JPH05182893A - Method and apparatus for exposure of pattern - Google Patents

Method and apparatus for exposure of pattern

Info

Publication number
JPH05182893A
JPH05182893A JP4000757A JP75792A JPH05182893A JP H05182893 A JPH05182893 A JP H05182893A JP 4000757 A JP4000757 A JP 4000757A JP 75792 A JP75792 A JP 75792A JP H05182893 A JPH05182893 A JP H05182893A
Authority
JP
Japan
Prior art keywords
wafer
reticle
pattern
exposure
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4000757A
Other languages
Japanese (ja)
Other versions
JP3429783B2 (en
Inventor
Yoshitada Oshida
良忠 押田
Ken Fujii
憲 藤井
Makoto Murayama
誠 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP00075792A priority Critical patent/JP3429783B2/en
Publication of JPH05182893A publication Critical patent/JPH05182893A/en
Application granted granted Critical
Publication of JP3429783B2 publication Critical patent/JP3429783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation

Abstract

PURPOSE:To realize a pattern exposure method and its apparatus wherein an alignment operation can be performed in a high-accuracy line width by a method wherein the displacement amount of the relative position between a projected image and a wafer is sampled at a sampling frequency, measured and corrected. CONSTITUTION:A circuit pattern on a reticle 2 is irradiated with a beam of exposure light 11 radiated from an exposure-light optical system 1; an image which is 1/5 times the pattern on the reticle 2 is formed on the surface of a wafer 5 by using a beam of transmitted light; the image is aligned with the pattern on the wafer 5 with good accuracy. Then, the relative dislocation of the pattern on the wafer 5 from the pattern on the reticle 2 is detected; a total displacement amount (DELTAL) is found; the wafer or reticle stages 6, 3 are moved fine by DELTAL, by using a fine movement control means 10; the dislocation is corrected. Consequently, even when their relative position is changed during an exposure operation, the circuit pattern in which the line width of the pattern is 0.5mum or lower can be aligned with high accuracy in a high-accuracy line width.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微細な回路パタ−ンを露
光するパターン露光方法およそのび装置に係り、特に、
パタ−ンの線幅が0.5μm以下の回路パタ−ンを、露
光中の低周波振動等に影響されることなく、高い精度の
線幅で、しかも高精度に重ね合わせるのに好適なパタ−
ン露光方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pattern exposure method and an apparatus for exposing a fine circuit pattern, and
A pattern suitable for superimposing a circuit pattern having a line width of 0.5 μm or less with a high precision line width and a high precision without being affected by low frequency vibration during exposure. −
Exposure method and apparatus therefor.

【0002】[0002]

【従来の技術】半導体の回路パタ−ンの線幅は、従来
0.8μmであったため、該パタ−ンの線幅のばらつき
は±0.08μm、アライメント精度もほぼこの値と同
程度で足りていた。このため従来は、ウエハをステップ
アンドリピ−トで移動させながら、レチクルのパタ−ン
をウエハ上に1/5に縮小露光する際、ステップ移動後
に若干の時間を置いて露光を開始するようにすれば、ス
テップ移動に伴う振動も上記精度内に収まり、所定の目
標精度にパタ−ンを露光することが可能であった。とこ
ろが、パタ−ンの線幅の微細化要求は急速に進んでお
り、0.5〜0.3μmの線幅の時代になりつつある。
2. Description of the Related Art Since the line width of a semiconductor circuit pattern has conventionally been 0.8 .mu.m, the variation in the line width of the pattern is. +-. 0.08 .mu.m, and the alignment accuracy is almost equal to this value. Was there. For this reason, conventionally, when the reticle pattern is reduced and exposed to ⅕ on the wafer while the wafer is moved by the step and repeat method, the exposure is started with some time after the step movement. If so, the vibration accompanying the step movement can be kept within the above accuracy, and the pattern can be exposed to a predetermined target accuracy. However, the demand for miniaturization of the pattern line width is rapidly advancing, and the line width of 0.5 to 0.3 μm is being reached.

【0003】[0003]

【発明が解決しようとする課題】しかし、パタ−ンの線
幅が0.5〜0.3μmに微細化すると、ステップ移動
後かなりの時間を経過しても、そして、露光装置の除震
機構が作動しても数ヘルツ以下の低周波数の振動が残留
する。これは露光装置の剛性をかなり高めても同様で、
前記周波数や構造物の共振周波数に相当する振動が僅か
ではあるが残留する。このため、マスクまたはレチク
ル,投影光学系およびウエハの3者の相対的な位置は、
僅かではあるが常時変化している。従って、露光をアラ
イメントを行なった後に開始しても、アライメントと露
光開始との間にレチクル像とウエハの相対位置がずれて
しまう問題があり、また、露光時間そのものが0.2〜
0.4秒程度となるため、露光中にレチクル像とウエハ
の相対位置が変化していく状態下で露光されることにな
り、パタ−ンの線幅のばらつきや、重ね合わせ精度の低
下が避けられず、所定の目標精度が得られないという問
題点を有していた。
However, if the pattern line width is reduced to 0.5 to 0.3 .mu.m, even after a considerable amount of time has passed after the step movement, the anti-vibration mechanism of the exposure apparatus is used. Even if is activated, low-frequency vibrations of several hertz or less remain. This is the same even if the rigidity of the exposure apparatus is increased considerably,
Vibrations corresponding to the above-mentioned frequency and the resonance frequency of the structure are small but remain. Therefore, the relative positions of the mask or reticle, the projection optical system, and the wafer are:
It is changing slightly, but constantly. Therefore, even if the exposure is started after performing the alignment, there is a problem that the relative position between the reticle image and the wafer is deviated between the alignment and the start of the exposure, and the exposure time itself is 0.2 to
Since it takes about 0.4 seconds, the exposure is performed under the condition that the relative position of the reticle image and the wafer is changed during the exposure, and the pattern line width varies and the overlay accuracy decreases. There is a problem inevitable that a predetermined target accuracy cannot be obtained.

