間は1時間、温度
200℃と一定に保つた。スクリーンメツシユの位
置は、二つの電極の距離を100とし、基板の位置
を0として相対値で表わした。実験条件と透渦型
電子顕微鏡による同定結果及びひつかき法による
付着力の実験結果を第1表に示す。スクリーンメ
ツシユを固定した場合、数十分の反応時間で放電
は不安定となり、均一な膜が析出しなくなつた
が、スクリーンメツシユを毎分5cmで移動させる
と基板全面に均一な干渉色を呈するダイヤモンド
薄膜が得られた。 なおスクリーンメツシユは20〜100メツシユが
適当であり、この実施例では80メツシユを用い
た。
(Industrial Application Field) The present invention relates to a method and apparatus for depositing diamond on a substrate from a gas phase. (Prior Art and its Problems) Several methods are conventionally known for synthesizing diamond by thermal decomposition of carbon compound gas. For example, the Journal of Non-Crystalline Solites, published in 1980.
Nou-Crystalline Solids) Volumes 35 & 36, Page 435, the paper uses glass or molybdenum-deposited glass as the substrate, the pressure is 0.9 Torr, the gas flow rate is 0.5 to 7.0 cc per minute, the substrate temperature is 25 to 375 degrees Celsius, and the discharge current is Under the conditions of 0.8~2mA, discharge voltage 300~400V,
It is stated that amorphous carbon film was obtained by decomposing acetylene by direct current glow discharge.
The electrical resistivity of the amorphous carbon film is:
It has a maximum resistance of 10 16 Ωcm and is excellent in that it provides an insulating carbon film, but it has the disadvantage that the carbon film will peel off from the substrate if the film thickness exceeds 1 μm or if it is heat treated. Further, when the substrate temperature is high, the carbon film becomes black and graphite-like. Furthermore, it has the disadvantage that a crystalline diamond film cannot be synthesized. Still another method is to generate plasma by microwave discharge or high frequency discharge from a reaction gas under reduced pressure, place a substrate directly in the plasma or during the afterglow of the plasma, and deposit diamond on the substrate. Alternatively, there is a method of synthesizing film-like diamond by bombarding a substrate with ionized carbon, but the former method has the disadvantage that the substrate must be heated to a high temperature in order to obtain a diamond phase. Furthermore, since the substrate is placed in plasma, plasma damage to the substrate is unavoidable. The latter method is an excellent method in that it allows diamond to be synthesized at around room temperature, but it has the disadvantage that the equipment is expensive. Furthermore, since the ions are drawn out in a beam shape, the beam intensity is uneven, making it impossible to obtain a uniform diamond phase over a wide area. In addition, a normal DC glow discharge device is equipped with two electrodes facing each other, and a substrate is placed on one of the electrodes, and a DC voltage is applied between the electrodes to generate a DC glow discharge. The structure is such that a thin film is synthesized on the The above configuration has the drawback that accelerated ions are directly incident on the substrate, causing spatter on the substrate, and atoms constituting the substrate are mixed into the thin film to be synthesized. Furthermore, when an insulating thin film is grown on the substrate,
The disadvantage is that the discharge is difficult to sustain. (Object of the present invention) The purpose of the present invention is to eliminate such conventional drawbacks, and to create a transparent diamond thin film that has a flat surface and strong adhesion to the substrate, and prevents the incorporation of substrate atoms. The object of the present invention is to provide a method and apparatus for synthesizing diamond that can be produced at low temperatures. (Structure of the Invention) That is, the present invention provides a method for forming diamond on a substrate by decomposing and exciting carbon compound gas or vapor in a direct current glow discharge, in which a screen mesh is installed between two opposing electrodes. Then, a DC voltage is applied between one electrode and the screen mesh to generate a DC glow discharge, a substrate is placed on the other independent electrode to which a DC voltage is applied, and a diamond is formed on the substrate. A diamond vapor phase synthesis method is characterized in that the method includes a vacuum chamber to which a gas supply section and a vacuum exhaust system are connected, two electrodes facing each other inside the vacuum chamber, and a substrate is placed on one of the electrodes. This diamond vapor phase synthesis apparatus is equipped with a movable screen mesh between two opposing electrodes. (Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-described configuration. Generally, to synthesize diamond from a gas phase, a gas or vapor of a carbon compound is used as a carbon source. However, the process of diamond precipitation from the gas phase requires artificial manipulation to stabilize a thermodynamically metastable phase. It is obvious that non-diamond carbon will be deposited on the substrate if free carbon atoms are obtained only from the thermal decomposition of the reactant gas. In addition, even in methods that utilize plasma, the process of synthesizing diamond using only a single excitation process lacks energy.
Stable precipitation of diamond requires high temperatures and also results in the production of non-diamond carbon as a by-product. Therefore, in the process of synthesizing diamond from the gas phase, if there is a process that adds more energy to the decomposed and excited species in addition to the process of decomposing and exciting the reaction gas, it is possible to effectively synthesize diamond at low temperatures. . The method of the present invention involves forming a direct current glow discharge region between a screen mesh installed between opposing electrodes with a carbon compound gas or vapor and an electrode with no substrate installed, and forming a direct current glow discharge region between a screen mesh installed between opposing electrodes and an electrode installed on another electrode. By diffusing charge-neutral active species into a charged substrate or by applying an independent potential to the substrate, positively or negatively charged active species are accelerated or decelerated to collide with the substrate. This is a method in which diamond is deposited on a substrate. That is, the principle of the present invention is to first generate active species necessary for vapor phase synthesis of diamond in a DC glow discharge region between a screen mesh and an electrode on which no substrate is installed, and then to generate active species on