JPH0518556B2 - - Google Patents

Info

Publication number
JPH0518556B2
JPH0518556B2 JP59198055A JP19805584A JPH0518556B2 JP H0518556 B2 JPH0518556 B2 JP H0518556B2 JP 59198055 A JP59198055 A JP 59198055A JP 19805584 A JP19805584 A JP 19805584A JP H0518556 B2 JPH0518556 B2 JP H0518556B2
Authority
JP
Japan
Prior art keywords
enzyme
activity
benzoylglycine
activity against
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59198055A
Other languages
Japanese (ja)
Other versions
JPS6174584A (en
Inventor
Eiji Myagawa
Toshinari Hamakado
Yasuhito Kido
Junko Yano
Junko Kamioka
Hiroko Ishikawa
Yoshinobu Motoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujirebio Inc
Original Assignee
Fujirebio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujirebio Inc filed Critical Fujirebio Inc
Priority to JP59198055A priority Critical patent/JPS6174584A/en
Publication of JPS6174584A publication Critical patent/JPS6174584A/en
Publication of JPH0518556B2 publication Critical patent/JPH0518556B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は特定の芳香族アシルアミノ酸を特異的
に分解する新規なアミノアシラーゼに関するもの
である。 アミノアシラーゼは各種のものが知られている
が、そのほとんどは脂肪族アシルアミノ酸に対し
て高分解活性を示し、芳香族アシルアミノ酸を分
解するものは微生物起源のものがいくつか知られ
ているにすぎない。 本発明者らは、サルコイド−シスの診断などに
利用されるアンジオテンシン変換酸素の活性測定
法(特公昭58−23080号公報など)、あるいはカル
ボキシペプチダーゼAの活性測定法(特開昭59−
85299号公報など)にアミノアシラーゼを利用す
るために、芳香族アシルアミノ酸を分解する活性
の高いアミノアシラーゼを取得するべく広く微生
物を探索し、先にコリネバクテリウム・エクイ
(Corynebacterium equi)H−7株がN−ベンゾ
イル−L−アラニンに高分解活性を有するアミノ
アシラーゼを産生することを見出した(特開昭57
−86292号)。そして、さらに研究を進め、N−ベ
ンゾイルグリシンに高分解活性を有する新規なア
ミノアシラーゼをシユードモナス・プチダ
(Pseudomonas putida No.C692−3が産生する
ことも見出した(特願昭58−120255号)。 (発明が解決しようとする問題点) コリネバクテリウム・エクイの産生するアミノ
アシラーゼはシユードモナス・プチダの産生する
アミノアシラーゼに比して相対的に活性が低く、
一方、シユードモナス・プチダの産生するアミノ
アシラーゼはPH7.5〜9.0のアルカリ側で不安定な
ため、至適PHがアルカリ側にある前記のアンジオ
テンシン変換酵素やカルボキシペプチダーゼA
の活性測定用共役酵素としては適さない。 (問題点を解決するための手段) そこで、本発明者らは芳香族アシルアミノ酸を
分解する活性が高くかつアルカリPH域で安定なア
ミノアシラーゼを取得するべく広く自然界を探索
した結果、シユードモナス属に属する前記と異な
る微生物がこの目的に適合する酵素を産生するこ
とを見出し、これに基いて本発明を完成するに至
つた。 本発明のアミノアシラーゼの精製酵素標品の理
化学的性質を次に示す。 (1) 作用 本酵素はN−ベンゾイルグリシンを加水分解
して安息香酸とグリシンを生成する。 (2) 基質特異性 各種アミノ酸のN−アシル誘導体を基質とし
て酵素活性を測定した結果を第1表に示す。表
中の酵素活性はN−ベンゾイルグリシンに対す
る活性を100とした相対活性で表示してある。
この表に示すように本酵素はN−ベンゾイルグ
リシン及びN−ベンゾイル−L−アラニンをよ
く分解し、特にN−ベンゾイルグリシンを分解
する活性が大きく、かつN−アセチルグリシン
を分解する活性がN−ベンゾイルグリシンを分
解する活性の1/100以下である。
(Industrial Application Field) The present invention relates to a novel aminoacylase that specifically decomposes specific aromatic acylamino acids. Various types of aminoacylases are known, but most of them show high decomposition activity for aliphatic acylamino acids, and some that decompose aromatic acylamino acids are of microbial origin. Only. The present inventors have developed a method for measuring the activity of angiotensin-converted oxygen (Japanese Patent Publication No. 58-23080, etc.), which is used for the diagnosis of sarcoidosis, or a method for measuring the activity of carboxypeptidase A (Japanese Patent Application Laid-Open No. 59-1989).
In order to utilize aminoacylases in the production of aminoacylases (e.g., 85299), we conducted a wide search for microorganisms in order to obtain aminoacylases with high activity for decomposing aromatic acylamino acids, and first investigated Corynebacterium equi H-7. It was discovered that the strain produced aminoacylase with high decomposition activity for N-benzoyl-L-alanine (Japanese Patent Application Laid-open No. 1983-1998).
−86292). Further research led to the discovery that Pseudomonas putida (Pseudomonas putida No. C692-3) produces a novel aminoacylase that has high degrading activity for N-benzoylglycine (Japanese Patent Application No. 120255/1982). (Problems to be solved by the invention) The aminoacylase produced by Corynebacterium equi has a relatively low activity compared to the aminoacylase produced by Pseudomonas putida.
On the other hand, aminoacylase produced by Pseudomonas putida is unstable at alkaline pH of 7.5 to 9.0, so the above-mentioned angiotensin-converting enzyme and carboxypeptidase A whose optimal pH is on the alkaline side
It is not suitable as a conjugated enzyme for measuring the activity of (Means for Solving the Problems) Therefore, the present inventors extensively searched the natural world in order to obtain an aminoacylase that has a high activity of decomposing aromatic acylamino acids and is stable in the alkaline pH range. It was discovered that a different microorganism from the above-mentioned species produces an enzyme suitable for this purpose, and based on this finding, the present invention was completed. The physicochemical properties of the purified enzyme preparation of aminoacylase of the present invention are shown below. (1) Action This enzyme hydrolyzes N-benzoylglycine to produce benzoic acid and glycine. (2) Substrate specificity Table 1 shows the results of enzyme activity measurements using N-acyl derivatives of various amino acids as substrates. The enzyme activities in the table are expressed as relative activities with the activity against N-benzoylglycine as 100.
As shown in this table, this enzyme decomposes N-benzoylglycine and N-benzoyl-L-alanine well, and has a particularly high activity of decomposing N-benzoylglycine, and a high activity of degrading N-acetylglycine. This is less than 1/100 of the activity that decomposes benzoylglycine.

