JPH05186203A - Catalytic element for steam reforming - Google Patents
Catalytic element for steam reformingInfo
- Publication number
- JPH05186203A JPH05186203A JP4000422A JP42292A JPH05186203A JP H05186203 A JPH05186203 A JP H05186203A JP 4000422 A JP4000422 A JP 4000422A JP 42292 A JP42292 A JP 42292A JP H05186203 A JPH05186203 A JP H05186203A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- steam reforming
- catalytic
- carrier layer
- reforming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000629 steam reforming Methods 0.000 title claims abstract description 24
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000007769 metal material Substances 0.000 claims abstract description 17
- 239000000919 ceramic Substances 0.000 claims abstract description 12
- 239000013543 active substance Substances 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 238000005470 impregnation Methods 0.000 claims abstract description 5
- 239000011248 coating agent Substances 0.000 claims abstract description 4
- 238000005507 spraying Methods 0.000 claims abstract description 4
- 238000001035 drying Methods 0.000 claims abstract description 3
- 239000003054 catalyst Substances 0.000 claims description 65
- 238000005304 joining Methods 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 238000002407 reforming Methods 0.000 abstract description 22
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 16
- 229910052759 nickel Inorganic materials 0.000 abstract description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 4
- 239000010419 fine particle Substances 0.000 abstract description 3
- 235000011837 pasties Nutrition 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000002245 particle Substances 0.000 description 15
- 239000007789 gas Substances 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000011049 filling Methods 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000006057 reforming reaction Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、炭化水素を水蒸気と反
応させ、水素や合成ガスなどを製造する水蒸気改質反応
操作に使用する触媒エレメントに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalytic element used in a steam reforming reaction operation for reacting a hydrocarbon with steam to produce hydrogen, syngas and the like.
【0002】[0002]
【従来の技術】炭化水素の水蒸気改質は、水素や合成ガ
スを製造するために天然ガスやナフサなどの炭化水素と
水蒸気を触媒の存在下、およそ400 〜850 ℃の温度で反
応させる操作である。古くから利用されてきた反応であ
るが、エネルギー収支的にも優れていることから最近で
は燃料電池用水素の製造にも利用されている。2. Description of the Related Art The steam reforming of hydrocarbons is an operation in which hydrocarbons such as natural gas and naphtha are reacted with steam in the presence of a catalyst at a temperature of about 400 to 850 ° C to produce hydrogen and synthesis gas. is there. Although this reaction has been used for a long time, it has recently been used for the production of hydrogen for fuel cells due to its excellent energy balance.
【0003】さて、この水蒸気改質反応は外部から大き
な熱の供給を必要とする吸熱反応であるため、これまで
改質器の構造としては改質管の内部に触媒粒子を充填
し、改質管の外部から燃焼ガス等によってふく射・対流
伝熱で熱を与える方式が採用されてきた。その際、改質
管内に充填される触媒粒子はアルミナ、マグネシアなど
を素材とする粒子状の多孔質性触媒担体に触媒活性成分
であるニッケルやルテニウムなどの微粒子を含浸法など
により付与したものが使用されている。これらは、アル
ミナ等の多孔質性担体を使用しているため、水蒸気改質
操作の運転温度でも比較的安定である。図2は上記触媒
粒子を使用した従来の充填方式改質管の内部を模式的に
示した図である。Since this steam reforming reaction is an endothermic reaction that requires a large amount of heat to be supplied from the outside, the structure of the reformer has so far been modified by filling the inside of the reforming tube with catalyst particles. A method has been adopted in which heat is radiated or convectively transferred from the outside of the tube by combustion gas or the like. At that time, the catalyst particles to be filled in the reforming tube are those obtained by impregnating a particulate porous catalyst carrier made of alumina, magnesia, etc. with fine particles such as nickel and ruthenium which are catalytically active components by an impregnation method or the like. It is used. Since these use a porous carrier such as alumina, they are relatively stable even at the operating temperature of the steam reforming operation. FIG. 2 is a diagram schematically showing the inside of a conventional filling type reforming tube using the above catalyst particles.
