JPH05186825A - Production of nonoriented silicon steel sheet reduced in iron loss - Google Patents

Production of nonoriented silicon steel sheet reduced in iron loss

Info

Publication number
JPH05186825A
JPH05186825A JP290992A JP290992A JPH05186825A JP H05186825 A JPH05186825 A JP H05186825A JP 290992 A JP290992 A JP 290992A JP 290992 A JP290992 A JP 290992A JP H05186825 A JPH05186825 A JP H05186825A
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
cold rolling
rolled
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP290992A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Yashiki
裕義 屋鋪
Teruo Kaneko
輝雄 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP290992A priority Critical patent/JPH05186825A/en
Publication of JPH05186825A publication Critical patent/JPH05186825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a nonoriented silicon steel sheet extremely reduced in iron loss and suitable for iron core material without causing troubles, such as breakage, at the time of cold working. CONSTITUTION:A slab of a steel having a composition which consists of, by weight, <=0.005% C, 3.0-4.0% Si, 2.2-8.0% Mn, <=0.020% P, <=0.005% S, 0.10-2.00% Al, <=0.005% N, and the balance Fe with inevitable impurities and where Si(%)+Al(%) -0.5XMn(%)<=2.0 is satisfied is hot-rolled, cold-rolled once or cold-rolled twice or more while process-annealed between cold rolling stages, where at least one cold rolling is done at 70-300 deg.C steel sheet temp., and further annealed continuously. Annealing can be done before cold rolling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、変圧器や発電機、電動
機の鉄心材料として広く用いられる極めて鉄損の低い無
方向性電磁鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having extremely low iron loss, which is widely used as an iron core material for transformers, generators and electric motors.

【0002】[0002]

【従来の技術】無方向性電磁鋼板の磁気的性能は一般に
鉄損と磁束密度で代表されるが、特に、鉄損の大小で材
料としてのグレードがほぼ決定される。鉄損の低い電磁
鋼板を鉄心材料として使用することにより、鉄心の発熱
に起因する電気機器の温度上昇が抑えられ、機器の効率
も向上するので、低鉄損材料に対する要望は極めて強
い。
2. Description of the Related Art The magnetic performance of a non-oriented electrical steel sheet is generally represented by iron loss and magnetic flux density. In particular, the grade of a material is almost determined by the magnitude of iron loss. By using an electromagnetic steel sheet having a low iron loss as an iron core material, a temperature rise of an electric device due to heat generation of the iron core can be suppressed and the efficiency of the device can be improved. Therefore, there is an extremely strong demand for a low iron loss material.

【0003】一般に鉄損は、ヒステリシス損と渦電流損
の2つの鉄損成分に分けられる。これらの鉄損成分は鋼
板の結晶粒径、析出物量、集合組織及び鋼板の電気抵抗
(固有抵抗)等の冶金的因子により変化することが知ら
れており、鉄損を低減させるためには、以下のような冶
金的因子の制御が行われている。
Iron loss is generally divided into two iron loss components, hysteresis loss and eddy current loss. It is known that these iron loss components change due to metallurgical factors such as the crystal grain size of the steel sheet, the amount of precipitates, the texture and the electrical resistance (specific resistance) of the steel sheet. To reduce the iron loss, The following metallurgical factors are controlled.

【0004】結晶粒径に関しては、粒径が大きくなるほ
どヒステリシス損が減少するが、渦電流損は増加するの
で、鉄損が最小になる適正粒径が存在する。但し、この
適正粒経は励磁周波数により変化し、周波数が高くなる
ほど適正粒径は小さくなることが知られており、使用さ
れる周波数に応じて適正粒径が選定される。例えば、50
〜60Hzの商用周波数で励磁する場合には 100〜200 μm
前後の結晶粒経が適正粒径と言われており、鉄損の低い
高級無方向性電磁鋼板ではこの範囲の粒径になるように
仕上げ焼鈍条件が選定される。
Regarding the crystal grain size, the hysteresis loss decreases as the grain size increases, but the eddy current loss increases, so there is an appropriate grain size that minimizes the iron loss. However, it is known that the proper particle diameter changes depending on the excitation frequency, and the higher the frequency, the smaller the proper particle diameter. Therefore, the proper particle diameter is selected according to the frequency used. For example, 50
100 to 200 μm for excitation at commercial frequencies up to 60 Hz
It is said that the grain size before and after is the proper grain size, and in a high-grade non-oriented electrical steel sheet with low iron loss, the finish annealing conditions are selected so that the grain size falls within this range.

【0005】析出物は磁壁移動の障害となりヒステリシ
ス損を増加させると共に、仕上げ焼鈍で結晶粒が適正粒
径まで成長するのを妨げて、鉄損の増加を引き起こす。
このため、硫化物や窒化物等の析出物を形成するSやN
を極力低減させる努力が払われてきた。
Precipitates impede the movement of the domain wall and increase the hysteresis loss, and also prevent the crystal grains from growing to an appropriate grain size in the finish annealing, thereby causing an increase in iron loss.
Therefore, S and N that form precipitates such as sulfides and nitrides
Efforts have been made to reduce as much as possible.