【表】 (3) 至適PH及び安定PH範囲 N−ベンゾイルグリシンを基質として、
0.1M酢酸緩衝液PH4.0〜5.5(三角)0.1Mリン酸
緩衝液PH6.0〜7.5(黒丸)、0.2Mトリス−塩酸緩
衝液7.5〜8.5(白丸)及び0.1M炭酸緩衝液PH9.0
〜10.0(四角)を用いて、37℃で10分間反応さ
せて至適PHを測定した結果を第1図に示す。図
から明らかなように本酵素の至適PHは8.0〜8.5
にある。 次に、本酵素を0.1M酢酸緩衝液PH4.0〜5.0
(三角)、0.1Mリン酸緩衝液PH5.5〜8.5(黒丸)、
0.2M HEPES緩衝液PH6.0〜10.0(白丸)及び
0.1M炭酸緩衝液PH9.0〜10.0(四角)の各緩衝液
中で37℃1時間加熱し、残存する酵素活性を測
定した結果を第2図に示す。本酵素はPH6.5〜
8.5の範囲において最も安定である。 一方、シユードモナス・プチダの産生するア
ミノアシラーゼについてPH安定性を同様に測定
した結果を第3図に示す。図に示すようにこの
酵素はPH7.0の近傍において最も安定である。 (4) 力価の測定法 酵素液0.05mlに100mMリン酸ナトリウム緩
衝液(PH8.0)0.45mlを加え、37℃で5分間予
熱した後、30mM N−ベンゾイルグリシン溶
液1.0mlを加えて37℃で10間反応させる。反応
液にトリクロル酢酸1.0mlを加えて反応を停止
させ、生成したグリシンをニンヒドリン法で定
量する。 ニンヒドリン法による定量はムーアらの方法
(S.Moore and W.H.Stein、J.Biol.Chem.、
vol.211、P907(1954))に準じて下記のように
行なつた。すなわち、反応液を遠心分離し、そ
の上清1.0mlにニンヒドリン試薬0.2mlを加え煮
沸水浴中で15分間加熱し、ただちに50%エタノ
ール2.0mlを加える。水冷後、575nmで比色し、
同様にして求めたグリシンの標準曲線からグリ
シンの生成量を定量した。 酵素活性は、1分間に1μmolのグリシンを生
成する酵素量を1単位とした。 (5) PH、温度などによる失活の条件 本酵素は第2図に示したように、37℃1時間
の処理で酢酸緩衝液におけるPH4未満及び炭酸
緩衝液におけるPH10以上でほぼ完全に失活す
る。また、リン酸緩衝液におけるPH5.5及び炭
酸緩衝液におけるPH9.0で活性がほぼ半分にな
る。 次に、本酵素を、0.1Mリン酸ナトリウム緩
衝液PH7.0中で各温度で30分間加熱後、残存活
性を測定した結果を第4図に示す。図に示すよ
うに、本酵素は40℃30分間の加熱では失活しな
いが、50℃30分間の処理で80%が失活し、55℃
30分間の処理でほぼ完全に失活する。 本酵素とシユードモナス・プチダの産生する
アミノアシラーゼを各々12U/mlになるように
10mM4−アミノアンチピリンを含むHEPES
−(N−2−hydroxyethylpiperazine−N′−2
−ethanesulfonicacid)緩衝液(PH7.8)に溶解
した。これを一旦凍結乾燥後直ちに水で復元し
て6℃に保存し、活性の経時変化を測定した。
得られた結果を第5図に示す。図における黒丸
は本酵素を、そして白丸はシユードモナス・プ
チダの酵素をそれぞれ表わしている。 (6) 阻害、活性化及び安定化 各種金属イオン、金属キレート剤及びSH阻
害剤を終濃度が第2表に示す濃度になるように
反応液に加えたときの本酵素の活性に及ぼす影
響を第2表にまとめて示す。この表の相対活性
は無添加の場合の活性を100として表示してあ
る。
[Table] (3) Optimal PH and stable PH range Using N-benzoylglycine as a substrate,
0.1M acetate buffer PH4.0-5.5 (triangle) 0.1M phosphate buffer PH6.0-7.5 (black circle), 0.2M Tris-HCl buffer 7.5-8.5 (white circle) and 0.1M carbonate buffer PH9.0
~10.0 (square) was used to react at 37°C for 10 minutes, and the optimum pH was measured. The results are shown in Figure 1. As is clear from the figure, the optimal pH of this enzyme is 8.0 to 8.5.
It is in. Next, add this enzyme to 0.1M acetate buffer with pH 4.0 to 5.0.
(triangle), 0.1M phosphate buffer PH5.5-8.5 (black circle),
0.2M HEPES buffer PH6.0~10.0 (white circle) and
Fig. 2 shows the results of heating at 37°C for 1 hour in 0.1M carbonate buffer pH 9.0 to 10.0 (squares) and measuring the remaining enzyme activity. This enzyme has a pH of 6.5~
It is most stable in the range of 8.5. On the other hand, FIG. 3 shows the results of similarly measuring the PH stability of aminoacylase produced by Pseudomonas putida. As shown in the figure, this enzyme is most stable near pH 7.0. (4) Measurement method for titer Add 0.45 ml of 100 mM sodium phosphate buffer (PH8.0) to 0.05 ml of enzyme solution, preheat at 37°C for 5 minutes, then add 1.0 ml of 30 mM N-benzoylglycine solution. Incubate at ℃ for 10 minutes. Add 1.0 ml of trichloroacetic acid to the reaction solution to stop the reaction, and quantify the produced glycine using the ninhydrin method. Quantification using the ninhydrin method was performed by Moore et al. (S.Moore and WHStein, J.Biol.Chem.,
vol.211, P907 (1954)) as follows. That is, the reaction solution is centrifuged, 0.2 ml of ninhydrin reagent is added to 1.0 ml of the supernatant, heated in a boiling water bath for 15 minutes, and 2.0 ml of 50% ethanol is immediately added. After cooling with water, compare the colors at 575nm,
The amount of glycine produced was quantified from the glycine standard curve obtained in the same manner. For enzyme activity, one unit was the amount of enzyme that produced 1 μmol of glycine per minute. (5) Conditions for inactivation due to pH, temperature, etc. As shown in Figure 2, this enzyme is almost completely inactivated by treatment at 37℃ for 1 hour at pH below 4 in acetate buffer and pH 10 or above in carbonate buffer. do. Furthermore, the activity is approximately halved at pH 5.5 in phosphate buffer and pH 9.0 in carbonate buffer. Next, this enzyme was heated in 0.1M sodium phosphate buffer pH7.0 at each temperature for 30 minutes, and the residual activity was measured. The results are shown in FIG. As shown in the figure, this enzyme is not inactivated by heating at 40°C for 30 minutes, but 80% is inactivated by heating at 50°C for 30 minutes.
It is almost completely inactivated after 30 minutes of treatment. This enzyme and the aminoacylase produced by Pseudomonas putida were each adjusted to 12U/ml.
HEPES with 10mM 4-aminoantipyrine
-(N-2-hydroxyethylpiperazine-N'-2
-ethanesulfonic acid) buffer (PH7.8). This was once lyophilized, immediately reconstituted with water and stored at 6°C, and changes in activity over time were measured.
The results obtained are shown in FIG. In the figure, the black circles represent the present enzyme, and the white circles represent the enzyme of Pseudomonas putida. (6) Inhibition, activation, and stabilization The effects on the activity of this enzyme when various metal ions, metal chelating agents, and SH inhibitors were added to the reaction solution at the final concentrations shown in Table 2 were evaluated. They are summarized in Table 2. The relative activity in this table is expressed with the activity in the absence of additives as 100.

【表】 (7) 精製方法 培養後、菌体から抽出した酵素液を、0.01M
リン酸ナトリウム緩衝液で平衡化したジエチル
アミノエチルセルロースのカラムに流して酵素
を吸着させ、0.2M塩化ナトリウムを含む同緩
衝液で溶出し、活性区分を集める。この活性区
分に硫酸アンモニウムを0.25飽和になるように
加え、沈澱を除去する。上清にさらに硫酸アン
モニウムを0.35飽和になるように加え、生成し
た沈澱を集めて同緩衝液に対して一夜透析す
る。この透析液を同緩衝液で平衡化したハイド
ロキシアパタイト(水酸化リン灰石)のカラム
に流して酵素を吸着させ、0.2Mリン酸ナトリ
ウム緩衝液(PH7.0)で溶出して精製酵素標品
を得る。 (8) 分子量 ゲル過法によつて求めた分子量は17万であ
つた。 (9) 等電点 アンホライン(PH3〜10)(LKB社製)を用
いて測定した結果、等電点は4.4であつた。 (10) 電気泳動 デイビスの方法(Ann.N.M.Acad.Sci.、
vol.21、P404.1964)に従つて、標準アクリル
アミドゲルデイスク、50mMトリス−グリシン
緩衝液(PH8.3)を使用し、1カラム当り3m
Aの定電流で泳動を行なつた。その結果、本酵
素のブロムフエノールブルーに対する相対移動
度は0.65であつた。 以上の理化学的性質のうち、本酵素は特に基質
特異性が従来のアミノアシラーゼと異なる。すな
わち、従来のアミノアシラーゼのほとんどは脂肪
族アシルアミノ酸に対してのみ高分解活性を示
し、芳香族アシルアミノ酸を分解するものは微生
物起源のものにいくつか知られているにすぎな
い。そして、この芳香族アシルアミノ酸を分解す
るものはいずれもアシル−D−アミノ酸をも分解
する。 一方、本酵素はN−ベンゾイルグリシンなどの
芳香族アシルアミノ酸に対しては高分解活性を示
すが、N−アセチルグリシンなどの脂肪族アシル
アミノ酸及びN−ベンゾイル−D−アラニンなど
のアシル−D−アミノ酸に対する分解活性は低
い。 次に、本発明者らの既出願のうちコリネバクテ
リウム・エクイが産生するものは芳香族アシルア
ミノ酸に対して高分解活性を有するが、この酵素
はそのうちで特にN−ベンゾイル−L−アラニン
に対する分解活性が高く、N−ベンゾイルグリシ
ンに対する活性はあまり大きくない。しかるに、
本酵素は、芳香族アシルアミノ酸のなかでも特に
N−ベンゾイルグリシンに対する分解活性が大き
い。一方、シユードモナス・プチタが産生するも
のは以上の諸性質については本酵素と共通してい
るが、PH7.5〜9.0のアルカリ側の安定性が悪く、
例えばPH8.5、37℃で1時間加温すると残存活性
が50未満になつてしまう。しかるに本酵素はアル
カリ側においても安定であり、上記の条件で50%
以上の活性が残存する点で相違する。そこで、本
酵素は新規であると判断するに至つた。 本発明の酵素は、例えば本発明者らが沖縄県の
土壤から分離した微生物シユードモナス・エスピ
ー(Pseudomonas sp.)No.C684−2から産生さ
せることができる。このシユードモナス・エスピ
ーNo.C684−2は工業技術院微生物工業技術研究
所に微工研菌寄第7716号(FERM P−7716)と
して寄託されている。 シユードモナス・エスピーNo.C684−2の菌学
的性質を次に示す。 1 形態 (1) 細胞の形及び大きさ 細胞は桿状(0.8〜1.0×1.3〜1.6μm)であ
り、多形性は示さない。 (2) 運動性あり (3) 胞子:形成しない (4) グラム染色性:陰性 2 各種培地における生育状態 (1) 肉汁寒天平板培養 コロニーは円板状で、全縁、半透明、軟質
であり、表面は光沢がある。可溶性色素は産
生しない。コロニーの大きさは直径1.2〜1.5
mmである。 (2) 肉汁寒天斜面培養 線状に良好に生育し、軟質である。表面は
光沢がある。凝縮水でも良く生育する。可溶
性色素は産生しない。 (3) 肉汁液体培養 良好に生育し、混濁する。沈渣を生じな
い。菌膜は形成しない。 (4) 肉汁ゼラチン穿刺培養 上層部でよく生育する。液化しない。沈渣
を生じない。 (5) リトマスミルク 凝固及びペプトン化しない。PHは微アルカ
リ性。 3 生理学的性質 (1) 硝酸塩の還元:陰性 (2) MRテスト:陰性 (3) VPテスト:陰性 (4) インドールの生成:陰性 (5) 硫化水素の生成:陰性(SIM培地上) (6) デンプンの加水分解:陰性 (7) クエン酸塩の利用:Koser培地:陽性 Christensen培地:陽性 (8) 色素の生成:KingA培地では生成しない。 KingB培地では黄色螢光色素を生成する。 (9) オキシダーゼ:陽性 (10) カタラーゼ:陽性 (11) 酸素に対する態度:好気性 (12) OFテスト:酸化的 (13) 糖からの酸及びガスの生成 D−グルコース、D−ガラクトース、L−
アラビノース、D−キシロース、D−フラク
トース、D−マンノース及びグリセロールか
ら酸を生成する。マルトース、トレハロー
ス、シヨ糖、イノシトール、D−マンニトー
ル、乳糖、D−ソルビトール及び可溶性デン
プンからは酸を生成しない。ガスの生成は認
められない。 以上の諸性質をバージエイズ・マニユアル・オ
ブ・デタ−ミネイテイブ・バクテリオロジー
(Bergey′s Mannual of Determinative
Bacteriology)第8版、1974版の記載と照合し
た結果、本菌はシユードモナス属の微生物の性質
と極めてよく一致するところから、本菌をシユー
ドモナス属に属する微生物であると同定した。 このような微生物を培養して本発明の酵素を産
生させる方法は微生物を培養する一般的な方法に
準じて行なうことができる。すなわち、培地には
炭素源、窒素源、無機塩類、その他の栄養物質な
どを含有するものを用いる。炭素源としては、グ
ルコース、麦芽糖のような糖類、グリセロールの
ようなアルコール類を使用できるが、馬尿酸とか
N−ベンゾイルアラニンのような本酵素の誘導基
質が特に効果的である。窒素源としては硫酸アン
モニウム、塩化アンモニウム、硝酸ナトリウムな
どの無機態のものでもよく、酵母エキス、肉エキ
ス、ペプトンのような有機態のものでもよい。無
機塩類としては塩化ナトリウムのほかには、リン
酸1カリウム、リン酸2ナトリウム、硫酸マグネ
シウム等の通常の無機塩を使用することができ
る。 培養方法としては、通常は液体培養が好まし
く、15〜37℃、好ましくは25〜35℃、PH5〜8で
10〜50時間好気的条件下で培養する。この培養に
よつて本酵素の大部分は菌体内に蓄積される。 培養終了後は培養物をそのまま酵素源として利
用してもよいが、通常は分離精製を行なう。分離
方法としては、まず菌体を遠心等の常法により分
離し、磨砕、リゾチーム等の溶菌酵素による溶
菌、超音波処理、圧力シヨツク法、自己消化法等
によつて菌体を破壊し、酵素を抽出する。破壊し
た菌体残渣を分離して酵素抽出液を得、硫酸アン
モニウム等を用いる塩析法、アセトン、エタノー
ル等を用いる溶媒沈澱法、セフアデツクス、セフ
アロースゲル等を用いるゲル過法、イオン交換
樹脂等を用いる吸着法等を適宜組合せて精製を行
ない、目的とする純度の酵素標品を得る。 (作用及び発明の効果) 本発明の酵素はN−ベンゾイルグリシン及びN
−ベンゾイル−L−アラニンをよく分解するとと
もにアルカリ側においても安定なところに特徴が
あり、アンジオテンシン変換酵素の活性測定法及
びカルボキシペプチダーゼAの活性測定法などに
有用である。 (実施例) 馬尿酸1%、酵母エキス0.3%、硝酸ナトリウ
ム0.2%、リン酸2カリウム0.1%、硫酸マグネシ
ウム0.05%、および塩化ナトリウム0.05%からな
るPH7.0の培地60を90容ジヤーフアーメンタ
ーに入れ、120℃で20分間滅菌した。冷却後、シ
ユードモナス・エスピーNo.684−2(FERM P−
7716)を接種し、28℃で10時間通気撹拌培養を行
なつた。その間の通気量は0.5vvmとし、撹拌羽
根の回転数は200rpmとした。培養終了後、培養
液を遠心して約1Kgの湿菌体を得た。この菌体を
10mMリン酸ナトリウム緩衝液(PH7.0)3に
懸濁し、ダイノーミル(KDL型)を用いて、
3000rpm流量30ml/minで菌体を破砕した。遠心
して菌体残渣を除き、酵素抽出液3.5を得た。
この酵素抽出液に10mMリン酸ナトリウム緩衝液
で平衡化したジエチルアミノエチルセルロース1
Kgを加え、6℃で2時間撹拌し、酵素を吸着させ
た。このジエチルアミノエチルセルロースを同緩
衝液で充分洗浄し、0.2M塩化ナトリウムを含む
同緩衝液で本酵素を溶出した。溶出液に0.25飽和
になるよう硫酸アンモニウムを加え、生じた沈澱
を除去し、さらにその上清に0.35飽和になるよう
に硫酸アンモニウムを加え、生じた沈澱を集め
た。この沈澱を同緩衝液に対して一夜透析した。
透析物を同緩衝液で平衡化したハイドロキシアパ
タイトのカラムに吸着させ、0.2Mリン酸ナトリ
ウム緩衝液(PH7.0)で溶出した。 溶出画分に、0.35飽和になるように硫酸アンモ
ニウムを加え、生じた沈澱を集め、同緩衝液に対
し、一夜透析して比活性150U/mgの精製標品を
収率27%で得た。
[Table] (7) Purification method After culturing, the enzyme solution extracted from the bacterial cells was diluted with 0.01M
The enzyme is adsorbed on a diethylaminoethylcellulose column equilibrated with a sodium phosphate buffer, eluted with the same buffer containing 0.2M sodium chloride, and the active fraction is collected. Add ammonium sulfate to this active fraction to a saturation of 0.25 and remove the precipitate. Ammonium sulfate is further added to the supernatant to a saturation of 0.35, and the precipitate formed is collected and dialyzed against the same buffer overnight. This dialysate is passed through a hydroxyapatite column equilibrated with the same buffer to adsorb the enzyme, and eluted with 0.2M sodium phosphate buffer (PH7.0) to obtain a purified enzyme preparation. get. (8) Molecular weight The molecular weight determined by gel filtration method was 170,000. (9) Isoelectric point As a result of measurement using Ampholine (PH3-10) (manufactured by LKB), the isoelectric point was 4.4. (10) Electrophoresis Davis method (Ann.NMAcad.Sci.,
vol.21, P404.1964) using a standard acrylamide gel disc, 50mM Tris-glycine buffer (PH8.3), 3m per column.
Migration was performed at a constant current of A. As a result, the relative mobility of this enzyme to bromophenol blue was 0.65. Among the above-mentioned physicochemical properties, this enzyme differs from conventional aminoacylases in substrate specificity. That is, most of the conventional aminoacylases show high decomposition activity only for aliphatic acylamino acids, and only a few of microbial origin are known to decompose aromatic acylamino acids. And anything that decomposes this aromatic acylamino acid also decomposes acyl-D-amino acid. On the other hand, this enzyme exhibits high degrading activity for aromatic acylamino acids such as N-benzoylglycine, but it also exhibits high degrading activity for aromatic acylamino acids such as N-acetylglycine and acyl-D-amino acids such as N-benzoyl-D-alanine. Degrading activity for amino acids is low. Next, among the enzymes already applied by the present inventors, the enzyme produced by Corynebacterium equi has a high degrading activity against aromatic acylamino acids, and this enzyme is particularly effective against N-benzoyl-L-alanine. It has a high decomposition activity, and its activity against N-benzoylglycine is not very large. However,
This enzyme has particularly high degrading activity for N-benzoylglycine among aromatic acylamino acids. On the other hand, the enzyme produced by Pseudomonas putita has the above properties in common with this enzyme, but it has poor stability on the alkaline side of pH 7.5 to 9.0.
For example, if heated for 1 hour at pH 8.5 and 37°C, the residual activity will be less than 50. However, this enzyme is stable even in alkaline conditions, and is 50% stable under the above conditions.
The difference is that the above activities remain. Therefore, we concluded that this enzyme is novel. The enzyme of the present invention can be produced, for example, from the microorganism Pseudomonas sp. No. C684-2, which the present inventors isolated from a clay pot in Okinawa Prefecture. This Pseudomonas sp. No. C684-2 has been deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology as FERM P-7716. The mycological properties of Pseudomonas sp. No. C684-2 are shown below. 1 Morphology (1) Cell shape and size The cells are rod-shaped (0.8-1.0 x 1.3-1.6 μm) and do not show pleomorphism. (2) Motile (3) Spores: Not formed (4) Gram staining: Negative 2 Growth status in various media (1) Broth agar plate culture Colonies are disc-shaped, with whole edges, translucent, and soft. , the surface is shiny. No soluble pigments are produced. Colony size is 1.2-1.5 in diameter
mm. (2) Juicy agar slant culture Grows well in a linear shape and is soft. The surface is shiny. It also grows well in condensed water. No soluble pigments are produced. (3) Meat juice liquid culture Grows well and becomes turbid. Does not produce sediment. No bacterial membrane is formed. (4) Meat juice gelatin puncture culture Grows well in the upper layer. Does not liquefy. Does not produce sediment. (5) Litmus milk: Does not coagulate or peptonize. PH is slightly alkaline. 3 Physiological properties (1) Nitrate reduction: Negative (2) MR test: Negative (3) VP test: Negative (4) Indole production: Negative (5) Hydrogen sulfide production: Negative (on SIM medium) (6 ) Starch hydrolysis: Negative (7) Utilization of citrate: Koser medium: Positive Christensen medium: Positive (8) Pigment production: Not produced in KingA medium. KingB medium produces a yellow fluorescent dye. (9) Oxidase: positive (10) Catalase: positive (11) Attitude towards oxygen: aerobic (12) OF test: oxidative (13) Production of acids and gases from sugars D-glucose, D-galactose, L-
Acid is produced from arabinose, D-xylose, D-fructose, D-mannose and glycerol. No acids are produced from maltose, trehalose, sucrose, inositol, D-mannitol, lactose, D-sorbitol and soluble starch. No gas formation is observed. The above properties are described in Bergey's Manual of Determinative Bacteriology.
Bacteriology) 8th edition, 1974 edition, and as a result, this bacterium was identified as a microorganism belonging to the genus Pseudomonas, as the properties of this bacterium closely matched those of microorganisms of the genus Pseudomonas. A method for culturing such microorganisms to produce the enzyme of the present invention can be carried out according to a general method for culturing microorganisms. That is, a culture medium containing a carbon source, a nitrogen source, inorganic salts, other nutritional substances, etc. is used. As a carbon source, sugars such as glucose and maltose, and alcohols such as glycerol can be used, but inducing substrates of this enzyme such as hippuric acid and N-benzoylalanine are particularly effective. The nitrogen source may be inorganic such as ammonium sulfate, ammonium chloride, or sodium nitrate, or organic such as yeast extract, meat extract, or peptone. In addition to sodium chloride, common inorganic salts such as monopotassium phosphate, disodium phosphate, and magnesium sulfate can be used as the inorganic salts. As a culture method, liquid culture is usually preferred, at 15 to 37°C, preferably 25 to 35°C, and pH 5 to 8.
Culture under aerobic conditions for 10-50 hours. Through this culture, most of the enzyme is accumulated within the bacterial cells. After completion of the culture, the culture may be used as it is as an enzyme source, but separation and purification are usually performed. As for the isolation method, the bacterial cells are first separated by a conventional method such as centrifugation, and the bacterial cells are destroyed by grinding, lysis with a lytic enzyme such as lysozyme, ultrasonication, pressure shock method, autolysis method, etc. Extract the enzyme. The destroyed bacterial cell residue is separated to obtain an enzyme extract, which is then subjected to salting-out method using ammonium sulfate, etc., solvent precipitation method using acetone, ethanol, etc., gel filtration method using Sephadex, Sepharose gel, etc., adsorption using ion exchange resin, etc. Purification is performed using an appropriate combination of methods to obtain an enzyme preparation of the desired purity. (Action and Effect of the Invention) The enzyme of the present invention contains N-benzoylglycine and N-benzoylglycine.
It is characterized by being able to degrade -benzoyl-L-alanine well and being stable even in alkaline conditions, and is useful in methods for measuring angiotensin-converting enzyme activity and carboxypeptidase A activity. (Example) 90 volumes of a medium 60 with a pH of 7.0 consisting of 1% hippuric acid, 0.3% yeast extract, 0.2% sodium nitrate, 0.1% dipotassium phosphate, 0.05% magnesium sulfate, and 0.05% sodium chloride. It was placed in a mentor and sterilized at 120°C for 20 minutes. After cooling, Pseudomonas sp. No. 684-2 (FERM P-
7716) and cultured with aeration at 28°C for 10 hours. The amount of ventilation during this time was 0.5vvm, and the rotation speed of the stirring blade was 200rpm. After the culture was completed, the culture solution was centrifuged to obtain about 1 kg of wet bacterial cells. This bacterial body
Suspend in 10mM sodium phosphate buffer (PH7.0) 3 and use Dyno Mill (KDL type).
Bacterial cells were disrupted at a flow rate of 3000 rpm and 30 ml/min. The bacterial cell residue was removed by centrifugation to obtain enzyme extract 3.5.
Diethylaminoethylcellulose 1 equilibrated with 10mM sodium phosphate buffer was added to this enzyme extract.
Kg was added and stirred at 6°C for 2 hours to adsorb the enzyme. This diethylaminoethyl cellulose was thoroughly washed with the same buffer, and the enzyme was eluted with the same buffer containing 0.2M sodium chloride. Ammonium sulfate was added to the eluate to give a saturation of 0.25, the resulting precipitate was removed, and ammonium sulfate was added to the supernatant to give a saturation of 0.35, and the resulting precipitate was collected. This precipitate was dialyzed against the same buffer overnight.
The dialysate was adsorbed onto a hydroxyapatite column equilibrated with the same buffer, and eluted with 0.2M sodium phosphate buffer (PH7.0). Ammonium sulfate was added to the eluted fraction to saturation of 0.35, and the resulting precipitate was collected and dialyzed against the same buffer overnight to obtain a purified sample with a specific activity of 150 U/mg in a yield of 27%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例で得られた酵素の至適PHを示す
曲線であり、第2図はPH安定性を示す曲線であ
る。第3図は同じ条件で測定して得られた先願の
酵素のPH安定性を示す曲線である。第4図は実施
例で得られた酵素の熱安定性を示す曲線であり、
第5図は実施例で得られた酵素と先願の酵素のPH
7.8における保存安定性を比較した結果を示すも
のである。
FIG. 1 is a curve showing the optimum pH of the enzyme obtained in the Examples, and FIG. 2 is a curve showing the PH stability. FIG. 3 is a curve showing the PH stability of the enzyme of the previous application obtained by measurement under the same conditions. FIG. 4 is a curve showing the thermostability of the enzyme obtained in the example,
Figure 5 shows the pH of the enzyme obtained in the example and the enzyme of the earlier application.
7.8 shows the results of comparing storage stability.

Claims (1)

【特許請求の範囲】 1 下記の理化学的性質を有するアミノアシラー
ゼ。 作用:N−ベンゾイルグリシンを加水分解して安
息香酸とグリシンを生成する。 基質特異性:N−ベンゾイルグリシン、N−ベン
ゾイル−L−アラニンを特異的に分解するが、
前者に対する活性は後者に対する活性より高
く、N−アセチルグリシン及びN−ベンゾイル
−D−アラニンに対する活性はN−ベンゾイル
グリシンに対する活性の1/100以下である。 至適PH:PH8.0〜8.5 安定PH:PH6.5〜8.5 作用適温:約37℃ 失活条件:PH4未満及びPH10以上でほぼ完全に失
活する。 阻害、活性化及び安定化:α,α′−ジピリジル1
mM及びエチレンジアミン四酢酸10mM溶液で
は活性は変らず、8−ヒドロキシキノリン、モ
ノヨード酢酸、p−クロロ水銀安息香酸、
Hg++、Cu++、Ni++、Mn++及びBa++の各1m
M溶液では阻害される。 分子量:ゲル濾過法により求めた分子量は17万ダ
ルトンである。 等電点:4.4。
[Claims] 1. An aminoacylase having the following physical and chemical properties. Action: Hydrolyzes N-benzoylglycine to produce benzoic acid and glycine. Substrate specificity: specifically decomposes N-benzoylglycine and N-benzoyl-L-alanine, but
The activity against the former is higher than the activity against the latter, and the activity against N-acetylglycine and N-benzoyl-D-alanine is less than 1/100 of the activity against N-benzoylglycine. Optimum PH: PH8.0-8.5 Stable PH: PH6.5-8.5 Suitable temperature for action: Approximately 37°C Inactivation conditions: Almost completely inactivated at PH of less than 4 and PH of 10 or more. Inhibition, activation and stabilization: α,α′-dipyridyl 1
8-hydroxyquinoline, monoiodoacetic acid, p-chloromercuric benzoic acid,
1m each of Hg ++ , Cu ++ , Ni ++ , Mn ++ and Ba ++
It is inhibited in M solution. Molecular weight: The molecular weight determined by gel filtration method is 170,000 Daltons. Isoelectric point: 4.4.
JP59198055A 1984-09-21 1984-09-21 Aminoacylase Granted JPS6174584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59198055A JPS6174584A (en) 1984-09-21 1984-09-21 Aminoacylase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59198055A JPS6174584A (en) 1984-09-21 1984-09-21 Aminoacylase

Publications (2)

Publication Number Publication Date
JPS6174584A JPS6174584A (en) 1986-04-16
JPH0518556B2 true JPH0518556B2 (en) 1993-03-12

Family

ID=16384777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59198055A Granted JPS6174584A (en) 1984-09-21 1984-09-21 Aminoacylase

Country Status (1)

Country Link
JP (1) JPS6174584A (en)

Also Published As

Publication number Publication date
JPS6174584A (en) 1986-04-16

Similar Documents

Publication Publication Date Title
JPS6055118B2 (en) Novel bacterial alkaline protease and its production method
JP2850515B2 (en) Glucose dehydrogenase and method for producing the same
US4740465A (en) Heat-resistant sarcosine oxidase N and process for producing the same
JPS61268178A (en) Fructosylamino acid oxidase and production thereof
JP2726274B2 (en) Novel keratan sulfate degrading enzyme and microorganism and method for producing the same
JPH0117674B2 (en)
JPH0518556B2 (en)
JPH0783711B2 (en) Novel method for producing D-aminoacylase
JPH0337B2 (en)
JPH0328188B2 (en)
JP3114838B2 (en) Novel creatine amidinohydrolase and its use
JP3642344B2 (en) Method for producing creatine amidinohydrolase
Eiji et al. Crystallization and properties of N-benzoylglycine amidohydrolase from Pseudomonas putida
JPS6139035B2 (en)
JP2873936B2 (en) Cold-active protease and its production
JPH0787780B2 (en) Novel sarcosine oxidase and its production method
JP3649765B2 (en) Novel glycerol kinase and process for producing the same
JPS6318471B2 (en)
JPH0239237B2 (en) SHUSANOKISHIDAAZENOSEIZOHO
JPS5910193B2 (en) Method for producing amylase inhibitor AI-B
JPH0616704B2 (en) Bacterial catalase resistant to fluoride ions and Micrococcus sp. KWI-5 strain
JPH0257917B2 (en)
JPH1156355A (en) Production of cholesterol esterase
JPS60153793A (en) Preparation of enzyme
JPH0147996B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term