【0004】本発明は、上記従来技術の問題点に鑑み、
低周波の振動が残留して露光中にレチクル像とウエハと
の相対位置の変化が発生しても、パタ−ンの線幅のばら
つきや、重ね合わせ精度の低下を防止することができ、
パタ−ンの線幅が0.5μm以下の回路パタ−ンを、高
い精度の線幅で、しかも高精度に重ね合わせることがで
きるパターン露光方法およびその装置を提供することを
目的とする。
The present invention has been made in view of the above problems of the prior art.
Even if the low-frequency vibration remains and the relative position between the reticle image and the wafer changes during exposure, it is possible to prevent variations in the line width of the pattern and a decrease in overlay accuracy.
It is an object of the present invention to provide a pattern exposure method and an apparatus thereof which can superimpose a circuit pattern having a pattern line width of 0.5 μm or less with a high precision line width and a high precision.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明のパターン露光方法は、マスクまたはレチク
ルに露光光を照射し、該マスクまたはレチクル上のパタ
−ンの透過光または反射光を、投影光学系を介してウエ
ハ上に投影露光するパタ−ン露光方法において、前記パ
タ−ンの投影光学系を介した投影像とウエハとの間の振
動に伴う相対位置の変化状態および変位量を、前記振動
の主要周波数の数倍以上の周波数を有するサンプリング
周波数によりサンプリングして計測し、該計測値に応じ
てウエハたまは/およびマスクまたはレチクルを前記投
影露光中に微動変位させ、前記投影像とウエハとの間の
相対位置変位を補正する構成にしたものである。
In order to achieve the above object, a pattern exposure method of the present invention irradiates a mask or reticle with exposure light and transmits transmitted light or reflected light of a pattern on the mask or reticle. In a pattern exposure method for performing projection exposure on a wafer via a projection optical system, a relative state change state and a displacement amount due to vibration between a wafer and a projection image of the pattern via the projection optical system. Is sampled and measured at a sampling frequency having a frequency that is several times or more the main frequency of the vibration, and the wafer or / and the mask or reticle is finely displaced during the projection exposure according to the measured value, and the projection is performed. The configuration is such that the relative position displacement between the image and the wafer is corrected.

【0006】そして、前記サンプリング周波数を、前記
振動の主要周波数の4倍以上にすることが効果的であ
り、前記計測を、前記投影露光中に行う構成にすること
が望ましい。また、前記投影露光中の微動変位を、前記
計測により予め得られている過去の複数のサンプリング
デ−タを使用して制御する構成にしてもよい。
It is effective that the sampling frequency is four times or more the main frequency of the vibration, and it is desirable that the measurement be performed during the projection exposure. Further, the fine movement displacement during the projection exposure may be controlled by using a plurality of past sampling data obtained in advance by the measurement.

【0007】そして、前記相対位置の変位量の計測を、
前記投影光学系の光軸に垂直な方向で、かつ前記ウエハ
を保持するステ−ジ,前記投影光学系,前記マスクまた
はレチクルを保持するステ−ジの3つのうち、少なくと
もいずれか2つ以上により行うことが好ましく、また、
前記相対位置の変位量の計測を、前記投影光学系の光軸
に垂直な方向で、かつ前記ウエハを保持するステ−ジ,
または/および前記マスクまたはレチクルを保持するス
テ−ジと前記投影光学系とにより行い、該投影光学系の
位置変位量の計測を、前記マスクまたはレチクルとウエ
ハとの間の距離を該投影光学系の倍率の比で内分する位
置で行う構成にするとよい。さらに、前記相対位置の変
位量の計測を、前記ウエハ上のパタ−ンと前記マスクま
たはレチクル上のパタ−ンを使用して行うことが望まし
い。
Then, the displacement amount of the relative position is measured by
By at least any two or more of three in the direction perpendicular to the optical axis of the projection optical system and in the stage for holding the wafer, the projection optical system, and the stage for holding the mask or reticle. Preferably, and
The measurement of the displacement amount of the relative position is performed in a direction perpendicular to the optical axis of the projection optical system and a stage for holding the wafer,
Alternatively, and / or the stage for holding the mask or reticle and the projection optical system are used to measure the amount of positional displacement of the projection optical system, and the distance between the mask or reticle and the wafer is measured by the projection optical system. It is advisable to adopt a configuration in which the position is internally divided by the ratio of the magnification. Further, it is desirable to measure the amount of displacement of the relative position by using a pattern on the wafer and a pattern on the mask or reticle.

【0008】一方、本発明のパターン露光装置は、露光
光源を有し、該露光光源よりの出射光をマスクまたはレ
チクルに照射する露光照明系および該マスクまたはレチ
クルに対する露光光をON−OFF制御可能なシャッタ
機能とを備えた露光光学系と、前記マスクまたはレチク
ルを透過または反射した光をウエハ上に投影露光する投
影光学系と、前記マスクまたはレチクルを保持するレチ
クルステ−ジと、前記ウエハを保持し粗微動可能なウエ
ハステ−ジと、ウエハとマスクまたはレチクルとの相対
的な位置を検出するアライメント検出系とからなるパタ
−ン露光装置において、前記シャッタ機能がONの露光
状態下で、前記マスクまたはレチクル上のパタ−ンの前
記投影光学系による投影像とウエハとの間の振動に伴う
相対位置の変化状態および変位量を、前記振動の主要周
波数の4倍以上の周波数を有するサンプル周波数でサン
プリングして計測する変位検出系と、該計測された変化
状態および変位量に応じてウエハまたは/およびマスク
またはレチクルを微動変位させ、前記投影像とウエハと
の間の相対位置変位を補正制御する微動制御手段とを具
備したものである。
On the other hand, the pattern exposure apparatus of the present invention has an exposure light source, and an exposure illumination system for irradiating the light emitted from the exposure light source to a mask or reticle, and ON / OFF control of the exposure light to the mask or reticle. Exposure optical system having a shutter function, a projection optical system for projecting and exposing light transmitted or reflected by the mask or reticle onto a wafer, a reticle stage for holding the mask or reticle, and a wafer holding device. In a pattern exposure apparatus comprising a wafer stage capable of coarse and fine movements and an alignment detection system for detecting the relative position of the wafer and the mask or reticle, the mask function is used under the exposure condition in which the shutter function is ON. Alternatively, the relative position change caused by the vibration between the image projected by the projection optical system of the pattern on the reticle and the wafer. And a displacement detection system for measuring the displacement amount by sampling at a sampling frequency having a frequency four times or more the main frequency of the vibration, and a wafer or / and a mask or a reticle according to the measured change state and displacement amount. And a fine movement control means for correcting and controlling the relative position displacement between the projected image and the wafer.