【0006】集合組織に関しては、板面内に磁化容易軸
を含む{100}、{110}方位の集積を増やし、磁
化容易軸を含まない{111}、{211}方位を減少
させることによりヒステリシス損の減少を図っている。
Regarding the texture, by increasing the accumulation of {100} and {110} orientations that include the easy axis of magnetization in the plate surface and decreasing the {111} and {211} orientations that do not include the easy axis of magnetization, hysteresis can be obtained. We are trying to reduce losses.

【0007】鋼板の固有抵抗の増加は、渦電流損を減少
させるので鉄損の低減に極めて有効である。一般にはSi
の添加により鋼板の固有抵抗を増加させているが、3重
量%(以下、「%」は「重量%」を意味する)を超えて
含有させると、鋼板の加工性が劣化して冷間圧延時に破
断を起こし易く、Si含有量が3%を大きく超える鋼板の
製造は極めて困難である。Alも固有抵抗を増加させる効
果の大きい元素であるが、やはりSiと同様に加工性を劣
化させるので添加量には限界がある。従って、現状で
は、Si(%)+Al(%)が4%以下の範囲内でSiとAlを
含有させて鋼板の固有抵抗を増加させ、鉄損の改善を図
っている。
An increase in the specific resistance of the steel sheet reduces eddy current loss and is therefore extremely effective in reducing iron loss. Generally Si
Although the specific resistance of the steel sheet is increased by the addition of 3% by weight, if the content exceeds 3% by weight (hereinafter, "%" means "% by weight"), the workability of the steel sheet deteriorates and cold rolling is performed. Occasionally, breakage easily occurs, and it is extremely difficult to manufacture a steel sheet having a Si content exceeding 3%. Al is also an element that has a large effect of increasing the specific resistance, but since it also deteriorates the workability like Si, the addition amount is limited. Therefore, in the present situation, Si and Al are contained within the range of 4% or less of Si (%) + Al (%) to increase the specific resistance of the steel sheet to improve the iron loss.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、近年の
電気機器の高効率化の趨勢の中で、無方向性電磁鋼板の
低鉄損化への要望は益々強くなってきており、前述のよ
うな結晶粒径の適正化、析出物の低減、固有抵抗の増加
など、従来行われてきた冶金的因子の制御のみでは、そ
の要望に十分には応えられない。鋼板の固有抵抗の増加
は渦電流損を小さくし、確実に鉄損の低減を実現できる
有効な手段であるが、SiやAlの含有量の増加による固有
抵抗の増加については、冷間圧延性の観点から限界にき
ている。
However, with the recent trend toward higher efficiency of electrical equipment, the demand for low iron loss of non-oriented electrical steel sheets has become stronger and stronger. The demand cannot be sufficiently met only by controlling the metallurgical factors which have been conventionally performed such as optimization of the crystal grain size, reduction of precipitates and increase of specific resistance. Increasing the specific resistance of the steel sheet is an effective means to reduce the eddy current loss and surely reduce the iron loss.However, regarding the increase of the specific resistance due to the increase of Si and Al contents, cold rolling property From the perspective of.

【0009】本発明は、このような実情に鑑みてなされ
たもので、鉄損が極めて低く、かつ、冷間加工性にも優
れた無方向性電磁鋼板の製造方法を提供することを目的
とする。
The present invention has been made in view of such circumstances, and an object thereof is to provide a method for producing a non-oriented electrical steel sheet which has extremely low iron loss and is excellent in cold workability. To do.

【0010】[0010]

【課題を解決するための手段】本発明者らは、加工性を
劣化させずに固有抵抗を増加して鉄損を低減する方法に
ついて種々検討し、以下の知見を得た。
Means for Solving the Problems The inventors of the present invention have made various studies on methods of increasing the specific resistance and reducing the iron loss without deteriorating the workability, and have obtained the following findings.

【0011】 鋼板が3%を超えるSiを含有し、Si
(%)+Al(%)が4%以上の場合でも、Si(%)+Al
(%)− 0.5×Mn(%)≦2.0 の範囲でMnを添加するこ
とにより加工性の劣化が抑えられ、鉄損が極めて低い無
方向性電磁鋼板の製造が可能である。
The steel sheet contains more than 3% Si,
(%) + Al (%) is 4% or more, Si (%) + Al
By adding Mn in the range of (%) − 0.5 × Mn (%) ≦ 2.0, deterioration of workability is suppressed, and it is possible to manufacture a non-oriented electrical steel sheet with extremely low iron loss.

