JPH0518613B2 - - Google Patents

Info

Publication number
JPH0518613B2
JPH0518613B2 JP1283287A JP1283287A JPH0518613B2 JP H0518613 B2 JPH0518613 B2 JP H0518613B2 JP 1283287 A JP1283287 A JP 1283287A JP 1283287 A JP1283287 A JP 1283287A JP H0518613 B2 JPH0518613 B2 JP H0518613B2
Authority
JP
Japan
Prior art keywords
porous
thin film
laminate
glass
porous glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1283287A
Other languages
Japanese (ja)
Other versions
JPS63182013A (en
Inventor
Tetsuo Yazawa
Hiroshi Nakamichi
Kyohisa Eguchi
Hiroshi Tanaka
Osamu Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1283287A priority Critical patent/JPS63182013A/en
Publication of JPS63182013A publication Critical patent/JPS63182013A/en
Publication of JPH0518613B2 publication Critical patent/JPH0518613B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はガラス−セラミツクス系積層体から成
るろ過材の改良された製造方法に関するものであ
る。さらに詳しくいえば、本発明は、透過速度が
大きく、かつ機械的強度の良好な、多孔質セラミ
ツクス支持体の表面に多孔質ガラス薄膜を積層さ
せて成るろ過材を、該ガラス薄膜にひび割れを生
じることがないように製造する方法に関するもの
である。 従来の技術 従来、多孔質ガラス膜は細孔径分布が狭い上に
耐熱性に優れていることから、分離膜として有用
であることが知られている。しかしながら、この
多孔質ガラス膜は、通常分離膜として用いる場
合、強度の点からその膜厚を0.5mm程度に厚くす
る必要があり、そのため透過速度が著しく小さく
なるのを免れないという欠点を有している。この
ような欠点を補うために、支持体として多孔質セ
ラミツクスを用い、これに該多孔質ガラス薄膜を
積層することによつて、その膜厚を薄くし、透過
速度を大きくすることが試みられ、例えば多孔質
セラミツクス支持体の表面に、他界質形成性ガラ
スのスリツプを溶融して塗布するか、あるいは該
支持体を溶融物中に浸せきしたのち、酸処理する
ことにより、可溶性成分を溶出させて多孔質ガラ
ス薄膜とし、次いで付着した水を大気圧下で蒸発
させ、乾燥することによつて、該多孔質セラミツ
クス支持体の表面に、多孔質ガラス薄膜を積層さ
せる方法が提案されている(「ベールス・レフラ
クト(Verres Refract)」、第31巻、第4号、第
405〜432ページ)。 発明が解決しようとする問題点 しかしながら、前記の方法においては、ガラス
溶融物の粘度が大きく、支持体表面に付着するガ
ラス層の厚みが大きくなるため、これを研摩して
薄くしなければならないという欠点がある上に、
処理後の水の乾燥過程で、多孔質ガラス薄膜と、
多孔質セラミツクス支持体との収縮率の差により
応力を生じて、多孔質ガラス薄膜にひび割れが発
生するのを免れないという欠点があつた。 本発明は、このような従来の方法が有する欠点
を克服し、透過速度が大きく、かつ機械的強度の
良好な、多孔質セラミツクス支持体の表面に多孔
質ガラス薄膜を積層させて成るろ過材を、簡単な
操作でかつ該ガラス薄膜にひび割れを生じないよ
うに製造しうる方法を提供することを目的として
なされたものである。 問題点を解決するための手段 本発明者らは、多孔質セラミツクス支持体表面
に多孔質ガラス薄膜を積層させて成るろ過材を、
該ガラス薄膜にひび割れが生じることがないよう
に製造する方法を開発するために鋭意研究を重ね
た結果、支持体表面に多孔質形成性ガラス粉末を
吹付け塗布し、焼成後分相させ、さらに酸処理
後、多孔質ガラス薄膜が設けられた積層体を乾燥
する前に、該積層体中に含有する水を表面張力の
小さな有機溶媒と置換したのち、超臨界点乾燥法
にて乾燥することにより、その目的を達成しうる
ことを見い出し、この知見に基づいて本発明を完
成するに至つた。 すなわち、本発明は、多孔質セラミツクス支持
体の表面に、多孔質形成性ガラス粉末を吹付け塗
布して被覆層を形成させ、次いで焼成し、さらに
分相処理及び酸処理を施したのち乾燥して、該支
持体の表面に多孔質ガラス薄膜を設けた積層体か
ら成るろ過材を製造するに当り、乾燥前に該積層
体中に含有する水を有機溶媒と置換し、次いで超
臨界点乾燥法により乾燥することを特徴とするガ
ラス−セラミツクス系積層体から成るろ過材の製
造方法を提供するものである。 以下、本発明を詳細に説明する。 本発明方法においては、ろ過材の支持体として
多孔質セラミツクスが用いられる。この多孔質セ
ラミツクスについては、特に制限はなく、従来公
知のもの、例えばアルミナ、ジルコニア、チタニ
ア、マグネシア、ベリリア、シリマナイトなどの
酸化物系や、炭化ケイ素、窒化ケイ素、サイアロ
ン、窒化ホウ素などの非酸化物系の多孔質セラミ
ツクスの中から選ばれた任意のものを用いること
ができる。また、その形状についても特に制限は
ないが、通常板状や円筒状のものが用いられる。
さらに孔径については、平均で0.5〜20μm程度の
ものが好適である。 本発明方法において、これらの多孔質セラミツ
クス支持体の表面に被覆層を形成させるための多