【0009】そして、前記変位検出系を、前記ウエハス
テ−ジ,投影光学系,レチクルステ−ジの3つのうち、
少なくともいずれか2つ以上により前記投影光学系の光
軸に垂直な方向の変位量を計測可能に構成することが好
ましく、また、前記変位検出系を、前記投影光学系の光
軸に垂直な方向の変位量を、前記ウエハステ−ジ,また
は/および前記レチクルステ−ジと投影光学系とにより
計測可能に構成するとともに、前記投影光学系による相
対位置の変位量の計測を、前記マスクまたはレチクルと
ウエハとの間の距離を該投影光学系の倍率の比で内分す
る位置で行う構成にするとよい。さらに、前記アライメ
ント検出系を、前記ウエハ上のパタ−ンと前記マスクま
たはレチクル上のパタ−ンとを使用して前記ウエハとマ
スクまたはレチクルとの相対的な位置を検出可能に構成
することが望ましい。
The displacement detection system is one of the three stages of the wafer stage, the projection optical system, and the reticle stage.
It is preferable that at least any two or more of them can be configured to measure a displacement amount in a direction perpendicular to the optical axis of the projection optical system, and the displacement detection system can be arranged in a direction perpendicular to the optical axis of the projection optical system. Of the wafer or stage and / or the reticle stage and the projection optical system, and the displacement of the relative position by the projection optical system is measured by the mask or reticle and the wafer. It is advisable to adopt a configuration in which the distance between and is internally divided by the ratio of the magnification of the projection optical system. Further, the alignment detection system may be configured to detect a relative position between the wafer and the mask or reticle by using the pattern on the wafer and the pattern on the mask or reticle. desirable.

【0010】[0010]

【作用】上記構成としたことにより、マスクまたはレチ
クル(以下、単にレチクルという)上のパターンの投影
像とウエハとの間の振動に伴う相対位置の微小変位量
が、変位検出系によりレチクル,投影光学系,ウエハの
それぞれについて投影光学系の光軸に垂直方向に、投影
露光中においても計測可能になる。この場合、投影光学
系における変位計測位置を、レチクルとウエハとの間の
距離を5対1に内分した位置にすると、投影光学系とウ
エハとの両者が変位しないでレチクルのみがΔLr変位
した場合におけるウエハ上でのレチクル像の変位量は−
1/5ΔLrとなり、また、投影光学系のみがΔLi変
位した場合のウエハ上でのレチクル像の変位量は6/5
ΔLiとなることから、投影露光中に計測すべき全変位
量ΔLは次式で与えられる、 ΔL=ΔLw+6/5ΔLi−1/5ΔLr ……(1) ここで、ΔLwはウエハにおける基準位置(例えばチッ
プの中心)との微小変位量である。
With the above structure, the displacement detecting system detects the minute displacement of the relative position due to the vibration between the projected image of the pattern on the mask or reticle (hereinafter simply referred to as "reticle") and the wafer. It is possible to measure the optical system and the wafer in the direction perpendicular to the optical axis of the projection optical system even during the projection exposure. In this case, if the displacement measurement position in the projection optical system is set to a position where the distance between the reticle and the wafer is internally divided into 5: 1, both the projection optical system and the wafer are not displaced and only the reticle is displaced by ΔLr. In this case, the displacement of the reticle image on the wafer is −
⅕ΔLr, and the displacement amount of the reticle image on the wafer is 6/5 when only the projection optical system is displaced by ΔLi.
Since it is ΔLi, the total displacement amount ΔL to be measured during the projection exposure is given by the following equation: ΔL = ΔLw + 6 / 5ΔLi-1 / 5ΔLr (1) Here, ΔLw is a reference position on the wafer (for example, a chip). (Center of) and a small amount of displacement.

【0011】上記計測時におけるサンプリングは、残留
している微小振動の主要周波数の4倍以上の周波数で行
われるから、該振動の振幅と位相との概略を把握するこ
とが可能になり、所定の計測精度を得ることができる。
例えば、ウエハステ−ジのステップ移動直後に残留する
数十〜百数十Hzの早く減衰する比較的周波数の高い振
動が十分に減衰した後に露光を行う場合には、露光装置
の除震機能でも減衰し切れない数Hzの振動の影響除去
のために、該数Hzの4倍以上の十数Hz以上のサンプ
リング周波数で行い、上記ステップ移動後の残留振動の
完全な減衰を待たずに露光する場合には、前記数十〜百
数十Hzの4倍以上の数百Hzのサンプリング周波数で
行われる。
Since sampling at the time of the above measurement is performed at a frequency that is four times or more the main frequency of the remaining minute vibration, it is possible to grasp the outline of the amplitude and phase of the vibration, and the predetermined Measurement accuracy can be obtained.
For example, when the exposure is performed after the vibration of a relatively high frequency of tens to hundreds of tens of Hz that remains immediately after the step movement of the wafer stage is sufficiently damped, the vibration removal function of the exposure apparatus also dampens it. When exposure is performed without waiting for the complete attenuation of residual vibration after the above step movement, in order to remove the effect of vibration of several Hz that cannot be completely performed, at a sampling frequency of ten or more Hz, which is four times that frequency or more. For example, the sampling frequency is several hundred Hz, which is four times or more the above several tens to one hundred and several tens Hz.

【0012】上記サンプリングデータは露光中常に微動
制御手段にフィードバックされ、残留振動が制御され
る。そして、この制御状態下でレチクル像に対するウエ
ハのずれ、すなわち前記計測された全変位量ΔLを、該
微動制御手段によりウエハステージまたはレチクルステ
ージの一方、或いは両方を微動させて補正する。この補
正により、前記僅かではあるが常時発生しているレチク
ル,投影光学系,ウエハの3者の相対的な位置変化があ
っても、レチクル像とウエハとが精度よく重ね合わさ
れ、パタ−ンの線幅が0.5μm以下の回路パタ−ンで
あっても、高精度の線幅並びにアライメント精度で露光
することが可能になる。
The above sampling data is always fed back to the fine movement control means during exposure to control the residual vibration. Then, under this control condition, the deviation of the wafer with respect to the reticle image, that is, the total displacement amount ΔL measured is corrected by finely moving one or both of the wafer stage and the reticle stage by the fine movement control means. With this correction, the reticle image and the wafer are accurately superimposed even if there is a relative positional change between the reticle, the projection optical system, and the wafer, which are slight but always generated, and the pattern of the pattern is accurately overlapped. Even if the circuit pattern has a line width of 0.5 μm or less, it is possible to perform exposure with high line width and alignment accuracy.

【0013】なお、ウエハステージ等を微動制御する
際、前記サンプリングデータのほか、露光装置の機構の
固有の振動特性を考慮した予め得られている複数のサン
プル点のデ−タを利用して予測制御を行なうことによ
り、更に精度の高い露光を行うことができる。
When finely controlling the wafer stage or the like, prediction is performed by using data of a plurality of sample points which are obtained in advance in consideration of the vibration characteristics peculiar to the mechanism of the exposure apparatus, in addition to the sampling data. By performing the control, more accurate exposure can be performed.