【0012】 しかも、MnはSiと同様に鋼板の固有抵
抗を増加させる元素で、鉄損の低減にも有効であり、Si
(%)+Al(%)が4%未満の場合でも、Si(%)+Al
(%)−0.5 ×Mn(%)≦2.0 の範囲でMnを添加するこ
とにより従来の高級無方向性電磁鋼板に比べて鉄損の小
さい無方向性電磁鋼板を製造することができる。
Moreover, Mn is an element that increases the specific resistance of the steel sheet like Si, and is also effective in reducing iron loss.
Even if (%) + Al (%) is less than 4%, Si (%) + Al
By adding Mn in the range of (%)-0.5 x Mn (%) ≤ 2.0, it is possible to manufacture a non-oriented electrical steel sheet having a smaller iron loss than the conventional high-grade non-oriented electrical steel sheet.

【0013】 鋼の化学組成を前記またはで示す
組成にしたうえで、更に、冷間圧延を、少なくとも1回
の冷間圧延を70〜300 ℃の鋼板温度で行うことにより、
冷間圧延時に加工性の劣化に起因する破断等のトラブル
を生じることなく製造することができる。
After the chemical composition of the steel is set to the above-mentioned composition or by further performing cold rolling at least once at a steel plate temperature of 70 to 300 ° C.,
It can be manufactured without causing troubles such as breakage due to deterioration of workability during cold rolling.

【0014】本発明は上記の知見に基づいてなされたも
ので、その要旨は、「C: 0.005%以下、Si:3.0 〜
4.0%、Mn:2.2 〜 8.0%、P: 0.020%以下、S: 0.
005%以下、Al:0.10〜2.00%、N: 0.005%以下で、
かつ、Si(%)+Al(%)−0.5 ×Mn(%)≦2.0 で、
残部はFeおよび不可避的不純物からなる鋼スラブを熱間
圧延し、得られた鋼板を熱間圧延のまま或いは熱間圧延
後に焼鈍した後、1回または中間焼鈍を挟んだ2回以上
の冷間圧延を、少なくとも1回の冷間圧延を70〜300 ℃
の鋼板温度で行い、次いで連続焼鈍を行うことを特徴と
する無方向性電磁鋼板の製造方法」にある。
The present invention was made on the basis of the above findings, and the gist thereof is "C: 0.005% or less, Si: 3.0-.
4.0%, Mn: 2.2 to 8.0%, P: 0.020% or less, S: 0.
005% or less, Al: 0.10 to 2.00%, N: 0.005% or less,
And, Si (%) + Al (%) − 0.5 × Mn (%) ≦ 2.0,
The balance is hot-rolled steel slab consisting of Fe and unavoidable impurities, and the obtained steel sheet is hot-rolled or annealed after hot-rolling, and then cold-rolled once or twice with intermediate annealing. Roll at least once cold rolling 70 ~ 300 ℃
The method for producing a non-oriented electrical steel sheet, which is characterized in that it is performed at the steel sheet temperature, followed by continuous annealing.

【0015】尚、特開昭64−225 号公報で、C:0.01%
以下、Si: 2.0〜3.5 %、Mn: 0.1〜10.0%、P:0.20
%以下、Al:0.10〜1.50%、B: 0.008%以下を含有す
る、即ち、本発明の電磁鋼板と同様に、Si、AlおよびMn
の含有量の高い、高抗張力無方向性電磁鋼板の製造方法
が提案されている。しかし、この鋼板は高強度化を目的
としたもので、P、Bのような鉄損の低減にあまり有効
ではない元素を添加しており、鉄損は中低級無方向性電
磁鋼板のレベルである。また、本発明では加工性を改善
するために鋼スラブのSi、AlおよびMn含有量のバランス
を考慮しているが、特開昭64−225 号公報の発明にはこ
のような考え方は認められず、得られる鋼板は冷間圧延
性が悪いものと考えられる。
Incidentally, in JP-A-64-225, C: 0.01%
Below, Si: 2.0 to 3.5%, Mn: 0.1 to 10.0%, P: 0.20
% Or less, Al: 0.10 to 1.50%, B: 0.008% or less, that is, Si, Al and Mn are contained in the same manner as the magnetic steel sheet of the present invention.
A method of manufacturing a high tensile strength non-oriented electrical steel sheet having a high content of is proposed. However, this steel sheet is intended for high strength, and elements such as P and B, which are not so effective in reducing iron loss, are added, and the iron loss is at the level of medium-to-low grade non-oriented electrical steel sheet. is there. Further, in the present invention, the balance of Si, Al and Mn contents of the steel slab is taken into consideration in order to improve the workability, but such an idea is recognized in the invention of JP-A-64-225. Therefore, the obtained steel sheet is considered to have poor cold rolling property.

【0016】[0016]

【作用】以下に、本発明の構成要件ごとに作用効果を説
明する。
The function and effect of each constituent element of the present invention will be described below.