another electrode. Let it spread to the installed board. Here, in order to prevent glow discharge from occurring between the screen mesh and the electrode on which the substrate is placed, and to accelerate or decelerate positively or negatively charged active species, apply an appropriate potential to the electrode on which the substrate is placed. By colliding these active species on the substrate, chemically stable SP bonds and SP 2 bonds are cut, and only diamond with SP 3 bonds is precipitated on the substrate. The collision of the charged active species with the substrate improves the adhesion of the diamond thin film to the substrate. The role of hydrogen in the process of growing diamond is complex, but it is thought that it mainly becomes atomic hydrogen in the plasma, and carbon with SP and SP 2 bonds precipitated on the substrate, that is, non-diamond carbon, is converted into hydrocarbons and removed. Therefore, it is thought that using a carbon compound gas or vapor mixed with hydrogen gas as the reaction gas is more effective in removing non-diamond carbon. Conventionally, substrates and synthetic materials that can be used in the DC glow discharge method have been limited to materials with low resistance, ie, conductors or semiconductors, in order to maintain stable glow discharge. In the present invention, DC glow discharge is performed using an electrode without a substrate and a screen.
Since the conditions are such that no glow discharge is generated between the meshes and between the electrodes on which the screen mesh and the substrate are installed, it is possible to use an insulating substrate, which has been difficult in the past. Furthermore, an insulating thin film can also be stably deposited. It is conceivable to mix a rare gas into the carbon compound gas or vapor as a gas that facilitates discharge, but if argon gas, which is particularly easy to discharge, is used, the discharge pressure range can be expanded. Atomic hydrogen is said to play an important role in the method of synthesizing diamond from the gas phase, and diamond can also be efficiently synthesized by mixing hydrogen into the gas or vapor of carbon compounds. . In the method of the present invention, the selection of the distance between the screen mesh to which an appropriate bias voltage is applied and the electrode on which the substrate is placed is decelerated or accelerated;
Diamond synthesis conditions are important because they determine the conditions under which charged active species move in the reaction gas and collide with the substrate, and determine the diffusion state of charge-neutral active species generated within the DC glow discharge region. This is an important factor. Although it is desirable that the distance be short, specifically, it is desirable to install the screen mesh from the center of the opposing electrodes directly above the electrode on which the substrate is installed. Furthermore, control of the screen mesh is also important in order to maintain stable DC glow discharge. That is,
High resistance or insulating substances, which are decomposition products of hydrocarbons, tend to deposit on the screen mesh, clogging the pores of the screen mesh and causing charge accumulation, which can lead to fluctuations in DC glow discharge conditions. Currently, stable growth is prevented, but as in the configuration of the device of the present invention, the screen mesh is moved parallel to the two electrode surfaces facing each other in parallel, so that new surfaces are always created. By directing it toward the electrode, the above-mentioned drawbacks can be eliminated. Various methods can be considered for the moving mechanism, but in consideration of the fact that it can be operated for a long time, two rolls are used, and the screen mesh is wound on one roll and then wound on the other roll. A possible mechanism is possible. Hereinafter, examples of the apparatus and manufacturing process used in the present invention will be explained in detail with reference to the drawings. The surface of the substrate used in the present invention has been cleaned using an etching agent suitable for the substrate as a pretreatment. In the figure, after a cleaned substrate 5 is placed on an electrode 6, the inside of the vacuum chamber 1 is preliminarily evacuated to 10 -3 Torr with a rotary pump 9, and heated with a heater 7 to a predetermined temperature. Hydrocarbon gas cylinder 10,
The tanks 13, 14, 15 from the hydrogen gas cylinder 11 or the rare gas cylinder 12 are opened to introduce a predetermined reaction gas into the vacuum chamber 1, and the pressure regulator 8 is used to maintain a predetermined pressure. DC glow discharge is generated by applying an appropriate bias voltage between the grounded screen mesh 3 and electrode 6 so that no glow discharge occurs, and applying a positive or negative DC voltage of several hundred volts to electrode 2. . Bias voltages up to ±100 volts are valid. Screen mesh 3 has two rolls 1
Screen mesh moving mechanism 4 consisting of 6 and 17
can be moved parallel to the electrodes 2 and 6. Furthermore, the screen mesh 3 and the screen mesh moving mechanism 4 can be moved perpendicular to the electrodes 2 and 6 in order to determine the optimum screen mesh position. (Example) A DC glow discharge was generated between a grounded screen mesh by applying a positive or negative DC voltage of several hundred volts to an electrode on which no substrate was installed. The discharge current density was 1 mA/cm 2 . A voltage of +100 volts to -100 volts was applied to the substrate. Pressure is 1 Torr, reaction time is 1 hour, temperature
It was kept constant at 200℃. The position of the screen mesh was expressed as a relative value, with the distance between the two electrodes being 100 and the position of the substrate being 0. Table 1 shows the experimental conditions, the identification results using a transmission vortex electron microscope, and the experimental results of the adhesion force using the scratching method. When the screen mesh was fixed, the discharge became unstable and a uniform film could no longer be deposited after several tens of minutes of reaction time, but when the screen mesh was moved at a rate of 5 cm per minute, a uniform interference color appeared over the entire surface of the substrate. A diamond thin film exhibiting the following properties was obtained. Note that a screen mesh of 20 to 100 meshes is appropriate, and in this example, 80 meshes were used.