【0014】[0014]

【実施例】以下、本発明の一実施例を図1ないし図3を
参照して説明する。図1はパターン露光装置の概略構成
を示す図、図2は露光パターンの各部の変位状態を示す
図、図3はステップ移動後の残留振動と計測・露光のタ
イミンクグとの関係を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing a schematic configuration of a pattern exposure apparatus, FIG. 2 is a diagram showing a displacement state of each part of an exposure pattern, and FIG. 3 is a diagram showing a relationship between residual vibration after step movement and timing of measurement / exposure. ..

【0015】図1において、1は露光光源を含む露光光
学系で、この中には露光光源よりの出射光をレチクルス
テージ3上に載置されたレチクル2に照射する露光照明
系と、レチクル2に対する露光光11をON−OFF制
御可能なシャッタ機能とを備えている。4はレチクル2
を透過した光をウエハステージ6に載置されたウエハ5
上に縮小して投影露光する縮小レンズを含む投影光学系
で、既にパターンの形成されているウエハ5の表面にレ
チクル2上のパターンの1/5倍の像を結ぶように構成
されている。7はウエハ5に形成されているパターンと
レチクル2のパターンとの相対的な位置を検出するアラ
イメント検出系、8はアライメント検出光で、該検出方
法は、前記相対的な位置が露光位置にて検出可能な方
法、例えば、特公昭63−60525号公報や特開昭6
1−220326号公報に記載されている方法が用いら
れる。検出にはCCD一次元撮像素子が使用され、検出
されたデータは高速にAD変換され、ディジタル・シグ
ナル・プロセッサ(DSP)を使用して数msのサンプ
リング周期で検出するように構成されている。また、ア
ライメント検出系7はアライメント検出光8に露光光1
1と同一波長の光を用いているため、アライメント検出
を長時間行うとレジストが感光するので、アライメント
検出を短時間で行い、その後はアライメント検出光8を
遮光して、ウエハ5に入射されないようにしている。9
は前記シャッタ機能がONの露光状態下で、レチクル2
上のパタ−ンの投影光学系4による投影像とウエハ5と
の間の振動に伴う相対位置の変位量を計測するレーザ測
長器で、アライメント検出系7とともに変位検出系を構
成する。該変位検出系においては、前記振動の主要周波
数の4倍以上の周波数を有するサンプル周波数でサンプ
リングして計測する構成になっている。レーザ測長器9
は、アライメント検出系7で検出した瞬間におけるレチ
クル2,投影光学系4,ウエハ5の投影光学系4の光軸
4aに垂直な方向の各変位を、レ−ザビ−ム31、3
2、33を介して計測する。図1においては光軸4aに
垂直な1方向の各変位を計測しているが、実際には図示
されていない紙面に直角な方向の検出系が組み込まれお
り、光軸4aに垂直な2方向についてそれぞれ計測され
るようになっている。そして、投影光学系4の変位検出
位置は、図1に示すようにレチクル2とウエハ5との間
をL1:L2=5:1に内分する位置Cである。10は変
位検出系により計測されたレチクル2上のパタ−ンの投
影光学系4による投影像とウエハ5との間の相対位置の
変化状態および変位量に応じて、ウエハ5またはレチク
ル2の一方を、或いはその両方を微動変位させ、前記投
影像とウエハ5との間の相対位置変位を補正制御する微
動制御手段である。
In FIG. 1, reference numeral 1 denotes an exposure optical system including an exposure light source, in which an exposure illumination system for irradiating a reticle 2 mounted on a reticle stage 3 with light emitted from the exposure light source, and a reticle 2. And a shutter function capable of controlling ON / OFF of the exposure light 11 for. 4 is reticle 2
The light transmitted through the wafer 5 placed on the wafer stage 6
A projection optical system including a reduction lens that performs projection exposure by reducing the size upward, and is configured to form an image of 1/5 times the pattern on the reticle 2 on the surface of the wafer 5 on which the pattern is already formed. Reference numeral 7 is an alignment detection system for detecting a relative position between the pattern formed on the wafer 5 and the pattern of the reticle 2, 8 is an alignment detection light, and the detection method is such that the relative position is an exposure position. Detectable methods such as Japanese Patent Publication No. 63-60525 and Japanese Patent Laid-Open No.
The method described in JP-A 1-220326 is used. A CCD one-dimensional image pickup device is used for detection, the detected data is AD-converted at high speed, and is detected at a sampling period of several ms using a digital signal processor (DSP). In addition, the alignment detection system 7 converts the alignment detection light 8 into the exposure light 1
Since the light having the same wavelength as that of No. 1 is used, the resist is exposed when the alignment detection is performed for a long time. Therefore, the alignment detection is performed in a short time, and then the alignment detection light 8 is shielded so that it does not enter the wafer 5. I have to. 9
Is the reticle 2 under the exposure condition in which the shutter function is ON.
A laser length measuring device that measures the displacement amount of the relative position due to the vibration between the projected image of the projection optical system 4 of the above pattern and the wafer 5 constitutes the displacement detection system together with the alignment detection system 7. The displacement detection system is configured to measure by sampling at a sampling frequency having a frequency four times or more the main frequency of the vibration. Laser length measuring device 9
Are laser beams 31, 3 for the respective displacements of the reticle 2, the projection optical system 4, and the wafer 5 in the direction perpendicular to the optical axis 4a of the projection optical system 4 at the moments detected by the alignment detection system 7.
Measure through 2, 33. In FIG. 1, displacements in one direction perpendicular to the optical axis 4a are measured, but a detection system in a direction perpendicular to the plane of the paper (not shown) is actually incorporated, and two directions perpendicular to the optical axis 4a are incorporated. Is measured for each. The displacement detection position of the projection optical system 4 is a position C where the space between the reticle 2 and the wafer 5 is internally divided into L 1 : L 2 = 5: 1 as shown in FIG. Reference numeral 10 denotes one of the wafer 5 and the reticle 2 according to the change state and the amount of displacement of the relative position between the projection image of the pattern on the reticle 2 projected by the projection optical system 4 and the wafer 5 measured by the displacement detection system. Or both of them is finely displaced, and the relative position displacement between the projected image and the wafer 5 is corrected and controlled.

【0016】上記構成としたことにより、露光光学系1
より出射した露光光11はレチクル2上の回路パタ−ン
を照明し、レチクル2を透過した光は投影光学系4にお
ける縮小レンズによりウエハ5の表面にレチクル2上の
パタ−ンの1/5倍の像を結ぶ。この結像と既に形成さ
れているウエハ5のパターンとを精度良く位置合わせ
し、レチクル2の像をウエハ5に重ね露光する必要があ
るため、アライメント検出系7によりウエハ5のパタ−
ンとレチクル2のパタ−ンの相対的な位置ずれが検出さ
れる。
With the above arrangement, the exposure optical system 1
The exposure light 11 emitted thereby illuminates the circuit pattern on the reticle 2, and the light transmitted through the reticle 2 is applied to the surface of the wafer 5 by a reduction lens in the projection optical system 4 to 1/5 of the pattern on the reticle 2. Double the image. Since it is necessary to accurately align this image formation with the already formed pattern of the wafer 5 and to expose the image of the reticle 2 on the wafer 5 in an overlapping manner, the alignment detection system 7 patterns the wafer 5.
The relative displacement between the pattern of the reticle 2 and the pattern of the reticle 2 is detected.