【0017】I.鋼スラブまたは製品の組成 CおよびN:製品中のCおよびNは鉄損に悪影響を及ぼ
すため、C、Nのいずれも 0.005%以下、望ましくは
0.003%以下にする必要がある。その理由は、製品段階
で残存したC、Nは炭窒化物として磁壁移動の障害とな
り、鉄損が増加するためである。
I. Composition of steel slab or product C and N: Since C and N in the product adversely affect iron loss, both C and N are 0.005% or less, preferably
It should be 0.003% or less. The reason is that C and N remaining in the product stage become carbonitrides and hinder the movement of the domain wall, thus increasing iron loss.

【0018】Cに関しては、鋼スラブの段階で 0.005%
を超えても、仕上げ焼鈍を脱炭焼鈍とすることによりC
含有量を 0.005%以下にすることができる。しかし、脱
炭焼鈍時に鋼板表層部に酸化層が形成されて磁気特性が
劣化するので、製鋼段階で脱炭を行い、鋼スラブのC含
有量を 0.005%以下にするのが有効である。
Regarding C, 0.005% at the stage of steel slab
Even if it exceeds C, C
The content can be 0.005% or less. However, since an oxide layer is formed on the surface layer of the steel sheet during decarburization annealing and the magnetic properties are deteriorated, it is effective to decarburize at the steelmaking stage so that the C content in the steel slab is 0.005% or less.

【0019】Si:Siは磁気特性に大きな影響を与える元
素であり、含有量が増加するほど鋼板の固有抵抗は上昇
し、渦電流損が低下して鉄損が低減する。しかし、 4.0
%を超える含有量では、加工性が著しく低下して冷間圧
延が困難となる。一方、 3.0%未満の含有量では鋼板の
固有抵抗が低く、低鉄損の無方向性電磁鋼板を製造する
ことができない。従って、Si含有量は 3.0〜4.0 %とす
る。
Si: Si is an element having a great influence on the magnetic properties, and as the content increases, the specific resistance of the steel sheet increases, the eddy current loss decreases, and the iron loss decreases. But 4.0
If the content exceeds%, the workability is remarkably reduced and cold rolling becomes difficult. On the other hand, if the content is less than 3.0%, the specific resistance of the steel sheet is low, and a non-oriented electrical steel sheet with low iron loss cannot be manufactured. Therefore, the Si content is 3.0 to 4.0%.

【0020】Al:Alは、Siと同様に鋼板の固有抵抗を高
めるのに有効な元素であり、鉄損を低減させる効果を有
している。しかし、 2.0%を超える含有量では鋼板の加
工性が劣化し、また、 0.1%未満の含有量では鉄損低減
効果が少なく、Nと化合してできるAlNが微細に析出
し、結晶粒の成長を抑制したり磁壁移動の障害となって
鉄損の低下を妨げるので、その含有量は 0.10〜2.00%
とする。
Al: Al, like Si, is an element effective for increasing the specific resistance of the steel sheet and has the effect of reducing iron loss. However, when the content exceeds 2.0%, the workability of the steel sheet deteriorates, and when the content is less than 0.1%, the iron loss reducing effect is small, and AlN formed by combining with N is finely precipitated, resulting in the growth of crystal grains. Content is 0.10 to 2.00% because it suppresses iron loss and interferes with domain wall movement and prevents iron loss from decreasing.
And

【0021】Mn:Mnは本発明方法により製造される電磁
鋼板のような高Si、高Al鋼板において、α−γ変態を生
じさせるのに有効な元素である。変態の発生が熱間圧延
中の組織の微細化と均質化を促進し、その結果、冷間圧
延時の加工性が改善される。前記のα−γ変態が生じる
か否かは、フェライト形成元素であるSiおよびAlとオー
ステナイト形成元素であるMnの含有量のバランスで決ま
り、Si(%)+Al(%)−0.5Mn(%)≦ 2.0 となる
ようにMnを含有させることが、変態の発生に必要であ
る。この式を満たすためには、SiとAlの含有量がそれぞ
れ本発明で定める下限値である場合は、Si(%)+Al
(%)= 3.1% となるので、 2.2%以上のMnを含有さ
せることが必要となり、SiとAlの含有量がそれぞれ本発
明で定める上限値である場合は、必要なMn含有量は 8.0
%以上となる。一方、MnはSiやAlと同様に鋼板の固有抵
抗を上昇させるのに有効な元素であり、鉄損低減の目的
からも 2.2%以上のMnの含有が必須となる。また、Mn含
有量が 8.0%を超えると冷間加工性が劣化する。従っ
て、Mn含有量は 2.2〜8.0 %で、かつ、Si(%)+Al
(%)−0.5Mn(%)≦ 2.0 の条件を満足させること
が必要である。
Mn: Mn is an element effective for causing α-γ transformation in high Si and high Al steel sheets such as electromagnetic steel sheets produced by the method of the present invention. The occurrence of transformation promotes the refinement and homogenization of the structure during hot rolling, and as a result, the workability during cold rolling is improved. Whether or not the above α-γ transformation occurs depends on the balance between the contents of Si and Al which are ferrite forming elements and Mn which is an austenite forming element, and Si (%) + Al (%)-0.5Mn (%) It is necessary for Mn to be included so that ≦ 2.0 for the transformation to occur. In order to satisfy this formula, if the contents of Si and Al are the lower limit values defined in the present invention, respectively, Si (%) + Al
Since (%) = 3.1%, it is necessary to contain 2.2% or more of Mn, and when the contents of Si and Al are the upper limits defined by the present invention, the required Mn content is 8.0
% Or more. On the other hand, Mn, like Si and Al, is an element effective in increasing the specific resistance of the steel sheet, and for the purpose of reducing iron loss, it is essential to contain Mn in an amount of 2.2% or more. Further, if the Mn content exceeds 8.0%, the cold workability deteriorates. Therefore, the Mn content is 2.2 to 8.0%, and Si (%) + Al
It is necessary to satisfy the condition of (%)-0.5Mn (%) ≤ 2.0.