【0004】炭化水素と水蒸気とを混合したプロセスガ
ス4は、金属製の改質管1の内部に充填された触媒粒子
5の間隙を通過する間に改質管1の外部からの熱を受け
て加熱されることによって水素リッチなガスに改質され
ていく。しかしながら、この場合、触媒粒子の存在によ
りガス流の乱れが増幅されて改質管1内の熱伝達特性は
気体加熱としてはかなり高い値が実現されるものの、水
蒸気改質の反応熱が極めて大きいため、触媒粒子層内の
伝熱抵抗と改質管1内壁近傍の伝熱抵抗によって改質管
1の内面と触媒層中心との間に大きな温度差が発生す
る。この温度差の存在は、目的の反応度を得るためにそ
の分余計に改質管1の表面温度を高くしなければならな
いことを意味しており、装置の設計上大きな問題となっ
ていた。また、触媒粒子からなる充填層の熱容量が大き
いため、それがスタートアップの速度や反応の負荷動特
性を向上させる際の制約条件になっていた。The process gas 4, which is a mixture of hydrocarbon and steam, receives heat from the outside of the reforming tube 1 while passing through the gap between the catalyst particles 5 filled in the metal reforming tube 1. It is reformed into a hydrogen-rich gas by being heated. However, in this case, although the turbulence of the gas flow is amplified due to the presence of the catalyst particles and the heat transfer characteristic in the reforming tube 1 is realized as a considerably high value for gas heating, the reaction heat of steam reforming is extremely large. Therefore, a large temperature difference occurs between the inner surface of the reforming tube 1 and the center of the catalyst layer due to the heat transfer resistance inside the catalyst particle layer and the heat transfer resistance near the inner wall of the reforming tube 1. The existence of this temperature difference means that the surface temperature of the reforming tube 1 has to be increased by an extra amount in order to obtain the desired reactivity, which is a big problem in the design of the apparatus. In addition, since the packed bed of catalyst particles has a large heat capacity, it has been a limiting condition for improving the startup speed and reaction load dynamic characteristics.
【0005】ところで、上に述べた水蒸気改質以外の反
応においても熱交換を伴う触媒粒子充填方式の反応器で
は同様の問題が存在していた。その欠点を解消するため
に、近年熱交換と反応を同時に行う触媒エレメントなる
概念が提案されている。ここで言う触媒エレメントと
は、金属素材に触媒を直接付着したものであり、具体的
には反応管の壁面に触媒を付着させたり、触媒が付着し
た金属フィンを反応管表面に取り付けたりすることなど
が考えられている。これによれば、触媒粒子充填層の場
合のように層内の伝熱抵抗や管壁近傍の伝熱抵抗を無く
すことができるため、従来生じていた反応管と触媒粒子
層との間の温度差をほとんど解消することができる。ま
た、反応管表面から触媒反応が起きている部分に熱伝導
で直接熱を供給したり、逆に触媒反応部分から反応管へ
熱を除去したりすることができるため、反応の負荷動特
性の向上の点でも有利になる。By the way, also in the reactions other than the steam reforming described above, the same problem exists in the reactor of the catalyst particle filling system involving heat exchange. In order to eliminate the drawback, a concept called a catalyst element that simultaneously performs heat exchange and reaction has been proposed in recent years. The catalyst element referred to here is one in which the catalyst is directly attached to the metal material, and specifically, the catalyst is attached to the wall surface of the reaction tube or the metal fin to which the catalyst is attached is attached to the surface of the reaction tube. Are being considered. According to this, since it is possible to eliminate the heat transfer resistance in the bed and the heat transfer resistance in the vicinity of the tube wall as in the case of the catalyst particle packed bed, the temperature between the reaction tube and the catalyst particle layer, which has occurred conventionally, can be eliminated. Most of the difference can be eliminated. In addition, heat can be directly supplied from the surface of the reaction tube to the part where the catalytic reaction occurs by heat conduction, and conversely, heat can be removed from the catalytic reaction part to the reaction tube, so that the load dynamic characteristics of the reaction can be improved. It is also advantageous in terms of improvement.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、金属素