【0017】上記位置ずれの検出は、図2に示すように
レチクル2,投影光学系4,ウエハ5のそれぞれについ
て、ウエハ5における基準位置(例えばチップの中心)
Wとの微小変位ΔLr,ΔLi,ΔLwが、投影光学系
4の光軸4aに垂直方向に、投影露光中に行われる。こ
の場合、投影光学系4における変位計測位置が、レチク
ル2とウエハ5との間の距離を5対1に内分した位置C
にあるため、投影光学系4とウエハ5との両者が変位し
ないで、レチクル2のみがレチクル2の基準位置Aより
ΔLr変位した図2(a)の場合には、ウエハ5上での
レチクル像の変位量はウエハ5の基準位置Wより−1/
5ΔLrとなる。また、投影光学系4のみがレチクル2
の基準位置AよりΔLi変位した図2(b)の場合に
は、ウエハ上5でのレチクル像の変位量はウエハ5の基
準位置Wより6/5ΔLiとなる。さらに、ウエハ5の
みがレチクル2の基準位置AよりΔLw変位した図2
(c)の場合には、ウエハ上5でのレチクル像の変位量
はウエハ5の基準位置WからもΔLwとなる。なお、上
記位置ずれは、投影光学系4の傾きについては影響され
ず、図2(d)に示すようにΔL=0になる。
The above-mentioned misregistration is detected by referring to the reticle 2, the projection optical system 4 and the wafer 5, as shown in FIG.
The minute displacements ΔLr, ΔLi, and ΔLw with W are performed in the direction perpendicular to the optical axis 4a of the projection optical system 4 during the projection exposure. In this case, the displacement measurement position in the projection optical system 4 is a position C obtained by internally dividing the distance between the reticle 2 and the wafer 5 into 5: 1.
2A in which both the projection optical system 4 and the wafer 5 are not displaced, and only the reticle 2 is displaced from the reference position A of the reticle 2 by ΔLr, the reticle image on the wafer 5 is Of the reference position W of the wafer 5 is -1 /
It becomes 5ΔLr. Further, only the projection optical system 4 is the reticle 2
In the case of FIG. 2B, which is displaced from the reference position A by ΔLi, the displacement amount of the reticle image on the wafer 5 is 6/5 ΔLi from the reference position W of the wafer 5. Further, only the wafer 5 is displaced from the reference position A of the reticle 2 by ΔLw.
In the case of (c), the displacement amount of the reticle image on the wafer 5 is ΔLw even from the reference position W of the wafer 5. The positional deviation is not affected by the inclination of the projection optical system 4, and ΔL = 0 as shown in FIG. 2 (d).

【0018】上記各微小変位ΔLr,ΔLi,ΔLwか
ら、投影露光中に計測すべき全変位量ΔLを、前記
(1)式より求め、微動制御手段10によりウエハステ
ージ6またはレチクルステージ3の一方、または両者
を、求めたΔLだけ微動させて位置ずれを補正する。上
記ΔLr,ΔLi,ΔLwの各値は、パタ−ン露光中も
常時検出されているから、露光中の振動等による露光パ
タ−ンのウエハ5上の僅かな位置ずれでも、常時ΔLだ
けウエハ5等を微動補正することが可能になり、良好な
パタ−ン形状を正しいアライメント位置に露光すること
が可能となる。なお、上記ΔLr,ΔLi,ΔLwの検
出は、例えば、レチクル2の変位量が問題にならないほ
ど小さい場合は、ΔLrの計測を省略し、ΔLiおよび
ΔLwの検出値からΔLを求め、この値によりウエハス
テ−ジ6等を微動制御するようにしてもよい。
From each of the minute displacements ΔLr, ΔLi, and ΔLw, the total displacement amount ΔL to be measured during the projection exposure is obtained from the equation (1), and one of the wafer stage 6 and the reticle stage 3 is controlled by the fine movement control means 10. Alternatively, both are finely moved by the obtained ΔL to correct the positional deviation. Since the respective values of ΔLr, ΔLi, and ΔLw are constantly detected during pattern exposure, even if the exposure pattern is slightly displaced on the wafer 5 due to vibration during exposure, the wafer 5 is always ΔL. It becomes possible to make fine movement corrections for the like, and it becomes possible to expose a good pattern shape to the correct alignment position. In the detection of ΔLr, ΔLi, and ΔLw, for example, when the displacement amount of the reticle 2 is so small as not to be a problem, the measurement of ΔLr is omitted, and ΔL is obtained from the detected values of ΔLi and ΔLw. -It is also possible to control the movement of the gear 6 and the like.

【0019】前記図1に示すようなパターン露光装置に
おいいては、該装置の各系を支持している構造体が固有
の共振周波数を有しており、これらの周波数の残留振動
が発生する。例えば、ウエハステ−ジ6のステップ移動
直後には、数十〜百数十Hzの比較的周波数の高い減衰
の早い振動が残留するが、該振動が減衰しても露光装置
の除震機能では減衰し切れない数Hzの振動が残留す
る。しかし、これらの残留振動は、図3(a)または
(b)に実線で示すような基本的な周波数の波形からな
っているため、上記計測時におけるサンプリングを、残
留している微小振動の主要周波数の4倍以上の周波数、
すなわち、残留振動の周波数が上記数Hzの場合はその
4倍以上の十数Hz以上のサンプリング周波数、また、
上記ステップ移動後の残留振動の完全な減衰を待たずに
露光する場合のように、数十〜百数十Hzの場合にはそ
の4倍以上の数百Hzのサンプリング周波数で行うこと
により、該振動のおおよその振幅と位相とを把握するこ
とが可能になる。
In the pattern exposure apparatus as shown in FIG. 1, the structure supporting each system of the apparatus has its own resonance frequencies, and residual vibrations at these frequencies occur. For example, immediately after the step movement of the wafer stage 6, a relatively high-frequency, fast-damping vibration of several tens to one hundred and several tens Hz remains, but even if the vibration is damped, the vibration is damped by the anti-vibration function of the exposure apparatus. Vibration of several Hz that cannot be completely left remains. However, since these residual vibrations have a waveform of a basic frequency as shown by a solid line in FIG. 3A or 3B, the sampling during the above measurement is the main vibration of the remaining minute vibrations. Frequency more than 4 times the frequency,
That is, when the frequency of the residual vibration is a few Hz, the sampling frequency is four times or more and ten or more Hz, or
When exposure is performed without waiting for complete attenuation of residual vibration after the step movement, in the case of several tens to one hundred and several tens Hz, by performing at a sampling frequency of several hundreds of Hz, which is four times or more, It is possible to grasp the approximate amplitude and phase of the vibration.