【0022】P:Pは粒界に偏析して鋼板を脆化させ易
い元素で、本発明が対象とする加工性の悪いSi、Alおよ
びMnの含有量の高い鋼では、Pの含有量は 0.020%以下
に抑えることが必要である。できれば、 0.015%以下と
するのが望ましい。
P: P is an element that easily segregates at grain boundaries and embrittles the steel sheet. In the steel of the present invention having a high workability of high Si, Al and Mn contents, the P content is It is necessary to keep it below 0.020%. If possible, 0.015% or less is desirable.

【0023】S:SはMnとともにMnS を形成し、最終の
連続焼鈍時における結晶粒の成長を阻害したり、磁壁移
動の障害となって鉄損の低減を妨げる元素で、 0.005%
を超えるとその悪影響が大きい。従って、その含有量は
0.005%以下、望ましくは 0.002%以下とする。
S: S is an element which forms MnS together with Mn, inhibits the growth of crystal grains during the final continuous annealing, and interferes with the domain wall movement to prevent the reduction of iron loss.
If it exceeds, the adverse effect is great. Therefore, its content is
It is 0.005% or less, preferably 0.002% or less.

【0024】II. 熱間圧延 素材の鋼スラブは前記の組成を持つものである。これ
は、転炉、電気炉等で溶製し、必要があれば真空脱ガス
等の処理を施した溶鋼を、連続鋳造法でスラブにしたも
の、インゴットにして分塊圧延したもののいずれでもよ
い。
II. Hot Rolling The raw steel slab has the above composition. This may be molten steel that has been melted in a converter, an electric furnace, or the like, and if necessary subjected to vacuum degassing or the like, slabs made by continuous casting, or slab-rolled ingots. ..

【0025】熱間圧延条件については特に制約はない
が、望ましいのは、加熱温度1100〜1250℃、仕上げ温度
700〜900 ℃である。
There are no particular restrictions on the hot rolling conditions, but it is preferable that the heating temperature is 1100 to 1250 ° C. and the finishing temperature.
It is 700-900 ℃.

【0026】III.熱延板焼鈍、冷間圧延および中間焼鈍 熱間圧延で得られた鋼板(熱延板)を熱間圧延のまま或
いは熱間圧延後に焼鈍(熱延板焼鈍)した後、1回また
は複数回の冷間圧延によって、所定の製品板厚まで圧延
する。
III. Hot Rolled Sheet Annealing, Cold Rolling and Intermediate Annealing A steel sheet (hot rolled sheet) obtained by hot rolling is annealed as it is or after hot rolling (hot rolled sheet annealing), By cold rolling one or more times, it is rolled to a predetermined product plate thickness.

【0027】熱延板焼鈍は、最終製品の集合組織を改善
し良好な磁気特性を得るのに有効である。熱延板焼鈍を
連続焼鈍で行う場合は 700〜1000℃の温度域での均熱
が、また、箱焼鈍で行う場合は 650〜950 ℃の温度域で
の均熱が望ましい。
The hot-rolled sheet annealing is effective for improving the texture of the final product and obtaining good magnetic properties. When hot-rolled sheet annealing is performed by continuous annealing, soaking in the temperature range of 700 to 1000 ° C is preferable, and when performing box annealing, soaking in the temperature range of 650-950 ° C is desirable.