材に触媒を直接付着させた触媒エレメントは上記のよう
に従来の触媒粒子充填方式に比べて大きな長所を有して
いるが、その製造方法については工業上一般に使用され
ている粒子状触媒のように確立されたレベルには達して
いない。これまでにメタン合成反応やメタノール分解反
応用の触媒エレメントなどの製造方法が提案されている
ものの、本発明が対象としている水蒸気改質反応におい
て使用できるような触媒エレメントについてはこれまで
に試みられていない。具体例を挙げるならば、イオン化
傾向の差を利用してニッケルの多孔質体を金属表面に析
出させる方法などがメタン合成反応用に提案されている
が、この触媒エレメントを水蒸気改質反応のような高い
温度レベルで使った場合にはニッケルが凝集する、いわ
ゆるシンタリング現象が発生してしまい、結果としてニ
ッケルの表面積が減少するため触媒としての機能を失う
ことになる。これは、その触媒エレメントの多孔質体が
ニッケル自体で構成されており、アルミナなどの触媒担
体を有していないためである。そこで、本発明は水蒸気
改質反応の条件でも触媒活性を維持することのできる触
媒エレメントを提供することを目的とする。However, the catalyst element in which the catalyst is directly adhered to the metal material has a great advantage as compared with the conventional catalyst particle filling method as described above. It has not reached the established level like the particulate catalysts commonly used in industry. Although methods for producing catalyst elements for methane synthesis reaction and methanol decomposition reaction have been proposed so far, catalyst elements that can be used in the steam reforming reaction targeted by the present invention have been tried so far. Absent. As a specific example, a method of depositing a nickel porous body on a metal surface by utilizing the difference in ionization tendency has been proposed for a methane synthesis reaction. When it is used at such a high temperature level, a so-called sintering phenomenon occurs, in which nickel agglomerates, and as a result, the surface area of nickel decreases and the catalyst function is lost. This is because the porous body of the catalyst element is composed of nickel itself and does not have a catalyst carrier such as alumina. Therefore, an object of the present invention is to provide a catalytic element that can maintain catalytic activity even under conditions of steam reforming reaction.
【0007】[0007]
【課題を解決するための手段】本発明の上記目的は、金
属素材の表面に多孔質性の触媒担体層を付着形成させ、
その触媒担体層に触媒活性物質を含浸法により担持させ
て水蒸気改質用触媒エレメントを構成することによって
達成することができる。The above object of the present invention is to form a porous catalyst carrier layer on the surface of a metal material by adhesion.
This can be achieved by supporting a catalyst active substance on the catalyst carrier layer by an impregnation method to form a steam reforming catalyst element.
【0008】本発明の前記触媒担体層を形成する方法と
しては、セラミックを主成分とするペースト状塗布剤を
金属素材表面に塗布した後、加熱・乾燥させる方法、セ
ラミック溶射による方法、焼成形成したセラミック多孔
体を金属素材に接合する方法がある。As a method for forming the catalyst carrier layer of the present invention, a paste-like coating material containing ceramic as a main component is applied to the surface of a metal material and then heated and dried, a method by ceramic spraying, and a firing method. There is a method of joining a ceramic porous body to a metal material.
【0009】[0009]
【作用】上記に如く構成した触媒エレメントは、触媒担
体層を有しているため触媒活性物質だけで多孔質体を構
成した場合に比較してシンタリングを抑制する事がで
き、水蒸気改質反応の様な高温条件下でも使用すること
が可能となる。Since the catalyst element having the above-mentioned structure has the catalyst carrier layer, sintering can be suppressed as compared with the case where the porous body is composed of only the catalytically active substance, and the steam reforming reaction can be suppressed. It can be used even under high temperature conditions such as.