【表】 (本発明の効果) 本発明により、ダイヤモンドの薄膜が大きな付
着力で低温で合成された。 従来の方法で得られた膜の付着は数十gである
ので、本発明の方法により合成された膜の付着力
は数倍以上大きく、半導体デバイスの表面パツシ
ベーシヨン、工具等への表面保護膜としての応用
範囲が拡がり、工業的価値が一層増大した。 従来の直流グロー放電法では、絶縁性の基板を
使用すること又は絶縁性の薄膜を合成することは
困難であるが、本発明の装置の構成により絶縁体
であるダイヤモンドを絶縁体である石英ガラスの
上に析出させることが可能であり、直流グロー放
電法という簡単な構成で絶縁性、非絶縁性を問わ
ずすべての基板上にダイヤモンドを合成できるよ
うになり、工業的価値が増大した。
[Table] (Effects of the present invention) According to the present invention, a diamond thin film was synthesized at a low temperature with a large adhesion force. The adhesion of the film obtained by the conventional method is several tens of grams, so the adhesion force of the film synthesized by the method of the present invention is several times greater, and it can be used as a surface protection film for surface passivation of semiconductor devices, tools, etc. The range of applications has expanded, and its industrial value has further increased. In the conventional DC glow discharge method, it is difficult to use an insulating substrate or to synthesize an insulating thin film, but with the configuration of the device of the present invention, the insulating diamond can be replaced with the insulating quartz glass. It became possible to synthesize diamond on any substrate, whether insulating or non-insulating, using a simple structure called the DC glow discharge method, increasing its industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法を実施する装置の概略
図。 1…真空槽、2…電極、3…スクリーンメツシ
ユ、4…スクリーンメツシユ移動機構、5…基
板、6…電極、7…ヒーター、8…圧力調整器、
9…ロータリーポンプ、10…炭化水素ボンベ、
11…水素ボンベ、12…希ガスボンベ、13,
14,15…コツク、16,17…ロール。
FIG. 1 is a schematic diagram of an apparatus for carrying out the method of the invention. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 2... Electrode, 3... Screen mesh, 4... Screen mesh moving mechanism, 5... Substrate, 6... Electrode, 7... Heater, 8... Pressure regulator,
9... Rotary pump, 10... Hydrocarbon cylinder,
11...Hydrogen cylinder, 12...Rare gas cylinder, 13,
14,15...Kotuku, 16,17...Roll.