【0020】上記サンプリングデータは露光中常に微動
制御手段10にフィードバックされ、前記残留振動が制
御される。図3(a)はこの状態の説明図で、露光中計
測制御(つまり、ステップ移動中以外はすべて前記各部
の微小変位を計測している場合)における残留振動と計
測・露光開始時点との関係を示す。図からわかるよう
に、実線で示す無制御の残留振動が、ステップ移動直後
から計測制御されて点線で示すように平らになり、その
安定した状態で露光が開始される。これは、減衰の遅い
低周波数の残留振動の安定を待った上で露光を開始して
いた従来に比べて、工程を短縮することができる効果を
有する。前記残留振動が制御された状態下でレチクル像
に対するウエハ5のずれ、すなわち前記計測された全変
位量ΔLを、微動制御手段10によりウエハステージ6
またはレチクルステージ3のいずれか一方、或いは両者
を微動させて補正する。この補正により、前記僅かでは
あるが常時発生しているレチクル2,投影光学系4,ウ
エハ5の3者の相対的な位置変化があっても、レチクル
像とウエハ5とが精度よく重ね合わされ、パタ−ンの線
幅が0.5μm以下の回路パタ−ンであっても、高精度
の線幅並びにアライメント精度で露光することが可能に
なる。なお、ウエハステージ等を微動制御する際、前記
サンプリングデータのほか、露光装置の機構の固有の振
動特性を考慮した予め得られている複数のサンプル点の
デ−タを利用して予測制御を行なうことにより、更に精
度の高い露光を行うことができる。
The above sampling data is constantly fed back to the fine movement control means 10 during exposure to control the residual vibration. FIG. 3A is an explanatory view of this state, and shows the relationship between the residual vibration and the measurement / exposure start time point during the exposure measurement control (that is, when the minute displacements of the respective parts are measured except during the step movement) Indicates. As can be seen from the figure, the uncontrolled residual vibration indicated by the solid line is measured and controlled immediately after the step movement and becomes flat as indicated by the dotted line, and the exposure is started in the stable state. This has the effect that the process can be shortened as compared with the conventional method in which the exposure is started after waiting for the stabilization of the low-frequency residual vibration with slow damping. The deviation of the wafer 5 with respect to the reticle image under the condition that the residual vibration is controlled, that is, the total displacement amount ΔL measured is controlled by the fine movement control means 10 by the wafer stage 6
Alternatively, one or both of the reticle stages 3 are finely moved for correction. With this correction, the reticle image and the wafer 5 are accurately superposed on each other even if there is a relative positional change between the reticle 2, the projection optical system 4, and the wafer 5. Even with a circuit pattern having a line width of 0.5 μm or less, it is possible to perform exposure with high line width and alignment accuracy. When finely controlling the wafer stage or the like, predictive control is performed using the sampling data and the data of a plurality of sample points obtained in advance in consideration of the vibration characteristic of the mechanism of the exposure apparatus. As a result, exposure with higher accuracy can be performed.

【0021】前記ウエハステージ6等の投影露光中にに
おける微動制御は、該露光中の振動デ−タから得ること
が現状に即したものであり望ましいが、該振動データが
得られないような場合には、図3(b)に示すように、
露光直前に行うアライメント検出を行っている時の露光
パタ−ンとウエハ5との相対位置を、上記のサンプリン
グ周期で検出したデ−タを用いたり、或いは、レ−ザ測
長器9で露光直前に検出した前記ΔLr,ΔLi,ΔL
wのデ−タを用い、ウエハステ−ジ6等を駆動しても良
い。この場合、検出デ−タからその後の露光中に起こる
振動を予測し、この振動予測からウエハステ−ジ6等を
微小駆動すれば、図3(b)の点線に示すように、露光
中でも正しい位置に安定してウエハステ−ジ6等を制御
することが可能である。
The fine movement control during the projection exposure of the wafer stage 6 or the like is desired to be obtained from the vibration data during the exposure, which is desirable in accordance with the current situation, but in the case where the vibration data cannot be obtained. , As shown in FIG.
The relative position between the exposure pattern and the wafer 5 when the alignment detection is performed immediately before the exposure is performed by using the data detected in the above sampling period, or the exposure is performed by the laser measuring device 9. The ΔLr, ΔLi, ΔL detected immediately before
The wafer stage 6 or the like may be driven by using the data of w. In this case, if the vibration occurring during the subsequent exposure is predicted from the detected data and the wafer stage 6 and the like are finely driven from this vibration prediction, the correct position is obtained during the exposure as shown by the dotted line in FIG. 3B. It is possible to stably control the wafer stage 6 and the like.

【0022】なお、レチクル像とウエハ5との相対位置
の計測方法としては、前記方法以外に、例えば、レチク
ル2上のパタ−ンとウエハ5上のパタ−ンの像の相対位
置を直接計測するようにしても良い。この場合、露光中
に計測するため、計測手段が露光光11を遮らないよう
にすることが不可欠である。
As a method for measuring the relative position between the reticle image and the wafer 5, other than the above method, for example, the relative position between the image on the reticle 2 and the image on the wafer 5 is directly measured. It may be done. In this case, since the measurement is performed during the exposure, it is indispensable that the measuring means does not block the exposure light 11.

【0023】また、図示していないが、上記相対位置の
変化の計測を、前記レチクル2上のパターンを投影する
方法と反対に、ウエハ5上のパタ−ンを投影光学系4を
通してレチクル2近傍に結像し、その結像とレチクル2
上のパタ−ンとの相対位置検出により行なうことも可能
である。
Although not shown, the measurement of the change in the relative position is carried out in the vicinity of the reticle 2 through the projection optical system 4 through the pattern on the wafer 5 contrary to the method of projecting the pattern on the reticle 2. Image on the reticle 2
It is also possible to detect the relative position with respect to the upper pattern.