【0010】[0010]
【実施例】図1は本発明に係る水蒸気改質用触媒エレメ
ントを示す図である。金属素材からなる改質管1の内表
面に多孔質性のアルミナ製触媒担体層2を付着形成し、
その触媒担体層2に触媒活性物質3としてニッケル微粒
子を多数担持させてある。炭化水素と水蒸気とを混合し
たプロセスガス4は、金属素材の改質管1内を通過する
間に加熱されながら、上記触媒担体層2に担持された触
媒によって水素リッチガスへと改質されていく。EXAMPLE FIG. 1 is a diagram showing a steam reforming catalyst element according to the present invention. A porous alumina catalyst carrier layer 2 is adhered and formed on the inner surface of a reforming tube 1 made of a metal material,
A large number of nickel fine particles are supported as the catalytically active substance 3 on the catalyst carrier layer 2. The process gas 4, which is a mixture of hydrocarbon and steam, is reformed into a hydrogen-rich gas by the catalyst carried on the catalyst carrier layer 2 while being heated while passing through the reforming pipe 1 of the metal material. ..
【0011】触媒を担持する方法は、公知の含浸法によ
り実施した。すなわち、所定濃度の硝酸ニッケル水溶液
の中に触媒担体層が付着した金属素材を浸し、乾燥の後
に焼成した。この段階で触媒活性物質のニッケルは酸化
ニッケルの状態で存在するため、使用にあたっては還元
して用いられる。The catalyst is carried by a known impregnation method. That is, the metal material having the catalyst carrier layer adhered was dipped in an aqueous nickel nitrate solution having a predetermined concentration, dried and then fired. At this stage, nickel, which is a catalytically active substance, exists in the state of nickel oxide, so it is used after being reduced in use.
【0012】図1に示すような本発明の触媒エレメント
によれば、水蒸気改質の反応条件下でも活性を維持し得
る触媒活性物質3を触媒担体層2に担持する形で改質管
1表面に密着して設置することができ、かつ改質管1の
表面から改質反応が起きている触媒活性物質3の部分に
熱伝導で直接熱の供給がなされる。 実施例の効果According to the catalytic element of the present invention as shown in FIG. 1, the surface of the reforming tube 1 is formed so that the catalytically active substance 3 capable of maintaining the activity under the reaction conditions of steam reforming is carried on the catalyst carrier layer 2. The heat is directly supplied from the surface of the reforming tube 1 to the portion of the catalytically active substance 3 where the reforming reaction has occurred by heat conduction. Effect of Example
【0013】その結果、従来の水蒸気改質で問題になっ
ていた改質管1と触媒粒子層との間の温度差を解消する
ことができ、従来に比べて低い改質管温度でも同程度の
反応度が得られるようになる。反応度を維持しながら改
質管温度を下げられるということは装置設計上大きな意
味を持っており、これによって安全性の高いそして安価
な改質器を提供することができる。また、改質管表面か
ら触媒反応が起きている部分に熱伝導で直接熱を供給す
ることができることから負荷動特性の向上の点でも極め
て有利になる。なお、水蒸気改質用触媒エレメントは上
記以外の形態でも使用することができる。As a result, the temperature difference between the reforming tube 1 and the catalyst particle layer, which has been a problem in the conventional steam reforming, can be eliminated, and even if the reforming tube temperature is lower than in the conventional case, it is about the same. The reactivity of will be obtained. The fact that the temperature of the reforming tube can be lowered while maintaining the reactivity has a great significance in the design of the apparatus, and thereby a highly safe and inexpensive reformer can be provided. Further, since heat can be directly supplied from the surface of the reforming tube to the portion where the catalytic reaction is occurring by heat conduction, it is extremely advantageous in terms of improvement of load dynamic characteristics. The steam reforming catalyst element can be used in a form other than the above.