【0028】冷間圧延時の鋼板温度を70℃以上に高めて
やると、鋼板の加工性が改善され、圧延時の破断が著し
く減少する。鋼板温度が高いほど冷間圧延性の改善効果
は大きいが 300℃を超える温度で圧延を行うと鋼板の表
面が酸化されるので好ましくない。従って、冷間圧延は
70〜300 ℃の鋼板温度で行う。
If the temperature of the steel sheet during cold rolling is raised to 70 ° C. or higher, the workability of the steel sheet is improved and the fracture during rolling is significantly reduced. The higher the temperature of the steel sheet, the greater the effect of improving the cold rolling property, but rolling at a temperature exceeding 300 ° C is not preferable because the surface of the steel sheet is oxidized. Therefore, cold rolling
At a steel plate temperature of 70 to 300 ° C.

【0029】複数回の冷間圧延を行う場合には、各冷間
圧延毎に鋼板の温度を上記の温度範囲まで加熱して圧延
を行うことが望ましい。少なくとも冷間圧延前の板厚が
1.0mm以上の場合には、上記の鋼板温度で冷間圧延を行
うことが必要である。しかし、板厚が 1.0mm未満の場合
には、複数回行う冷間圧延のうち少なくとも1回の冷間
圧延を70〜300 ℃の鋼板温度で行えば、圧延時における
破断トラブルの防止に効果が認められる。
When performing cold rolling a plurality of times, it is desirable to heat the steel sheet to the above temperature range for each cold rolling before rolling. At least the plate thickness before cold rolling
If it is 1.0 mm or more, it is necessary to perform cold rolling at the above steel plate temperature. However, when the sheet thickness is less than 1.0 mm, at least one cold rolling among multiple cold rolling performed at a steel sheet temperature of 70 to 300 ° C is effective in preventing breakage trouble during rolling. Is recognized.

【0030】複数回の冷間圧延を行う場合は中間に焼鈍
工程を挟む。この中間焼鈍は、 700〜1000℃の温度域で
行うのが望ましい。
When performing cold rolling a plurality of times, an annealing process is sandwiched between them. This intermediate annealing is preferably performed in the temperature range of 700 to 1000 ° C.

【0031】冷間圧延時における鋼板の加熱は、例えば
高周波による誘導加熱、ロールを電極として鋼板に直接
電流を流す直接通電加熱、あるいは焼鈍炉内での加熱等
により行えばよく、特定の方法に限定されない。
Heating of the steel sheet during cold rolling may be carried out, for example, by induction heating with a high frequency, direct current heating in which an electric current is directly applied to the steel sheet using a roll as an electrode, or heating in an annealing furnace. Not limited.

【0032】IV. 冷間圧延後の連続焼鈍 良好な集合組織を発達させるためには、急速加熱による
一次再結晶が必要であり、このために連続焼鈍が有効で
ある。焼鈍温度としては、 700〜1050℃が望ましい。
IV. Continuous Annealing After Cold Rolling In order to develop a good texture, primary recrystallization by rapid heating is necessary, and therefore continuous annealing is effective. The annealing temperature is preferably 700 to 1050 ° C.

【0033】なお、連続焼鈍後の工程においては、通常
の無方向性電磁鋼板の製造の場合と同様に、必要に応じ
て絶縁コーティングを施せばよい。
In the step after the continuous annealing, an insulating coating may be applied if necessary, as in the case of manufacturing a normal non-oriented electrical steel sheet.

【0034】[0034]

【実施例1】転炉で溶製し、真空処理で成分調整をした
後、連続鋳造して得た表1に示す組成の鋼スラブを、加
熱温度1180℃、仕上げ温度 830℃で熱間圧延し、 2.3mm
厚に仕上げた。これらの供試鋼は低鉄損化を図るために
一般の高級無方向性電磁鋼板(固有抵抗が約50〜60μΩ
・cm)に比べ大幅に固有抵抗を増加させており、しかも
ほぼ同一の固有抵抗を持つようにSi、Al、Mnのバランス
を種々に変えてある。
[Example 1] A steel slab having the composition shown in Table 1 obtained by melting in a converter, adjusting the components by vacuum treatment, and then continuously casting was hot-rolled at a heating temperature of 1180 ° C and a finishing temperature of 830 ° C. 2.3 mm
Finished thick. These test steels are general high-grade non-oriented electrical steel sheets (with a specific resistance of approximately 50-60 μΩ) in order to reduce iron loss.
・ The specific resistance is significantly increased compared to the (cm), and the balance of Si, Al, and Mn is variously changed so that the specific resistance is almost the same.

【0035】但し、比較のために試験番号6の熱延板の
みは固有抵抗が一般の高級無方向性電磁鋼板並のものと
した。
However, for comparison, only the hot-rolled sheet of Test No. 6 had a specific resistance equivalent to that of a general high-grade non-oriented electrical steel sheet.