【0024】[0024]

【発明の効果】以上説明したように本発明は、パターン
露光方法およびその装置において、低周波の振動が残留
して露光中にレチクル像とウエハとの相対位置の変化が
発生しても、パタ−ンの線幅のばらつきや、重ね合わせ
精度の低下を防止することができ、パタ−ンの線幅が
0.5μm以下の回路パタ−ンを、高い精度の線幅で、
しかも高精度に重ね合わせることができる効果を奏す
る。
As described above, according to the present invention, in the pattern exposure method and apparatus, even if the low-frequency vibration remains and the relative position between the reticle image and the wafer changes during the exposure, the pattern exposure is performed. It is possible to prevent a variation in the line width of the pattern and a decrease in the overlay accuracy. A circuit pattern with a pattern line width of 0.5 μm or less can be formed with a high precision line width.
Moreover, there is an effect that they can be superposed with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のパターン露光装置の一実施例の概略構
成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an embodiment of a pattern exposure apparatus of the present invention.

【図2】露光パターンの各部の変位状態を示す図であ
る。
FIG. 2 is a diagram showing a displacement state of each part of an exposure pattern.

【図3】本発明のステップ移動後の残留振動と計測・露
光のタイミンクグとの関係を示す図である。
FIG. 3 is a diagram showing a relationship between residual vibration after step movement and timing of measurement / exposure according to the present invention.

【符号の説明】[Explanation of symbols]

1…露光光学系、2…レチクル、3…レチクルステー
ジ、4…投影光学系、5…ウエハ、6…ウエハステー
ジ、7…アライメント検出系、8…アライメント検出
光、9…レーザ測長器、10…微動制御手段、11…露
光光、31,32,33…レーザビーム。
1 ... Exposure optical system, 2 ... Reticle, 3 ... Reticle stage, 4 ... Projection optical system, 5 ... Wafer, 6 ... Wafer stage, 7 ... Alignment detection system, 8 ... Alignment detection light, 9 ... Laser length measuring device, 10 ... fine movement control means 11, exposure light, 31, 32, 33 ... laser beam.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G03F 9/00 H 7818−2H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location G03F 9/00 H 7818-2H

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 マスクまたはレチクルに露光光を照射
し、該マスクまたはレチクル上のパタ−ンの透過光また
は反射光を、投影光学系を介してウエハ上に投影露光す
るパタ−ン露光方法において、前記パタ−ンの投影光学
系を介した投影像とウエハとの間の振動に伴う相対位置
の変化状態および変位量を、前記振動の主要周波数の数
倍以上の周波数を有するサンプリング周波数によりサン
プリングして計測し、該計測値に応じてウエハたまは/
およびマスクまたはレチクルを前記投影露光中に微動変
位させ、前記投影像とウエハとの間の相対位置変位を補
正することを特徴とするパタ−ン露光方法。
1. A pattern exposure method in which a mask or reticle is irradiated with exposure light, and the transmitted light or reflected light of a pattern on the mask or reticle is projected and exposed on a wafer through a projection optical system. , Sampling the relative state change state and the displacement amount due to the vibration between the projection image through the projection optical system of the pattern and the wafer at a sampling frequency having a frequency of several times the main frequency of the vibration or more. Then, the wafer or
And a pattern exposure method, wherein a mask or a reticle is finely displaced during the projection exposure to correct a relative positional displacement between the projection image and the wafer.
【請求項2】 前記サンプリング周波数が、前記振動の
主要周波数の4倍以上である請求項1記載のパタ−ン露
光方法。
2. The pattern exposure method according to claim 1, wherein the sampling frequency is four times or more the main frequency of the vibration.
【請求項3】 前記計測が、前記投影露光中に行われる
請求項1記載のパタ−ン露光方法。
3. The pattern exposure method according to claim 1, wherein the measurement is performed during the projection exposure.
【請求項4】 前記投影露光中の微動変位が、前記計測
により予め得られている過去の複数のサンプリングデ−
タを使用して制御される請求項1記載のパタ−ン露光方
法。
4. A plurality of past sampling data obtained in advance by the measurement of the fine movement displacement during the projection exposure.
2. The pattern exposure method according to claim 1, wherein the pattern exposure is controlled using a pattern.
【請求項5】 前記相対位置の変位量の計測が、前記投
影光学系の光軸に垂直な方向で、かつ前記ウエハを保持
するステ−ジ,投影光学系,マスクまたはレチクルを保
持するステ−ジの3つのうち、少なくともいずれか2つ
以上により行われる請求項1記載のパタ−ン露光方法。
5. The measurement of the displacement amount of the relative position is performed in a direction perpendicular to the optical axis of the projection optical system, and a stage for holding the wafer, a projection optical system, a stage for holding a mask or a reticle. 2. The pattern exposure method according to claim 1, wherein the pattern exposure is performed by at least any two or more of the three.
【請求項6】 前記相対位置の変位量の計測が、前記投
影光学系の光軸に垂直な方向で、かつ前記ウエハを保持
するステ−ジ,または/および前記マスクまたはレチク
ルを保持するステ−ジと前記投影光学系とにより行わ
れ、該投影光学系の位置変位量の計測が、前記マスクま
たはレチクルとウエハとの間の距離を該投影光学系の倍
率の比で内分する位置で行われる請求項1記載のパタ−
ン露光方法。
6. The measurement of the displacement amount of the relative position is performed in a direction perpendicular to the optical axis of the projection optical system and / or a stage for holding the wafer and / or a stage for holding the mask or reticle. And the projection optical system, the position displacement amount of the projection optical system is measured at a position where the distance between the mask or reticle and the wafer is internally divided by the ratio of the magnification of the projection optical system. The pattern according to claim 1,
Exposure method.
【請求項7】 前記相対位置の変位量の計測が、前記ウ
エハ上のパタ−ンと前記マスクまたはレチクル上のパタ
−ンを使用して行なわれる請求項1記載のパタ−ン露光
方法。
7. The pattern exposure method according to claim 1, wherein the amount of displacement of the relative position is measured by using a pattern on the wafer and a pattern on the mask or reticle.
【請求項8】 露光光源を有し、該露光光源よりの出射
光をマスクまたはレチクルに照射する露光照明系および
該マスクまたはレチクルに対する露光光をON−OFF
制御可能なシャッタ機能とを備えた露光光学系と、前記
マスクまたはレチクルを透過または反射した光をウエハ
上に投影露光する投影光学系と、前記マスクまたはレチ
クルを保持するレチクルステ−ジと、前記ウエハを保持
し粗微動可能なウエハステ−ジと、ウエハとマスクまた
はレチクルとの相対的な位置を検出するアライメント検
出系とからなるパタ−ン露光装置において、前記シャッ
タ機能がONの露光状態下で、前記マスクまたはレチク
ル上のパタ−ンの前記投影光学系による投影像とウエハ
との間の振動に伴う相対位置の変化状態および変位量
を、前記振動の主要周波数の4倍以上の周波数を有する
サンプル周波数でサンプリングして計測する変位検出系
と、該計測された変化状態および変位量に応じてウエハ
または/およびマスクまたはレチクルを微動変位させ、
前記投影像とウエハとの間の相対位置変位を補正制御す
る微動制御手段とを具備したことを特徴とするパタ−ン
露光装置。
8. An exposure illumination system which has an exposure light source and irradiates the light emitted from the exposure light source to a mask or reticle, and ON-OFF the exposure light to the mask or reticle.
An exposure optical system having a controllable shutter function, a projection optical system for projecting and exposing light transmitted or reflected by the mask or reticle onto a wafer, a reticle stage for holding the mask or reticle, and the wafer In a pattern exposure apparatus comprising a wafer stage capable of holding and holding a wafer and capable of coarse and fine movement, and an alignment detection system for detecting a relative position between the wafer and a mask or reticle, under the exposure state in which the shutter function is ON, A sample in which the relative position change state and the displacement amount due to the vibration between the projection image of the pattern on the mask or reticle by the projection optical system and the wafer have a frequency of four times or more the main frequency of the vibration. A displacement detection system for sampling and measuring at a frequency, and a wafer or / and a mass according to the measured change state and displacement amount. Or the reticle to the fine displacement,
A pattern exposure apparatus comprising: a fine movement control means for correcting and controlling a relative position displacement between the projected image and the wafer.
【請求項9】 前記変位検出系が、前記ウエハステ−
ジ,投影光学系,レチクルステ−ジの3つのうち、少な
くともいずれか2つ以上により前記投影光学系の光軸に
垂直な方向の変位量を計測可能に構成されてなる請求項
8記載のパタ−ン露光装置。
9. The displacement detection system is the wafer station.
9. The pattern according to claim 8, wherein the amount of displacement in a direction perpendicular to the optical axis of the projection optical system can be measured by at least any two of the three, the projection optical system and the reticle stage. Exposure equipment.
【請求項10】 前記変位検出系が、前記投影光学系の
光軸に垂直な方向の変位量を、前記ウエハステ−ジ,ま
たは/および前記レチクルステ−ジと投影光学系とによ
り計測可能に構成されるとともに、前記投影光学系によ
る相対位置の変位量の計測を、前記マスクまたはレチク
ルとウエハとの間の距離を該投影光学系の倍率の比で内
分する位置で行う構成からなる請求項8記載のパタ−ン
露光装置。
10. The displacement detection system is configured to be capable of measuring a displacement amount in a direction perpendicular to an optical axis of the projection optical system by the wafer stage and / or the reticle stage and the projection optical system. In addition, the amount of displacement of the relative position by the projection optical system is measured at a position where the distance between the mask or reticle and the wafer is internally divided by the magnification ratio of the projection optical system. The pattern exposure apparatus described.
【請求項11】 前記アライメント検出系が、前記ウエ
ハとマスクまたはレチクルとの相対的な位置を、前記ウ
エハ上のパタ−ンと前記マスクまたはレチクル上のパタ
−ンとを使用して検出可能に構成されてなる請求項8記
載のパタ−ン露光装置。
11. The alignment detection system can detect the relative position of the wafer and a mask or reticle by using a pattern on the wafer and a pattern on the mask or reticle. The pattern exposure apparatus according to claim 8, which is configured.
JP00075792A 1992-01-07 1992-01-07 Pattern exposure method and apparatus Expired - Fee Related JP3429783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00075792A JP3429783B2 (en) 1992-01-07 1992-01-07 Pattern exposure method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00075792A JP3429783B2 (en) 1992-01-07 1992-01-07 Pattern exposure method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001150300A Division JP3430162B2 (en) 2001-05-21 2001-05-21 Pattern exposure method