【0014】例えば、板状の金属素材に触媒担体層を形
成して触媒エレメントを製作すれば、その触媒エレメン
トを所定の間隙を確保して積層することによってプレー
ト型改質器を実現できる。また、波板状の金属素材を用
いて触媒エレメントを構成し、改質器の内部フィンとし
て使用しても有効である。For example, when a catalyst carrier layer is formed on a plate-shaped metal material to manufacture a catalyst element, a plate type reformer can be realized by stacking the catalyst elements with a predetermined gap. Further, it is also effective to use a corrugated plate-shaped metal material to configure the catalyst element and use it as an internal fin of the reformer.
【0015】また、触媒担体層を形成する方法として
は、セラミックを主成分とするペースト状塗布剤を金属
素材表面に塗布した後、加熱・乾燥させる方法、セラミ
ック溶射による方法、焼成形成したセラミック多孔体を
金属素材に接合する方法がある。As a method of forming the catalyst carrier layer, a paste-like coating material containing ceramic as a main component is applied to the surface of the metal material, followed by heating and drying, a method by ceramic spraying, and a ceramic porous formed by firing. There is a method of joining the body to a metal material.
【0016】[0016]
【発明の効果】本発明の水蒸気改質用触媒エレメントに
よれば、水蒸気改質の反応条件下でも活性が維持される
触媒を改質管表面に密着した状態で形成することがで
き、加熱面から改質反応が起きている触媒部分に熱伝導
で直接熱の供給が可能な反応系を実現することができ
る。その触媒エレメントを用いて改質器を構成するなら
ば、安全性が高く、負荷応答性の良好な改質器を安価に
提供することができ、工業上その有用性は極めて大き
い。According to the catalytic element for steam reforming of the present invention, the catalyst whose activity is maintained even under the reaction conditions of steam reforming can be formed in a state of being in close contact with the surface of the reforming tube, and the heating surface Therefore, it is possible to realize a reaction system in which heat can be directly supplied to the catalyst portion where the reforming reaction is occurring by heat conduction. If a reformer is constructed by using the catalyst element, a reformer having high safety and good load response can be provided at low cost, and its industrial utility is extremely large.
【図1】本発明による水蒸気改質用触媒エレメントの一
実施例を示す模式図FIG. 1 is a schematic diagram showing an example of a steam reforming catalyst element according to the present invention.
【図2】触媒粒子を充填した従来の触媒粒子充填方式改
質管を示す模式図FIG. 2 is a schematic diagram showing a conventional catalyst particle filling type reforming tube filled with catalyst particles.
1…改質管 2…触媒担体層 3…触媒活性物質 4…プロセスガス 5…触媒粒子 DESCRIPTION OF SYMBOLS 1 ... Reforming tube 2 ... Catalyst carrier layer 3 ... Catalyst active substance 4 ... Process gas 5 ... Catalyst particles
Claims (4)
を付着形成させ、その触媒担体層に触媒活性物質を含浸
法により担持させたことを特徴とする水蒸気改質用触媒
エレメント。1. A catalytic element for steam reforming, characterized in that a porous catalyst carrier layer is adhered and formed on the surface of a metal material, and a catalytically active substance is carried on the catalyst carrier layer by an impregnation method.
布剤を金属素材表面に塗布した後、加熱・乾燥させるこ
とによって触媒担体層を形成したことを特徴とする請求
項1記載の水蒸気改質用触媒エレメント。2. The steam reforming agent according to claim 1, wherein a catalyst carrier layer is formed by applying a paste-like coating agent containing ceramic as a main component on the surface of the metal material, and then heating and drying. Catalytic element.
成したことを特徴とする請求項1記載の水蒸気改質用触
媒エレメント。3. The catalyst element for steam reforming according to claim 1, wherein the catalyst carrier layer is formed by ceramic spraying.
材に接合することによって触媒担体層を形成したことを
特徴とする請求項1記載の水蒸気改質用触媒エレメン
ト。4. The catalyst element for steam reforming according to claim 1, wherein the catalyst support layer is formed by joining the fired ceramic porous body to a metal material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4000422A JPH05186203A (en) | 1992-01-07 | 1992-01-07 | Catalytic element for steam reforming |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4000422A JPH05186203A (en) | 1992-01-07 | 1992-01-07 | Catalytic element for steam reforming |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05186203A true JPH05186203A (en) | 1993-07-27 |
Family
ID=11473369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4000422A Pending JPH05186203A (en) | 1992-01-07 | 1992-01-07 | Catalytic element for steam reforming |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05186203A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10297904A (en) * | 1997-01-22 | 1998-11-10 | Haldor Topsoee As | Production of synthesis gas by steam reforming using material having catalytic action |
JP2004167483A (en) * | 2002-11-15 | 2004-06-17 | Haldor Topsoe As | High temperature fixed bed reactor |
KR100441496B1 (en) * | 2002-01-22 | 2004-07-23 | 김광수 | Ceramic coated pipe in inner surface |
KR100444428B1 (en) * | 1999-07-15 | 2004-08-16 | 할도르 토프쉐 에이/에스 | Process for the catalytic steam reforming of a hydrocarbon feedstock |
EP1808229A1 (en) | 2006-01-12 | 2007-07-18 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Process for the preparation of a catalytic specie using electro-deposition. |
CN100408156C (en) * | 2006-09-18 | 2008-08-06 | 西安交通大学 | Metal foam catalytic reforming reactor |
JP2009078225A (en) * | 2007-09-26 | 2009-04-16 | Kobe Steel Ltd | Manufacturing method of catalyst element for microchannel reactor |
JP2014510620A (en) * | 2011-07-29 | 2014-05-01 | コリア・インスティテュート・オヴ・エナジー・リサーチ | Metal structure catalyst and method for producing the same |
JP2016537295A (en) * | 2013-11-06 | 2016-12-01 | ワット・フューエル・セル・コーポレイションWatt Fuel Cell Corp. | Reformer with perovskite as structural component |
JP2016538706A (en) * | 2013-11-06 | 2016-12-08 | ワット・フューエル・セル・コーポレイションWatt Fuel Cell Corp. | Liquid fuel CPOX reformer and fuel cell integrated system and method of generating electricity |
JP2017501556A (en) * | 2013-11-06 | 2017-01-12 | ワット・フューエル・セル・コーポレイションWatt Fuel Cell Corp. | Gaseous fuel CPOX reformer and fuel cell integrated system and method for generating electricity |
WO2022210469A1 (en) * | 2021-03-31 | 2022-10-06 | 三菱重工業株式会社 | Temperature uniformized heat-exchange-type catalyst reactor |
WO2023286803A1 (en) * | 2021-07-13 | 2023-01-19 | 三菱重工業株式会社 | Isothermalized reaction device |
-
1992
- 1992-01-07 JP JP4000422A patent/JPH05186203A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10297904A (en) * | 1997-01-22 | 1998-11-10 | Haldor Topsoee As | Production of synthesis gas by steam reforming using material having catalytic action |
KR100444428B1 (en) * | 1999-07-15 | 2004-08-16 | 할도르 토프쉐 에이/에스 | Process for the catalytic steam reforming of a hydrocarbon feedstock |
KR100441496B1 (en) * | 2002-01-22 | 2004-07-23 | 김광수 | Ceramic coated pipe in inner surface |
JP2004167483A (en) * | 2002-11-15 | 2004-06-17 | Haldor Topsoe As | High temperature fixed bed reactor |
EP1808229A1 (en) | 2006-01-12 | 2007-07-18 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Process for the preparation of a catalytic specie using electro-deposition. |
CN100408156C (en) * | 2006-09-18 | 2008-08-06 | 西安交通大学 | Metal foam catalytic reforming reactor |
JP2009078225A (en) * | 2007-09-26 | 2009-04-16 | Kobe Steel Ltd | Manufacturing method of catalyst element for microchannel reactor |