Claims (1)

【特許請求の範囲】 1 炭素化合物の気体ないしは蒸気を直流グロー
放電中で分解及び励起させ、ダイヤモンドを基板
上に形成する方法において、対向した2つの電極
の間にスクリーン・メツシユを設置し、一方の電
極と該スクリーン・メツシユの間に直流電圧を印
加し、直流グロー放電を発生せしめ他方の独立し
た直流電圧を印加した電極上に基板を設置し、該
基板上にダイヤモンドを形成することを特徴とす
るダイヤモンドの気相合成法。 2 ガス供給部と真空排気系とが接続した真空槽
と、該真空槽内部に対向した二枚の電極とを備え
一方の電極上に基板を設置したダイヤモンドの気
相合成装置において、対向した二枚の電極の間に
移動可能なスクリーン・メツシユを備えたことを
特徴とするダイヤモンドの気相合成装置。 3 スクリーン・メツシユは二枚の電極の中央部
から基板を設置した電極直上までの範囲に設置す
る特許請求の範囲第2項記載のダイヤモンドの気
相合成装置。
[Claims] 1. A method for forming diamond on a substrate by decomposing and exciting a carbon compound gas or vapor in a direct current glow discharge, in which a screen mesh is installed between two opposing electrodes, and one A DC voltage is applied between the electrode and the screen mesh to generate a DC glow discharge, a substrate is placed on the other independent electrode to which a DC voltage is applied, and a diamond is formed on the substrate. A method of vapor phase synthesis of diamond. 2. In a diamond vapor phase synthesis apparatus that includes a vacuum chamber to which a gas supply section and a vacuum exhaust system are connected, and two electrodes facing each other inside the vacuum chamber, and a substrate is placed on one of the electrodes. A diamond vapor phase synthesis apparatus characterized by having a movable screen mesh between two electrodes. 3. The diamond vapor phase synthesis apparatus according to claim 2, wherein the screen mesh is installed in a range from the center of the two electrodes to just above the electrode on which the substrate is installed.
JP59200220A 1984-09-25 1984-09-25 Process and apparatus for synthesizing diamond in vapor phase Granted JPS6177697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59200220A JPS6177697A (en) 1984-09-25 1984-09-25 Process and apparatus for synthesizing diamond in vapor phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59200220A JPS6177697A (en) 1984-09-25 1984-09-25 Process and apparatus for synthesizing diamond in vapor phase

Publications (2)

Publication Number Publication Date
JPS6177697A JPS6177697A (en) 1986-04-21
JPH0518795B2 true JPH0518795B2 (en) 1993-03-12

Family

ID=16420803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59200220A Granted JPS6177697A (en) 1984-09-25 1984-09-25 Process and apparatus for synthesizing diamond in vapor phase

Country Status (1)

Country Link
JP (1) JPS6177697A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239194A (en) * 1987-03-27 1988-10-05 Idemitsu Petrochem Co Ltd Device for producing diamond
JPS6418990A (en) * 1987-07-10 1989-01-23 Hitachi Ltd Production of diamond coating film
JPH0238397A (en) * 1988-07-27 1990-02-07 Nec Corp Method for growing thin film and apparatus therefor
JPH02141494A (en) * 1988-07-30 1990-05-30 Kobe Steel Ltd Vapor phase synthetic device of diamond
JPH02248397A (en) * 1989-03-20 1990-10-04 Onoda Cement Co Ltd Method and device for producing diamond

Also Published As

Publication number Publication date
JPS6177697A (en) 1986-04-21

Similar Documents

Publication Publication Date Title
US7125588B2 (en) Pulsed plasma CVD method for forming a film
Su et al. Electrostatic assisted aerosol jet deposition of CdS, CdSe and ZnS thin films
JPS63210099A (en) Preparation of diamond film
US6577045B1 (en) Cold-emission film-type cathode and method for producing the same
JPH0518795B2 (en)
JPS6136200A (en) Method for vapor-phase synthesis of diamond
JPS60195092A (en) Method and apparatus for production of carbon thin film
Cojocaru et al. A new polarised hot filament chemical vapor deposition process for homogeneous diamond nucleation on Si (100)
JPH0733243B2 (en) Manufacturing method of hard boron nitride by plasma CVD method combined with light irradiation
JPS6277454A (en) Formation of cubic boron nitride film
JPH0518794B2 (en)
JPH0420985B2 (en)
JPS60145995A (en) Preparation of diamond-shaped carbon
JPH0518799B2 (en)
JP2995339B2 (en) How to make a thin film
JPH0448757B2 (en)
JPH01104777A (en) Formation of deposit film
JPH031377B2 (en)
JPH0518800B2 (en)
JPS6383271A (en) Production of diamond-like carbon film
JP2951564B2 (en) Thin film formation method
JPH01298098A (en) Production of diamondlike carbon film
JPS61201694A (en) Vapor phase synthesis method for diamond
JPS63169387A (en) Formation of thin film
JPH01298165A (en) Manufacture of carbon film