孔質形成ガラス粉末としては、従来多孔質ガラス
の製造に慣用されているもの、例えばSiO2
B2O3、Na2O主成分とし、必要に応じこれに
CaO、ZrO2、Al2O3、MgO、Li2O、K2Oなどを
添加してガラス化したスリツプを用いることがで
きるが、その熱膨張係数が該支持体と同じかその
60%までであつて、かつ酸処理時における伸縮率
が通常0.3%以下、好ましくは0.1%以下となるよ
うな組成のものが望ましい。支持体との熱膨張係
数の差が大きいものでは、焼成後にガラス薄膜に
ひび割れが生じやすく、また酸処理時における伸
縮率が0.3%を超えると酸処理によつて生じた多
孔質ガラス薄膜が支持体から剥がれたり、多孔質
ガラス薄膜にひび割れが生じたりなどとして好ま
しくない。 例えば、支持体として多孔質のアルミナセラミ
ツクスを使用する場合には、前記の熱膨張係数及
び伸縮率の条件を満たすガラス粉末として、例え
ばSiO262重量%、B2O327重量%、Na2O8重量%
及びAl2O33重量%から成るものを挙げることが
できる。 本発明方法においては、前記のガラス粉末に水
を加えてスリツプとし、該多孔質セラミツクス支
持体の表面に、吹き付けなどの手段によつて均一
な被覆層を設け、乾燥したのち、焼成して焼付
け、さらに分相処理が施される。焼付け時の加熱
温度と時間、及び分相処理の加熱温度と時間は、
使用するガラス粉末の組成及び多孔質ガラス薄膜
の所望の細孔径によつて異なるが、一般に焼付け
のための焼成処理は700〜1000℃の範囲の温度に
おいて、また分相処理は500〜800℃の範囲の温度
において、それぞれ適当な時間行われる。 このような処理により、支持体上にガラス薄膜
が積層されるが、このガラス薄膜に酸処理を施し
て分相したホウ酸ナトリウムなどの可溶性成分を
溶出させることが必要である。該酸処理に使用す
る酸としては、例えば塩酸や硫酸などの無機酸、
酢酸やクエン酸などの有機酸を含む水溶液などを
用いることができる。この水溶液の酸濃度は0.1
〜2規定の範囲にあることが好ましく、また処理
温度は、通常60〜100℃、好ましくは80〜100℃の
範囲で選ばれる。このような酸処理によつて、該
ガラス薄膜は多孔質化される。 本発明方法においては、前記のようにして得ら
れた多孔質ガラス薄膜が設けられた積層体を、所
望により水洗したのち、該積層体中に含有する水
を有機溶媒と置換したのち、超臨界点乾燥法によ
り乾燥することが必要である。該積層体を、その
中に含有する水を有機溶媒と置換せずに、そのま
ま乾燥すると、細孔内の水が蒸発するのに伴い、
該積層体に乾燥収縮による応力が生じるために、
多孔質ガラス薄膜にひび割れが生じる。 前記有機溶媒としては、表面張力が小さく、か
つ親水性のものが好ましく、例えばメタノール、
エタノール、プロパノール、ブタノール、アセト
ン、メチルエチルケトン、ジエチルアミンなどが
挙げられる。 次に、これらの有機溶媒による置換及び臨界点
乾燥法による乾燥処理の好適な例について説明す
ると、まず、該積層体を前記有機溶媒中に浸せき
して、その細孔内の水を該有機溶媒と完全に置換
したのち、有機溶媒に浸せきしたまま圧力容器に
装入し、使用した有機溶媒の臨界点以上の高温、
高圧にして、有機溶媒を完全に気化させ、次いで
その温度を維持したまま、徐々に圧を解放して大
気圧まで下げ、次に温度を下げるといつた方法、
あるいは、前記有機溶媒では臨界温度が例えばメ
タノールでも約270℃と高いので、臨界温度及び
臨界圧が低く、容易に液化する常温で気体の化合
物、例えはトルフルオロモノクロロメタン、トリ
フルオロメタン、ヘキサフルオロエタンなどのフ
ツ化炭化水素類や、二酸化炭素、亜酸化窒素など
を液化したものを移行液とし、この中に前記の細
孔内の水を有機溶媒と完全に置換した積層体を浸
せきして有機溶媒と移行液を置換したのち、該移
行液の臨界温度より10〜20℃高い温度において移
行液を完全に気化させといた方法などにより、乾
燥処理が行われる。後者の超臨界点乾燥法におい
ては、高温にならないために、シリカゲルや多孔
質ガラスに通常用いられる表面改質法が適応でき
る。 このようにして、多孔質セラミツクス支持体の
表面に多孔質ガラス薄膜が積層されたろ過材が得
られる。該多孔質ガラス薄膜の厚さは、通常30〜
300μmの範囲である。 発明の効果 本発明方法によると、透過速度が大きく、かつ
機械的強度の良好な、多孔質セラミツクス支持体
の表面に多孔質ガラス薄膜が積層されて成るろ過
材を、該多孔質ガラス薄膜にひび割れが生じるこ
とがないように製造することができる。 実施例 次に実施例により本発明をさらに詳細に説明す
るが本発明はこれらの例によつてなんら限定され
るものではない。 実施例 1 SiO262重量%、B2O327重量%、Na2O8重量%
及びAl2O33重量%からなるガラスを粒径が590μ
m以下になるように粉砕し、この100重量部にコ
ロイダルシリカ〔日産化学(株)製、商品名スノーテ
ツクス20〕30重量部及び水を適当量加え、擂潰機
で摩砕・混合しスリツプを調製した。次いで、こ
れを平均透過孔径1.5μmの多孔質アルミナ管の表
面に、吹付けによつて塗布し被覆した。被覆層の
厚さは約100μmとした。該管を130℃で15分間乾
燥したのち、電気炉を用いて800℃で30分間加熱
し、多孔質アルミナ管表面にガラス薄膜を積層さ
せた。このようにして得られた試料を550℃の電
気炉中に20時間保持し、ガラス薄膜をホウ酸アル
カリ金属相とシリカ相に分相させた。次いで、90
℃、0.25NH2SO4溶液中に20時間浸せきし、ガラ
ス薄膜中の分相した可溶性成分を溶出したのち、
水洗した。この際、ガラス薄膜の硫酸1に対す
る重量は、約1gとした。 水洗後の該積層体をメタノールで数回洗つたの
ち、メタノールに24時間浸せきして含有する水分
とメタノールを置換させ、次いで、メタノールに
浸せきしたままオートクレーブ中で300℃まで加
熱し30分間保持した。その際の平衡圧力は、約80
気圧であつた。その後、リーク弁を開き、30分間
かけてオートクレーブ内の圧力を大気圧まで下
げ、次いで室温まで冷却して乾燥を終了し、積層
体管から成るろ過材を作成した。この積層体管に
おける多孔質ガラス薄膜にはひび割れの発生はみ
られなかつた。 比較例 1 実施例1において、水洗後の積層体をそのまま
大気中で乾燥した以外は、実施例1と同様にし
て、積層体管から成るろ過材を作成した。この積
層体管における多孔質ガラス薄膜は、乾燥開始数
分後からひび割れが発生し、最終的にはひび割れ
は全面に拡がつた。 比較例 2 実施例1において、水分とメタノールを置換し
た積層体をビーカーに移し、小孔の開いた蓋をし
て2日間かけてゆつくり乾燥した以外は、実施例
1と同様にして積層体管から成るろ過材を作成し
た。 その結果、目視によりひび割れのない多孔質ガ
ラス薄膜を有するろ過材の歩留りは約50%であつ
た。 試験例 1 実施例1で得られた積層体管、比較例2で得ら
れた目視でひび割れのない積層体管、及びこれら
の積層体管における多孔質ガラス薄膜と同程度の
中心細孔径(150Å)と細孔容積(0.35c.c./g)
をもつ肉厚0.5mmの多孔質ガラス管(比較例3)
を用いて、N2−H2(H2:50vol%)混合ガスの分
離実験、及び分離できた試料について、H2の透
過速度を測定した。その結果を第1表に示す。第
1表より、比較例2のものは、目視では見えない
微少なひびが存在しているために、ガスの分離が
できないのに対し、実施例1のものは、微小なひ
びもなく、多孔質ガラスと同程度の分離比が得ら
れ、その上、多孔質ガラスの約14倍も大きい透過
速度が得られることが分かる。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to an improved method for manufacturing a filter medium made of a glass-ceramic laminate. More specifically, the present invention provides a filter material in which a porous glass thin film is laminated on the surface of a porous ceramic support having a high permeation rate and good mechanical strength. This article relates to a manufacturing method that prevents such problems from occurring. BACKGROUND ART It has been known that porous glass membranes are useful as separation membranes because they have a narrow pore size distribution and excellent heat resistance. However, when this porous glass membrane is normally used as a separation membrane, it has to be thickened to about 0.5 mm from the viewpoint of strength, which has the disadvantage that the permeation rate is inevitably reduced significantly. ing. In order to compensate for these drawbacks, attempts have been made to reduce the film thickness and increase the permeation rate by using porous ceramics as a support and laminating the porous glass thin film thereon. For example, soluble components can be eluted by melting and applying an extraphase-forming glass slip to the surface of a porous ceramic support, or by immersing the support in a melt and then treating it with an acid. A method has been proposed in which a porous glass thin film is laminated on the surface of a porous ceramic support by forming a porous glass thin film, then evaporating the attached water under atmospheric pressure and drying it (see " Verres Refract”, Volume 31, No. 4, No.
pages 405-432). Problems to be Solved by the Invention However, in the above method, the viscosity of the glass melt is high and the thickness of the glass layer adhering to the support surface increases, so this must be thinned by polishing. In addition to its shortcomings,
During the drying process of water after treatment, a porous glass thin film and
The disadvantage is that stress is generated due to the difference in shrinkage rate with the porous ceramic support, which inevitably causes cracks in the porous glass thin film. The present invention overcomes the drawbacks of such conventional methods and provides a filter material that has a high permeation rate and good mechanical strength, and is made by laminating a porous glass thin film on the surface of a porous ceramic support. The purpose of this invention is to provide a method for manufacturing the glass thin film using simple operations and without cracking the glass thin film. Means for Solving the Problems The present inventors have developed a filter medium consisting of a porous glass thin film laminated on the surface of a porous ceramic support.
As a result of intensive research to develop a manufacturing method that would prevent the formation of cracks in the glass thin film, we spray-coated a porosity-forming glass powder onto the surface of the support, phase-separated it after firing, and After the acid treatment, before drying the laminate provided with the porous glass thin film, replace the water contained in the laminate with an organic solvent with low surface tension, and then dry by a supercritical point drying method. The inventors have discovered that the object can be achieved, and have completed the present invention based on this knowledge. That is, the present invention spray-coats a porosity-forming glass powder onto the surface of a porous ceramic support to form a coating layer, which is then fired, further subjected to phase separation treatment and acid treatment, and then dried. When manufacturing a filter material consisting of a laminate having a porous glass thin film on the surface of the support, the water contained in the laminate is replaced with an organic solvent before drying, and then supercritical point drying is performed. The present invention provides a method for producing a filter material made of a glass-ceramic laminate, which is dried by a drying method. The present invention will be explained in detail below. In the method of the present invention, porous ceramics are used as a support for the filter medium. There are no particular restrictions on the porous ceramics, including conventionally known ones such as oxides such as alumina, zirconia, titania, magnesia, beryllia, and sillimanite, and non-oxidized materials such as silicon carbide, silicon nitride, sialon, and boron nitride. Any material selected from physical porous ceramics can be used. Further, there is no particular restriction on its shape, but a plate-like or cylindrical shape is usually used.
Further, regarding the pore diameter, it is preferable that the average pore diameter is about 0.5 to 20 μm. In the method of the present invention, the porosity-forming glass powder for forming a coating layer on the surface of these porous ceramic supports may be those conventionally used in the production of porous glasses, such as SiO 2 ,
B 2 O 3 and Na 2 O are the main components, and if necessary, add
Slips vitrified by adding CaO, ZrO 2 , Al 2 O 3 , MgO, Li 2 O, K 2 O, etc. can be used, but the coefficient of thermal expansion is the same as that of the support or not.
It is desirable that the composition has a composition that is up to 60% and that the expansion/contraction rate during acid treatment is usually 0.3% or less, preferably 0.1% or less. If the difference in thermal expansion coefficient from the support is large, the thin glass film is likely to crack after firing, and if the expansion/contraction ratio during acid treatment exceeds 0.3%, the porous thin glass film created by the acid treatment may become unsupported. This is undesirable as it may peel off from the body or cause cracks in the porous glass thin film. For example, when porous alumina ceramics is used as a support, glass powder that satisfies the conditions for the thermal expansion coefficient and expansion/contraction ratio may be, for example, 62% by weight of SiO 2 , 27% by weight of B 2 O 3 , and Na 2 . O8 weight%
and 3% by weight of Al 2 O 3 . In the method of the present invention, water is added to the glass powder to form a slip, a uniform coating layer is applied to the surface of the porous ceramic support by means such as spraying, and after drying, the slip is baked. , further subjected to phase separation treatment. The heating temperature and time for baking and the heating temperature and time for phase separation treatment are as follows:
Although it depends on the composition of the glass powder used and the desired pore size of the porous glass thin film, the firing treatment for baking is generally performed at a temperature in the range of 700 to 1000°C, and the phase separation treatment is performed at a temperature in the range of 500 to 800°C. Each is carried out at a range of temperatures for an appropriate period of time. Through such treatment, a glass thin film is laminated on the support, but it is necessary to perform acid treatment on this glass thin film to elute phase-separated soluble components such as sodium borate. Examples of acids used in the acid treatment include inorganic acids such as hydrochloric acid and sulfuric acid;
An aqueous solution containing an organic acid such as acetic acid or citric acid can be used. The acid concentration of this aqueous solution is 0.1
The treatment temperature is preferably selected within the range of 60 to 100°C, preferably 80 to 100°C. Such acid treatment makes the glass thin film porous. In the method of the present invention, the laminate provided with the porous glass thin film obtained as described above is washed with water if desired, and then the water contained in the laminate is replaced with an organic solvent. It is necessary to dry by spot drying method. When the laminate is dried without replacing the water contained therein with an organic solvent, as the water in the pores evaporates,
Because stress is generated in the laminate due to drying shrinkage,
Cracks occur in the porous glass thin film. The organic solvent preferably has a low surface tension and is hydrophilic, such as methanol,
Examples include ethanol, propanol, butanol, acetone, methyl ethyl ketone, and diethylamine. Next, a preferred example of substitution with an organic solvent and drying treatment using a critical point drying method will be explained. First, the laminate is immersed in the organic solvent, and the water in the pores is removed from the organic solvent. After complete replacement with
A method of applying high pressure to completely vaporize the organic solvent, then gradually releasing the pressure to atmospheric pressure while maintaining the temperature, and then lowering the temperature.
Alternatively, since the critical temperature of the organic solvent is as high as about 270°C even in methanol, compounds that have a low critical temperature and critical pressure and are gaseous at room temperature and easily liquefy, such as trifluoromonochloromethane, trifluoromethane, hexafluoroethane, etc. The transition liquid is made by liquefying fluorinated hydrocarbons such as carbon dioxide, nitrous oxide, etc., and the laminate in which the water in the pores has been completely replaced with an organic solvent is immersed in the transition liquid. After replacing the solvent with the transition liquid, a drying process is performed, such as by a method in which the transition liquid is completely vaporized at a temperature 10 to 20° C. higher than the critical temperature of the transition liquid. In the latter supercritical point drying method, surface modification methods commonly used for silica gel and porous glass can be applied since high temperatures are not required. In this way, a filter medium is obtained in which a porous glass thin film is laminated on the surface of a porous ceramic support. The thickness of the porous glass thin film is usually 30~
The range is 300 μm. Effects of the Invention According to the method of the present invention, a filter medium consisting of a porous glass thin film laminated on the surface of a porous ceramic support having a high permeation rate and good mechanical strength can be used without cracks in the porous glass thin film. It can be manufactured in such a way that it does not occur. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way. Example 1 SiO 2 62% by weight, B 2 O 3 27% by weight, Na 2 O 8% by weight
and glass consisting of 3% by weight of Al 2 O 3 with a particle size of 590μ
To this 100 parts by weight, add 30 parts by weight of colloidal silica [manufactured by Nissan Chemical Co., Ltd., trade name Snowtex 20] and an appropriate amount of water, and grind and mix with a grinder to form a slip. Prepared. Next, this was applied to the surface of a porous alumina tube having an average permeation pore diameter of 1.5 μm by spraying to cover it. The thickness of the coating layer was approximately 100 μm. After drying the tube at 130° C. for 15 minutes, it was heated at 800° C. for 30 minutes using an electric furnace, thereby laminating a glass thin film on the surface of the porous alumina tube. The sample thus obtained was kept in an electric furnace at 550°C for 20 hours, and the glass thin film was phase-separated into an alkali metal borate phase and a silica phase. Then 90
After immersing in a 0.25NH 2 SO 4 solution at ℃ for 20 hours to elute the phase-separated soluble components in the glass thin film,
Washed with water. At this time, the weight of the glass thin film relative to 1 sulfuric acid was about 1 g. After washing the laminate with water several times with methanol, it was immersed in methanol for 24 hours to replace the contained water with methanol, and then, while immersed in methanol, it was heated to 300°C in an autoclave and held for 30 minutes. . The equilibrium pressure at that time is approximately 80
It was hot due to atmospheric pressure. Thereafter, the leak valve was opened, and the pressure inside the autoclave was lowered to atmospheric pressure over 30 minutes, and then the autoclave was cooled to room temperature to complete drying, and a filter medium made of a laminated tube was produced. No cracks were observed in the porous glass thin film in this laminate tube. Comparative Example 1 A filter medium made of a laminate tube was produced in the same manner as in Example 1, except that the laminate was dried in the air after washing with water. The porous glass thin film in this laminate tube began to crack several minutes after the start of drying, and eventually the cracks spread over the entire surface. Comparative Example 2 A laminate was prepared in the same manner as in Example 1, except that the laminate in which water and methanol had been replaced in Example 1 was transferred to a beaker, covered with a lid with small holes, and slowly dried for two days. A filter material consisting of a tube was created. As a result, the yield of the filter medium having a porous glass thin film without any cracks was approximately 50%. Test Example 1 The laminate tube obtained in Example 1, the laminate tube with no visible cracks obtained in Comparative Example 2, and the center pore diameter (150 Å) comparable to that of the porous glass thin film in these laminate tubes. ) and pore volume (0.35cc/g)
Porous glass tube with a wall thickness of 0.5 mm (Comparative Example 3)
Using this method, a separation experiment of a N 2 -H 2 (H 2 :50 vol%) mixed gas was carried out, and the permeation rate of H 2 was measured for the separated sample. The results are shown in Table 1. From Table 1, it can be seen that in Comparative Example 2, gas cannot be separated because there are minute cracks that are invisible to the naked eye, whereas in Example 1, there are no minute cracks and there are no porous holes. It can be seen that a separation ratio comparable to that of porous glass can be obtained, and in addition, a permeation rate approximately 14 times higher than that of porous glass can be obtained.

【表】 実施例 2 実施例1において、分相処理前のガラス薄膜積
層アルミナ管の分相処理を540℃の電気炉中に48
時間保持することによつて行つたのち、1規定の
硫酸に24時間浸せきし、可溶性成分を溶出させ
た。この際、ガラス薄膜の硫酸1に対する重量
は15gとした。このようにして多孔質化したガラ
ス薄膜積層体を水洗後、アセトンに浸せきし、多
孔質ガラス積層体中のアセトンと置換した。次い
で、トリメチルクロルシラン(以下TMSと略記)
のトルエン溶液(濃度5wt%)中に該積層体を浸
せきし24時間還流した。これを無水エタノールで
洗浄したのち、無水エタノールが気化して乾かな
いうちに、す早く温度制御可能なバルブ付き耐圧
容器(容積100ml)の中に入れ密封した。次いで
この容器を室温より10℃下げて二酸化炭素を導入
して10分間保持し、積層体の細孔中の無水エタノ
ールを液化二酸化炭素に置換したのち、容器を40
℃にしバルブにより2/分程度の速度で二酸化
炭素ガスを放出して、約30分後に二酸化炭素ガス
を全部放出し乾燥を終えた。このようにして得ら
れた多孔質ガラス積層ろ過材はひび割れもなく、
かつ多孔質ガラス積の中心細孔径は約40Å、細孔
容積は0.28c.c./g、比表面積229m2/gであつた。
またTMSの総合量は、多孔質ガラスの表面1m2
につき約4μmolであつた。 性能試験2 実施例2の多孔質ガラス積層ろ過材の多孔質ガ
ラス層と同程度の中心細孔径(約40Å)、細孔容
積(0.29c.c./g)、比表面積(214m2/g)を有す
る肉厚0.5mmの多孔質ガラスをTMSのトルエン溶
液(濃度5wt%)中で24時間還流したのち、無水
エタノールで洗浄し、次いで乾燥して、表面改質
された多孔質ガラスを得た。この多孔質ガラスの
TMSの結合量は多孔質ガラスの表面1m2につき
約4μmolであつた(比較例4)。 実施例2及び比較例4のものを用いて、テトラ
ヒドロフラン(以下THFと略記)の水溶液(濃
度0.2mol/)からTHFを操作圧30atmで分離
した。その結果を第2表に示す。ここで、分離率
αは、元の溶液のTHF濃度をXp、ろ液のTHF濃
度をXとして次式で求めた。 α=Xp−X/Xp×100(%) 第2表より、実施例2のものは比較例4のもの
と同程度の分離率をもち、かつ透過速度は約10倍
と著しく大きくなつていることが分かる。
[Table] Example 2 In Example 1, the glass thin film laminated alumina tube before the phase separation treatment was subjected to phase separation treatment in an electric furnace at 540°C.
After holding for a certain period of time, the sample was immersed in 1N sulfuric acid for 24 hours to elute soluble components. At this time, the weight of the glass thin film relative to 1 sulfuric acid was 15 g. After washing the glass thin film laminate thus made porous, it was immersed in acetone to replace the acetone in the porous glass laminate. Next, trimethylchlorosilane (hereinafter abbreviated as TMS)
The laminate was immersed in a toluene solution (concentration: 5 wt%) and refluxed for 24 hours. After washing this with absolute ethanol, before the absolute ethanol evaporated and dried, it was immediately placed in a pressure-resistant container (volume: 100 ml) with a temperature controllable valve and sealed. Next, this container was lowered to 10°C from room temperature, carbon dioxide was introduced, and held for 10 minutes. After replacing the anhydrous ethanol in the pores of the laminate with liquefied carbon dioxide, the container was heated to 40°C.
℃ and released carbon dioxide gas at a rate of about 2/min using a valve, and after about 30 minutes, all the carbon dioxide gas was released and drying was completed. The porous glass laminated filter material obtained in this way has no cracks.
The central pore diameter of the porous glass area was about 40 Å, the pore volume was 0.28 cc/g, and the specific surface area was 229 m 2 /g.
In addition, the total amount of TMS is 1 m 2 of the surface of porous glass.
It was about 4 μmol per portion. Performance test 2 It has a center pore diameter (approximately 40 Å), pore volume (0.29 cc/g), and specific surface area (214 m 2 /g) similar to the porous glass layer of the porous glass laminated filter material of Example 2. A porous glass with a wall thickness of 0.5 mm was refluxed for 24 hours in a toluene solution of TMS (concentration 5 wt%), washed with absolute ethanol, and then dried to obtain a surface-modified porous glass. This porous glass
The amount of TMS bound was approximately 4 μmol per m 2 of the surface of the porous glass (Comparative Example 4). Using those of Example 2 and Comparative Example 4, THF was separated from an aqueous solution (concentration 0.2 mol/) of tetrahydrofuran (hereinafter abbreviated as THF) at an operating pressure of 30 atm. The results are shown in Table 2. Here, the separation rate α was determined by the following formula, where X p is the THF concentration of the original solution, and X is the THF concentration of the filtrate. α=X p −X/X p ×100 (%) From Table 2, it can be seen that the sample in Example 2 had a separation rate similar to that in Comparative Example 4, and the permeation rate was significantly higher, about 10 times. I can see that

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 多孔質セラミツクス支持体の表面に、多孔質
形成性ガラス粉末を吹付け塗布して被覆層を形成
させ、次いで焼成し、さらに分相処理及び酸処理
を施したのち乾燥して、該支持体の表面に多孔質
ガラス薄膜を設けた積層体から成るろ過材を製造
するに当り、乾燥前に該積層体中に含有する水を
有機溶媒と置換し、次いで超臨界点乾燥法により
乾燥することを特徴とするガラス−セラミツクス
系積層体から成るろ過材の製造方法。
1. A porosity-forming glass powder is spray-coated on the surface of a porous ceramic support to form a coating layer, then fired, further subjected to phase separation treatment and acid treatment, and then dried to form the support. When manufacturing a filter material consisting of a laminate with a porous glass thin film on the surface, the water contained in the laminate is replaced with an organic solvent before drying, and then dried by a supercritical point drying method. A method for producing a filter medium made of a glass-ceramic laminate, characterized by:
JP1283287A 1987-01-21 1987-01-21 Manufacture of filter medium consisting of glass/ceramic laminate Granted JPS63182013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1283287A JPS63182013A (en) 1987-01-21 1987-01-21 Manufacture of filter medium consisting of glass/ceramic laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1283287A JPS63182013A (en) 1987-01-21 1987-01-21 Manufacture of filter medium consisting of glass/ceramic laminate

Publications (2)

Publication Number Publication Date
JPS63182013A JPS63182013A (en) 1988-07-27
JPH0518613B2 true JPH0518613B2 (en) 1993-03-12

Family

ID=11816350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1283287A Granted JPS63182013A (en) 1987-01-21 1987-01-21 Manufacture of filter medium consisting of glass/ceramic laminate

Country Status (1)

Country Link
JP (1) JPS63182013A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169110A (en) * 2005-12-22 2007-07-05 Nok Corp Method for producing inorganic composite hollow tube
JP2007169111A (en) * 2005-12-22 2007-07-05 Nok Corp Method for producing inorganic composite hollow tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169110A (en) * 2005-12-22 2007-07-05 Nok Corp Method for producing inorganic composite hollow tube
JP2007169111A (en) * 2005-12-22 2007-07-05 Nok Corp Method for producing inorganic composite hollow tube
JP4738163B2 (en) * 2005-12-22 2011-08-03 Nok株式会社 Manufacturing method of inorganic composite hollow tube
JP4742852B2 (en) * 2005-12-22 2011-08-10 Nok株式会社 Manufacturing method of inorganic composite hollow tube

Also Published As

Publication number Publication date
JPS63182013A (en) 1988-07-27

Similar Documents

Publication Publication Date Title
RU2355832C2 (en) Crystallisation pan for silicon crystallisation
CN107814591B (en) Preparation method of boride modified silicon-based antioxidant coating on surface of carbon material
RU2394944C2 (en) Crucible for silicon crystallisation
US6716275B1 (en) Gas impermeable glaze for sealing a porous ceramic surface
RU2401889C2 (en) Crucible for crystallisation of silicon and procedure for its fabrication
JP2008510676A (en) Quartz glass covering member and method for manufacturing said member
EP0672630B1 (en) High temperature coating on ceramic substrate and process for its production without necessary curing
EP0672631B1 (en) Two-layer high-temperature coating on ceramic substrate and its production
JPH0518613B2 (en)
US3709717A (en) Ceramic coated articles
US3875971A (en) Ceramic coated articles
US4146670A (en) Manufacture of ceramic articles
EP0672632B1 (en) High temperature monolayer coating on ceramic substrate and its production
US3049447A (en) Method of treating an alumina ceramic article with lithium borate
JPH039074B2 (en)
US3427373A (en) Method for the manufacture of alumina refractories having an aluminum nitride coating
JPH0582B2 (en)
US5082805A (en) Glass bonded filler compositions for silicon carbide foam core mirrors
JP2968477B2 (en) Method for producing non-oxide ceramic fiber reinforced ceramic composite material
JPH0240034B2 (en)
JPH03284330A (en) Production of inorganic asymmetric membrane
RU2463279C1 (en) PROTECTIVE GLASSCERAMIC COATING FOR SiC-CONTAINING MATERIALS AND METHOD OF MAKING SAID COATING
JPH038813B2 (en)
JPH0449515B2 (en)
JPH03193684A (en) Production of carbon or carbon composite material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term