JP2014510620A (en) * | 2011-07-29 | 2014-05-01 | コリア・インスティテュート・オヴ・エナジー・リサーチ | Metal structure catalyst and method for producing the same |
US9409155B2 (en) | 2011-07-29 | 2016-08-09 | Korea Institute Of Energy Research | Metal structure catalyst and preparation method thereof |
JP2016537295A (en) * | 2013-11-06 | 2016-12-01 | ワット・フューエル・セル・コーポレイションWatt Fuel Cell Corp. | Reformer with perovskite as structural component |
JP2016538706A (en) * | 2013-11-06 | 2016-12-08 | ワット・フューエル・セル・コーポレイションWatt Fuel Cell Corp. | Liquid fuel CPOX reformer and fuel cell integrated system and method of generating electricity |
JP2017501556A (en) * | 2013-11-06 | 2017-01-12 | ワット・フューエル・セル・コーポレイションWatt Fuel Cell Corp. | Gaseous fuel CPOX reformer and fuel cell integrated system and method for generating electricity |
US10676354B2 (en) | 2013-11-06 | 2020-06-09 | Watt Fuel Cell Corp. | Reformer with perovskite as structural component thereof |
WO2022210469A1 (en) * | 2021-03-31 | 2022-10-06 | 三菱重工業株式会社 | Temperature uniformized heat-exchange-type catalyst reactor |
WO2023286803A1 (en) * | 2021-07-13 | 2023-01-19 | 三菱重工業株式会社 | Isothermalized reaction device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5890380B2 (en) | Catalyst structure and method for Fischer-Tropsch synthesis | |
CA2502078C (en) | Use of metal supported copper catalysts for reforming alcohols | |
JP4669126B2 (en) | Method and apparatus for obtaining enhanced production rates of thermochemical reactions | |
US7547659B2 (en) | Structured catalyst for POX reforming of gasoline for fuel-cell powered vehicles applications and a method of preparing the same | |
EP1885492B1 (en) | Selective oxidation catalyst containing platinum, copper and iron to remove carbon monoxide from a hydrogen-rich gas | |
JPH05186203A (en) | Catalytic element for steam reforming | |
JP4643027B2 (en) | Compact and lightweight self-heating reformer | |
JP2007054826A (en) | Reactor sealing method | |
JPH10192695A (en) | Reactor for performing endothermic catalytic reaction | |
JP2003507161A (en) | Catalyst structure and method for Fischer-Tropsch synthesis | |
US6677068B2 (en) | Catalyst for selective oxidation of carbon monoxide present in hydrogen-containing gases, and elimination of carbon monoxide and solid polymer electrolyte fuel cell system which make use of the catalyst | |
KR101365787B1 (en) | Process conditions for pt-re bimetallic water gas shift catalysts | |
JPH0733242B2 (en) | Fuel reforming method for fuel cell | |
KR100719484B1 (en) | Compact Steam Reformer Utilizing Metal-Monolith-Washcoated Catalyst and Preparation Method of Hydrogen Gas Using The Catalyst | |
US4376721A (en) | Methanol synthesis catalyst and method for its preparation | |
US7585810B2 (en) | Method for partial oxidation of hydrocarbons, catalyst member therefor and method of manufacture | |
JP2703831B2 (en) | Fuel reformer | |
US4174954A (en) | Method for converting a reaction mixture consisting of hydrocarbon-containing fuel and an oxygen-containing gas into a fuel gas | |
JP4096549B2 (en) | Shift catalyst and process for producing shift catalyst | |
JPH0211303B2 (en) | ||
JPS58193737A (en) | Catalyst for production of gas enriched with hydrogen | |
JP2004067454A (en) | Fuel reforming apparatus and hydrogen generation method | |
Greish et al. | Comparison of activities of bulk and monolith Mn–Na2WO4/SiO2 catalysts in oxidative coupling of methane | |
RU2665711C1 (en) | Method for preparing catalyst for conversion of hydrocarbon fuels in synthesis gas and conversion process with application thereof | |
JPS59112840A (en) | Catalyst composition for preparing fuel gas |