【0036】次いで、酸洗により脱スケールを行い、 7
50℃で4時間均熱する箱焼鈍方式の熱延板焼鈍を行った
後、更に0.50mm厚まで冷間圧延した。なお、冷間圧延の
際の鋼板の加熱は、圧延前に鋼板(コイル)を箱焼鈍炉
に装入して加熱することにより行い、冷間圧延時の鋼板
温度はすべて 100〜120 ℃の範囲とした。
Next, descaling is performed by pickling, and
After carrying out box annealing type hot rolled sheet annealing in which it was soaked at 50 ° C. for 4 hours, it was further cold rolled to a thickness of 0.50 mm. Heating of the steel sheet during cold rolling is performed by charging the steel sheet (coil) into a box annealing furnace before heating and rolling, and the steel sheet temperature during cold rolling is in the range of 100 to 120 ° C. And

【0037】その結果、本発明で規定する組成範囲を外
れる試験番号1〜3の熱延板は、冷間圧延中に鋼板エッ
ジ部から亀裂が入ったり、破断したりしたため、所定の
板厚まで冷間圧延することができなかった。これに対
し、本発明で規定する組成範囲内の試験番号4および5
の熱延板は、破断することなく所定の板厚に冷間圧延す
ることができた。また、固有抵抗の低い比較材の試験番
号6の熱延板も冷間圧延は可能であった。
As a result, the hot-rolled sheets of Test Nos. 1 to 3, which deviate from the composition range defined by the present invention, cracked or ruptured from the edge portion of the steel sheet during cold rolling, and thus had a predetermined sheet thickness. Could not be cold rolled. On the other hand, test numbers 4 and 5 within the composition range specified in the present invention
The hot-rolled sheet of No. 1 could be cold-rolled to a predetermined sheet thickness without breaking. Further, the hot-rolled sheet of test number 6, which is a comparative material having a low specific resistance, could be cold-rolled.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【実施例2】実施例1で得られた試験番号4、5および
6の冷延板(0.50mm厚)を 970℃で1分間均熱する連続
焼鈍を行った後、磁気特性を測定した。その結果を表2
に示す。
Example 2 The cold-rolled sheets (0.50 mm thick) of test numbers 4, 5 and 6 obtained in Example 1 were subjected to continuous annealing in which they were soaked at 970 ° C. for 1 minute, and then their magnetic properties were measured. The results are shown in Table 2.
Shown in.

【0040】表2に示す通り、本発明で定める組成範囲
内の試験番号4および5の冷延板は、比較材である試験
番号6の冷延板に比べ、固有抵抗を増加させたことに対
応して良好な鉄損値を示した。
As shown in Table 2, the cold-rolled sheets of Test Nos. 4 and 5 within the composition range defined by the present invention have increased specific resistance as compared with the cold-rolled sheet of Test No. 6 as a comparative material. Correspondingly good iron loss values were shown.

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【実施例3】C:0.0025%、Si:3.12%、Mn:5.11%、
P: 0.009%、S:0.0009%、Al:1.05%、N:0.0020
%の本発明で定める範囲内の化学組成を有する鋼スラブ
を、加熱温度1200℃、仕上げ温度 810℃で熱間圧延し、
2.3mm厚に仕上げた。この熱延板を酸洗により脱スケー
ルした後、冷間圧延時に誘導加熱により表3に示す種々
の温度に加熱し、冷間圧延して0.50mm厚とした。この冷
間圧延の際の破断トラブルの発生比率を表3に併せて示
す。
[Example 3] C: 0.0025%, Si: 3.12%, Mn: 5.11%,
P: 0.009%, S: 0.0009%, Al: 1.05%, N: 0.0020
% Steel slab having a chemical composition within the range defined by the present invention is hot-rolled at a heating temperature of 1200 ° C. and a finishing temperature of 810 ° C.,
Finished to 2.3mm thickness. After descaling this hot rolled sheet by pickling, it was heated to various temperatures shown in Table 3 by induction heating during cold rolling and cold rolled to a thickness of 0.50 mm. Table 3 also shows the occurrence ratio of breakage troubles during the cold rolling.

【0043】表3の結果から、鋼板温度が70℃未満の場
合、発生比率は低いにせよ破断トラブルが発生したが、
鋼板温度が70℃以上になると破断トラブルの発生はほと
んど皆無であった。
From the results shown in Table 3, when the steel sheet temperature was lower than 70 ° C., although the occurrence ratio was low, the breaking trouble occurred.
When the steel sheet temperature was 70 ° C or higher, there were almost no fracture problems.

【0044】破断トラブルを起こさずに冷間圧延して得
られたコイルに対して、 970℃で1分間の連続焼鈍を行
った後磁気測定を行ったところ、いずれのコイルについ
ても、鉄損(W15/50 )は2.05〜2.15W/kg、磁束密度
(B50)は1.61〜1.62Tの範囲にあり、極めて良好な特
性が得られた。
The coils obtained by cold rolling without causing breakage trouble were subjected to continuous annealing at 970 ° C. for 1 minute and then magnetic measurements were performed. W 15/50 ) was 2.05 to 2.15 W / kg, and the magnetic flux density (B 50 ) was in the range of 1.61 to 1.62 T, and extremely good characteristics were obtained.

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【発明の効果】本発明方法により、鉄損が極めて低く、
鉄心材料として好適な無方向性電磁鋼板を、冷間圧延時
に破断等のトラブルを生じることなく製造することがで
きる。
According to the method of the present invention, the iron loss is extremely low,
A non-oriented electrical steel sheet suitable as an iron core material can be manufactured without causing trouble such as breakage during cold rolling.

【0047】[0047]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C: 0.005%以下、Si:3.0 〜
4.0%、Mn:2.2 〜 8.0%、P: 0.020%以下、S:
0.005%以下、Al:0.10〜2.00%、N: 0.005%以下
で、かつ、Si(%)+Al(%)−0.5 ×Mn(%)≦2.0
で、残部はFeおよび不可避的不純物からなる鋼スラブを
熱間圧延し、得られた鋼板を熱間圧延のまま或いは熱間
圧延後に焼鈍した後、1回または中間焼鈍を挟んだ2回
以上の冷間圧延を、少なくとも1回の冷間圧延を70〜30
0 ℃の鋼板温度で行い、次いで連続焼鈍を行うことを特
徴とする無方向性電磁鋼板の製造方法。
1. By weight%, C: 0.005% or less, Si: 3.0-
4.0%, Mn: 2.2 to 8.0%, P: 0.020% or less, S:
0.005% or less, Al: 0.10 to 2.00%, N: 0.005% or less, and Si (%) + Al (%)-0.5 x Mn (%) ≤ 2.0
Then, the rest is hot-rolled a steel slab consisting of Fe and unavoidable impurities, and the obtained steel sheet is annealed as it is or after hot-rolling, once or twice or more with intermediate annealing. Cold rolling, at least one cold rolling 70-30
A method for manufacturing a non-oriented electrical steel sheet, which comprises performing the steel sheet temperature of 0 ° C. and then performing continuous annealing.
JP290992A 1992-01-10 1992-01-10 Production of nonoriented silicon steel sheet reduced in iron loss Pending JPH05186825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP290992A JPH05186825A (en) 1992-01-10 1992-01-10 Production of nonoriented silicon steel sheet reduced in iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP290992A JPH05186825A (en) 1992-01-10 1992-01-10 Production of nonoriented silicon steel sheet reduced in iron loss

Publications (1)

Publication Number Publication Date
JPH05186825A true JPH05186825A (en) 1993-07-27

Family

ID=11542488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP290992A Pending JPH05186825A (en) 1992-01-10 1992-01-10 Production of nonoriented silicon steel sheet reduced in iron loss

Country Status (1)

Country Link
JP (1) JPH05186825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767249A2 (en) * 1995-10-06 1997-04-09 Nkk Corporation Silicon steel sheet and method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767249A2 (en) * 1995-10-06 1997-04-09 Nkk Corporation Silicon steel sheet and method thereof
EP0767249A3 (en) * 1995-10-06 1997-04-23 Nkk Corporation Silicon steel sheet and method thereof
US5902419A (en) * 1995-10-06 1999-05-11 Nkk Corporation Silicon steel sheet and method thereof
US6045627A (en) * 1995-10-06 2000-04-04 Nkk Corporation Silicon steel sheet and method thereof
US6241829B1 (en) 1995-10-06 2001-06-05 Nkk Corporation Silicon steel sheet and method thereof

Similar Documents

Publication Publication Date Title
KR101389248B1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
KR100293140B1 (en) Unidirectional Electronic Steel Sheet and Manufacturing Method Thereof
JP3378934B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and surface properties
JP2951852B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP7245325B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2023554123A (en) Non-oriented electrical steel sheet and its manufacturing method
JPH0978129A (en) Production of nonortiented silicon steel sheet extremely excellent in magnetic property in all orientation
JPH055126A (en) Production of nonoriented silicon steel sheet
JPH07228953A (en) Nonoriented silicon steel sheet reduced in iron loss and its production
KR950004933B1 (en) Method of making non-oriented electro magnetic steel plate with excellent magnetic characteristic
JP4288801B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH1161257A (en) Production of non-oriented silicon steel sheet having low iron loss and low magnetic anisotropy
JP3379055B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH0443981B2 (en)
JP3533655B2 (en) Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy
JP2666626B2 (en) Low iron loss non-oriented electrical steel sheet and its manufacturing method
JP4281119B2 (en) Manufacturing method of electrical steel sheet
JPH05186828A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH05186825A (en) Production of nonoriented silicon steel sheet reduced in iron loss
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JP7465354B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP4288811B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR100240984B1 (en) The manufacturing method for 0.5mm oriented electric steelsheet