Publications (2)

Publication Number Publication Date
JPH05182893A true JPH05182893A (en) 1993-07-23
JP3429783B2 JP3429783B2 (en) 2003-07-22

Family

ID=11482566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00075792A Expired - Fee Related JP3429783B2 (en) 1992-01-07 1992-01-07 Pattern exposure method and apparatus

Country Status (1)

Country Link
JP (1) JP3429783B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185478A (en) * 1999-12-27 2001-07-06 Canon Inc Exposure equipment
JP2011060840A (en) * 2009-09-07 2011-03-24 Canon Inc Exposure apparatus and exposure method, and method of manufacturing device using the same
JP2013069850A (en) * 2011-09-22 2013-04-18 Dainippon Screen Mfg Co Ltd Substrate processing device and substrate processing method
JP2015184943A (en) * 2014-03-25 2015-10-22 株式会社日立製作所 positioning control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185478A (en) * 1999-12-27 2001-07-06 Canon Inc Exposure equipment
JP2011060840A (en) * 2009-09-07 2011-03-24 Canon Inc Exposure apparatus and exposure method, and method of manufacturing device using the same
JP2013069850A (en) * 2011-09-22 2013-04-18 Dainippon Screen Mfg Co Ltd Substrate processing device and substrate processing method
JP2015184943A (en) * 2014-03-25 2015-10-22 株式会社日立製作所 positioning control device

Also Published As

Publication number Publication date
JP3429783B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
US5502311A (en) Method of and apparatus for detecting plane position
KR100300621B1 (en) EXPOSURE DEVICE, EXPOSURE METHOD, EXPOSURE CONTROL APPARATUS, EXPOSURE CONTROL METHOD, LASER DEVICE, AND DEVICE MANUFACTURING METHOD
JPH07135167A (en) Scanning aligner and device manufacturing method using the same
US5539497A (en) Projection exposure apparatus and exposure method
WO1984002024A1 (en) High speed alignment method for wafer stepper
US6285437B1 (en) Method for controlling stages, apparatus therefor, and scanning type exposure apparatus
US5227838A (en) Exposure system
JPH0257333B2 (en)
JP3429783B2 (en) Pattern exposure method and apparatus
US5798530A (en) Method and apparatus for aligning a mask and a set of substrates to be exposed
JP3430162B2 (en) Pattern exposure method
US5838443A (en) Exposure apparatus implementing priority speed setting arrangement
JPH03153015A (en) Method and apparatus for alignment
JP2003124112A (en) Pattern exposure method
JP2881062B2 (en) Substrate alignment method and apparatus
JPH06267819A (en) Alignment method
JPH09219361A (en) Aligner
JP3237022B2 (en) Projection exposure equipment
JPH10242248A (en) Method and apparatus for measuring position of moving stage
JPH10172901A (en) Scanning projection aligner and manufacture of device using the same
JPH1083952A (en) Alignment device and projection aligner using this
JP2002043218A (en) Exposure method
JP2868546B2 (en) Exposure equipment
JPH10144596A (en) Aligner and manufacture of device
JPH06163354A (en) Projection exposure device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees