JP2003124112A - Pattern exposure method - Google Patents

Pattern exposure method

Info

Publication number
JP2003124112A
JP2003124112A JP2002242803A JP2002242803A JP2003124112A JP 2003124112 A JP2003124112 A JP 2003124112A JP 2002242803 A JP2002242803 A JP 2002242803A JP 2002242803 A JP2002242803 A JP 2002242803A JP 2003124112 A JP2003124112 A JP 2003124112A
Authority
JP
Japan
Prior art keywords
wafer
pattern
exposure
reticle
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002242803A
Other languages
Japanese (ja)
Inventor
Yoshitada Oshida
良忠 押田
Ken Fujii
憲 藤井
Makoto Murayama
誠 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002242803A priority Critical patent/JP2003124112A/en
Publication of JP2003124112A publication Critical patent/JP2003124112A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the line width of a pattern and the superposition of patterns in accuracy. SOLUTION: A pattern exposure method comprises a first step of irradiating a mask or a reticle 2 with exposure light 11 and a second step of projecting the optical image of a pattern on the mask or the reticle 2 through the intermediary of a projection optical system 4 for exposure, and superposing it on the pattern which is already formed on a wafer 5. The positions of two or more out of a stage 6 holding a wafer in projection exposure, a projection optical system 4, and a stage 3 holding a mask or a reticle are measured so as to obtain the displacement of the relative positions of the projection image of the pattern projected through the intermediary of the projection optical system 4 and the wafer 5 due to vibrations, the stage 6 holding the wafer and/or the stage 3 holding the mask or the reticle is displaced for correction, corresponding to information as to the above displacement, by which the projection image is superposed for exposure on the wafer where patterns have been already formed as the relative positions of the projection image and the wafer 5 are corrected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は微細な回路パタ−ンを露
光するパターン露光方法に係り、特に、パタ−ンの線幅
が0.5μm以下の回路パタ−ンを、露光中の低周波振
動等に影響されることなく、高い精度の線幅で、しかも
高精度に重ね合わせるのに好適なパタ−ン露光方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pattern exposure method for exposing a fine circuit pattern, and more particularly, to a method for exposing a circuit pattern having a line width of 0.5 .mu.m or less to a low frequency pattern during exposure. The present invention relates to a pattern exposure method suitable for superimposing lines with high precision and high precision without being affected by vibrations or the like.

【0002】[0002]

【従来の技術】半導体の回路パタ−ンの線幅は、従来
0.8μmであったため、該パタ−ンの線幅のばらつき
は±0.08μm、アライメント精度もほぼこの値と同
程度で足りていた。このため従来は、ウエハをステップ
アンドリピ−トで移動させながら、レチクルのパタ−ン
をウエハ上に1/5に縮小露光する際、ステップ移動後
に若干の時間を置いて露光を開始するようにすれば、ス
テップ移動に伴う振動も上記精度内に収まり、所定の目
標精度にパタ−ンを露光することが可能であった。とこ
ろが、パタ−ンの線幅の微細化要求は急速に進んでお
り、0.5〜0.3μmの線幅の時代になりつつある。
2. Description of the Related Art Since the line width of a semiconductor circuit pattern has conventionally been 0.8 μm, the variation in the line width of the pattern is ± 0.08 μm, and the alignment accuracy is almost the same as this value. I was For this reason, conventionally, when the pattern of a reticle is reduced to 1/5 on a wafer while the wafer is moved in a step-and-repeat manner, the exposure is started after a short time after the step movement. Then, the vibration caused by the step movement is also within the above accuracy, and the pattern can be exposed to the predetermined target accuracy. However, the demand for a finer pattern line width is rapidly increasing, and the line width of 0.5 to 0.3 μm is approaching.

【0003】[0003]

【発明が解決しようとする課題】しかし、パタ−ンの線
幅が0.5〜0.3μmに微細化すると、ステップ移動
後かなりの時間を経過しても、そして、露光装置の除震
機構が作動しても数ヘルツ以下の低周波数の振動が残留
する。これは露光装置の剛性をかなり高めても同様で、
前記周波数や構造物の共振周波数に相当する振動が僅か
ではあるが残留する。このため、マスクまたはレチク
ル,投影光学系およびウエハの3者の相対的な位置は、
僅かではあるが常時変化している。従って、露光をアラ
イメントを行なった後に開始しても、アライメントと露
光開始との間にレチクル像とウエハの相対位置がずれて
しまう問題があり、また、露光時間そのものが0.2〜
0.4秒程度となるため、露光中にレチクル像とウエハ
の相対位置が変化していく状態下で露光されることにな
り、パタ−ンの線幅のばらつきや、重ね合わせ精度の低
下が避けられず、所定の目標精度が得られないという問
題点を有していた。
However, when the line width of the pattern is reduced to 0.5 to 0.3 .mu.m, even after a considerable time has passed since the step movement, the vibration isolating mechanism of the exposure apparatus is required. , Low frequency vibration of several hertz or less remains. This is the same even if the rigidity of the exposure device is considerably increased,
Vibration corresponding to the frequency or the resonance frequency of the structure remains, though slightly. Therefore, the relative positions of the mask or reticle, the projection optical system, and the wafer are:
It is constantly changing, albeit slightly. Therefore, even if the exposure is started after performing the alignment, there is a problem that the relative position between the reticle image and the wafer is shifted between the alignment and the start of the exposure.
Since the exposure time is about 0.4 seconds, the exposure is performed in a state where the relative position between the reticle image and the wafer is changing during the exposure, so that the line width of the pattern varies and the overlay accuracy decreases. There is a problem that a predetermined target accuracy cannot be obtained because it cannot be avoided.

【0004】本発明は、上記従来技術の問題点に鑑み、
低周波の振動が残留して露光中にレチクル像とウエハと
の相対位置の変化が発生しても、パタ−ンの線幅のばら
つきや、重ね合わせ精度の低下を防止することができ、
パタ−ンの線幅が0.5μm以下の回路パタ−ンを、高
い精度の線幅で、しかも高精度に重ね合わせることがで
きるパターン露光方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art,
Even if a low-frequency vibration remains and the relative position between the reticle image and the wafer changes during exposure, it is possible to prevent variations in pattern line width and a decrease in overlay accuracy.
An object of the present invention is to provide a pattern exposure method capable of superimposing circuit patterns having a pattern line width of 0.5 μm or less with a high precision line width and at a high precision.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明のパターン露光方法は、マスクまたはレチク
ルに露光光を照射し、投影光学系を介して前記マスクま
たはレチクル上のパタ−ンの光学像により、既にパタ−
ンが形成されているウエハを重ね露光するパタ−ン露光
方法において、前記投影露光中に前記ウエハを保持する
ステージ,投影光学系,マスクまたはレチクルを保持す
るステージのうちの少なくともいずれか2つ以上の位置
を計測して前記パタ−ンの投影光学系を介した投影像と
ウエハとの間の振動に伴う相対位置の変位量を求め、該
求めた変位量の情報に応じてウエハを保持するステ−ジ
または/およびマスクまたはレチクルを保持するステ−
ジを補正変位させることにより前記投影像とウエハとの
間の相対位置を補正しながら前記既にパタ−ンが形成さ
れているウエハ上に重ね露光する構成にしたものであ
る。
In order to achieve the above object, a pattern exposure method of the present invention irradiates a mask or a reticle with exposure light, and forms a pattern on the mask or a reticle through a projection optical system. Already the pattern by the optical image
In the pattern exposure method for overlappingly exposing a wafer on which a pattern is formed, at least any two or more of a stage for holding the wafer, a projection optical system, and a stage for holding a mask or a reticle during the projection exposure. , The amount of displacement of the relative position accompanying the vibration between the wafer and the projected image of the pattern via the projection optical system is obtained, and the wafer is held in accordance with the information on the obtained amount of displacement. Stage or / and stage for holding mask or reticle
The exposure is superimposed on the wafer on which the pattern has already been formed while correcting the relative position between the projection image and the wafer by correcting and displacing the wafer.

【0006】ここで、前記投影像とウエハとの間の相対
位置を補正しながら露光することにより、線幅が0.5
μm以下の回路パターンを重ね露光する、という構成に
してもよい。
Here, by exposing while correcting the relative position between the projection image and the wafer, the line width becomes 0.5.
A configuration in which a circuit pattern of μm or less is over-exposed may be adopted.

【0007】[0007]

【作用】上記構成としたことにより、マスクまたはレチ
クル(以下、単にレチクルという)上のパターンの投影
像とウエハとの間の振動に伴う相対位置の微小変位量
が、変位検出系によりレチクル,投影光学系,ウエハの
それぞれについて投影光学系の光軸に垂直方向に、投影
露光中においても計測可能になる。この場合、投影光学
系における変位計測位置を、レチクルとウエハとの間の
距離を5対1に内分した位置にすると、投影光学系とウ
エハとの両者が変位しないでレチクルのみがΔLr変位
した場合におけるウエハ上でのレチクル像の変位量は−
1/5ΔLrとなり、また、投影光学系のみがΔLi変
位した場合のウエハ上でのレチクル像の変位量は6/5
ΔLiとなることから、投影露光中に計測すべき全変位
量ΔLは次式で与えられる、 ΔL=ΔLw+6/5ΔLi−1/5ΔLr ……(1) ここで、ΔLwはウエハにおける基準位置(例えばチッ
プの中心)との微小変位量である。
With the above arrangement, the displacement detection system detects the minute displacement of the relative position due to the vibration between the projected image of the pattern on the mask or reticle (hereinafter simply referred to as "reticle") and the wafer. It becomes possible to measure each of the optical system and the wafer in the direction perpendicular to the optical axis of the projection optical system even during projection exposure. In this case, when the displacement measurement position in the projection optical system is set to a position where the distance between the reticle and the wafer is internally set to 5: 1, only the reticle is displaced by ΔLr without displacing both the projection optical system and the wafer. In this case, the displacement of the reticle image on the wafer is-
The displacement amount of the reticle image on the wafer when the projection optical system is displaced by ΔLi is / ΔLr.
Since ΔLi is obtained, the total displacement ΔL to be measured during the projection exposure is given by the following equation: ΔL = ΔLw + 6 / 5ΔLi−1 / 5ΔLr (1) where ΔLw is a reference position (for example, a chip) on the wafer. (The center of the figure).

【0008】上記計測時におけるサンプリングは、残留
している微小振動の主要周波数の4倍以上の周波数で行
われるから、該振動の振幅と位相との概略を把握するこ
とが可能になり、所定の計測精度を得ることができる。
例えば、ウエハステ−ジのステップ移動直後に残留する
数十〜百数十Hzの早く減衰する比較的周波数の高い振
動が十分に減衰した後に露光を行う場合には、露光装置
の除震機能でも減衰し切れない数Hzの振動の影響除去
のために、該数Hzの4倍以上の十数Hz以上のサンプ
リング周波数で行い、上記ステップ移動後の残留振動の
完全な減衰を待たずに露光する場合には、前記数十〜百
数十Hzの4倍以上の数百Hzのサンプリング周波数で
行われる。
Since the sampling at the time of the above measurement is performed at a frequency four times or more of the main frequency of the remaining minute vibration, it is possible to grasp the outline of the amplitude and phase of the vibration, and Measurement accuracy can be obtained.
For example, when exposure is performed after sufficiently high-frequency vibrations of several tens to several hundreds of Hz remaining immediately after the step movement of the wafer stage have sufficiently attenuated, exposure is also attenuated by the anti-vibration function of the exposure apparatus. When exposing without waiting for complete attenuation of residual vibration after the above-mentioned step movement, in order to remove the influence of vibration of several Hz that cannot be completed, sampling at a frequency of more than ten times more than four times the frequency of several Hz. Is performed at a sampling frequency of several hundred Hz that is four times or more of the several tens to one hundred and several tens Hz.

【0009】上記サンプリングデータは露光中常に微動
制御手段にフィードバックされ、残留振動が制御され
る。そして、この制御状態下でレチクル像に対するウエ
ハのずれ、すなわち前記計測された全変位量ΔLを、該
微動制御手段によりウエハステージまたはレチクルステ
ージの一方、或いは両方を微動させて補正する。この補
正により、前記僅かではあるが常時発生しているレチク
ル,投影光学系,ウエハの3者の相対的な位置変化があ
っても、レチクル像とウエハとが精度よく重ね合わさ
れ、パタ−ンの線幅が0.5μm以下の回路パタ−ンで
あっても、高精度の線幅並びにアライメント精度で露光
することが可能になる。
The above sampling data is always fed back to the fine movement control means during exposure to control the residual vibration. Then, under this control state, the deviation of the wafer with respect to the reticle image, that is, the measured total displacement ΔL is corrected by finely moving one or both of the wafer stage and the reticle stage by the fine movement control means. By this correction, the reticle image and the wafer are accurately overlapped with each other even if the relative positional change of the reticle, the projection optical system, and the wafer, which is slightly generated, is constantly generated. Even with a circuit pattern having a line width of 0.5 μm or less, exposure can be performed with a highly accurate line width and alignment accuracy.

【0010】なお、ウエハステージ等を微動制御する
際、前記サンプリングデータのほか、露光装置の機構の
固有の振動特性を考慮した予め得られている複数のサン
プル点のデ−タを利用して予測制御を行なうことによ
り、更に精度の高い露光を行うことができる。
[0010] When fine movement control of the wafer stage or the like is performed, prediction is performed using data of a plurality of sample points obtained in advance in consideration of the inherent vibration characteristics of the mechanism of the exposure apparatus in addition to the sampling data. By performing the control, exposure with higher accuracy can be performed.

【0011】[0011]

【実施例】以下、本発明の一実施例を図1ないし図3を
参照して説明する。図1はパターン露光装置の概略構成
を示す図、図2は露光パターンの各部の変位状態を示す
図、図3はステップ移動後の残留振動と計測・露光のタ
イミンクグとの関係を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. 1 is a diagram showing a schematic configuration of a pattern exposure apparatus, FIG. 2 is a diagram showing a displacement state of each part of an exposure pattern, and FIG. 3 is a diagram showing a relationship between residual vibration after step movement and timing of measurement / exposure. .

【0012】図1において、1は露光光源を含む露光光
学系で、この中には露光光源よりの出射光をレチクルス
テージ3上に載置されたレチクル2に照射する露光照明
系と、レチクル2に対する露光光11をON−OFF制
御可能なシャッタ機能とを備えている。4はレチクル2
を透過した光をウエハステージ6に載置されたウエハ5
上に縮小して投影露光する縮小レンズを含む投影光学系
で、既にパターンの形成されているウエハ5の表面にレ
チクル2上のパターンの1/5倍の像を結ぶように構成
されている。7はウエハ5に形成されているパターンと
レチクル2のパターンとの相対的な位置を検出するアラ
イメント検出系、8はアライメント検出光で、該検出方
法は、前記相対的な位置が露光位置にて検出可能な方
法、例えば、特公昭63−60525号公報や特開昭6
1−220326号公報に記載されている方法が用いら
れる。検出にはCCD一次元撮像素子が使用され、検出
されたデータは高速にAD変換され、ディジタル・シグ
ナル・プロセッサ(DSP)を使用して数msのサンプ
リング周期で検出するように構成されている。また、ア
ライメント検出系7はアライメント検出光8に露光光1
1と同一波長の光を用いているため、アライメント検出
を長時間行うとレジストが感光するので、アライメント
検出を短時間で行い、その後はアライメント検出光8を
遮光して、ウエハ5に入射されないようにしている。9
は前記シャッタ機能がONの露光状態下で、レチクル2
上のパタ−ンの投影光学系4による投影像とウエハ5と
の間の振動に伴う相対位置の変位量を計測するレーザ測
長器で、アライメント検出系7とともに変位検出系を構
成する。該変位検出系においては、前記振動の主要周波
数の4倍以上の周波数を有するサンプル周波数でサンプ
リングして計測する構成になっている。レーザ測長器9
は、アライメント検出系7で検出した瞬間におけるレチ
クル2,投影光学系4,ウエハ5の投影光学系4の光軸
4aに垂直な方向の各変位を、レ−ザビ−ム31、3
2、33を介して計測する。図1においては光軸4aに
垂直な1方向の各変位を計測しているが、実際には図示
されていない紙面に直角な方向の検出系が組み込まれお
り、光軸4aに垂直な2方向についてそれぞれ計測され
るようになっている。そして、投影光学系4の変位検出
位置は、図1に示すようにレチクル2とウエハ5との間
をL1:L2=5:1に内分する位置Cである。10は変
位検出系により計測されたレチクル2上のパタ−ンの投
影光学系4による投影像とウエハ5との間の相対位置の
変化状態および変位量に応じて、ウエハ5またはレチク
ル2の一方を、或いはその両方を微動変位させ、前記投
影像とウエハ5との間の相対位置変位を補正制御する微
動制御手段である。
In FIG. 1, reference numeral 1 denotes an exposure optical system including an exposure light source, in which an exposure illumination system for irradiating light emitted from the exposure light source to a reticle 2 mounted on a reticle stage 3, and a reticle 2 And a shutter function capable of ON-OFF controlling the exposure light 11 with respect to. 4 is reticle 2
The light transmitted through the wafer 5 is placed on the wafer stage 6
A projection optical system including a reduction lens for performing projection exposure by reducing the projection upward, and is configured to form an image 1/5 times the size of the pattern on the reticle 2 on the surface of the wafer 5 on which the pattern is already formed. Reference numeral 7 denotes an alignment detection system for detecting a relative position between a pattern formed on the wafer 5 and a pattern on the reticle 2, and 8 denotes an alignment detection light. Detectable methods, for example, JP-B-63-60525 and JP-A-6
The method described in JP-A-1-220326 is used. A CCD one-dimensional image sensor is used for the detection, the detected data is A / D-converted at a high speed, and is detected using a digital signal processor (DSP) at a sampling period of several ms. Further, the alignment detection system 7 outputs the exposure light 1 to the alignment detection light 8.
Since light having the same wavelength as 1 is used, if the alignment detection is performed for a long time, the resist is exposed. Therefore, the alignment detection is performed in a short time, and thereafter, the alignment detection light 8 is shielded so as not to be incident on the wafer 5. I have to. 9
Is the reticle 2 in the exposure state where the shutter function is ON.
A laser length measuring device for measuring a displacement amount of a relative position caused by vibration between the image projected by the projection optical system 4 of the upper pattern and the wafer 5, and constitutes a displacement detection system together with the alignment detection system 7. The displacement detection system is configured to measure by sampling at a sample frequency having a frequency four times or more the main frequency of the vibration. Laser length measuring device 9
Are the displacements of the reticle 2, the projection optical system 4, and the wafer 5 in the direction perpendicular to the optical axis 4a of the projection optical system 4 at the moment detected by the alignment detection system 7, respectively.
The measurement is performed via 2, 33. In FIG. 1, each displacement in one direction perpendicular to the optical axis 4a is measured. However, a detection system in a direction perpendicular to the plane of the drawing (not shown) is actually incorporated, and two directions perpendicular to the optical axis 4a are measured. Are respectively measured. The displacement detection position of the projection optical system 4 is a position C which internally divides the space between the reticle 2 and the wafer 5 into L1: L2 = 5: 1 as shown in FIG. Reference numeral 10 denotes one of the wafer 5 and the reticle 2 in accordance with the change in the relative position between the image projected by the projection optical system 4 on the reticle 2 measured by the displacement detection system and the wafer 5 and the amount of displacement. Or both are finely displaced to correct and control relative position displacement between the projection image and the wafer 5.

【0013】上記構成としたことにより、露光光学系1
より出射した露光光11はレチクル2上の回路パタ−ン
を照明し、レチクル2を透過した光は投影光学系4にお
ける縮小レンズによりウエハ5の表面にレチクル2上の
パタ−ンの1/5倍の像を結ぶ。この結像と既に形成さ
れているウエハ5のパターンとを精度良く位置合わせ
し、レチクル2の像をウエハ5に重ね露光する必要があ
るため、アライメント検出系7によりウエハ5のパタ−
ンとレチクル2のパタ−ンの相対的な位置ずれが検出さ
れる。
With the above configuration, the exposure optical system 1
The emitted exposure light 11 illuminates the circuit pattern on the reticle 2, and the light transmitted through the reticle 2 is に of the pattern on the reticle 2 on the surface of the wafer 5 by the reduction lens in the projection optical system 4. Double the image. Since it is necessary to precisely align this image with the pattern of the wafer 5 already formed and to expose the image of the reticle 2 on the wafer 5, the alignment detection system 7 controls the pattern of the wafer 5.
The relative displacement between the pattern of the reticle 2 and the pattern of the reticle 2 is detected.

【0014】上記位置ずれの検出は、図2に示すように
レチクル2,投影光学系4,ウエハ5のそれぞれについ
て、ウエハ5における基準位置(例えばチップの中心)
Wとの微小変位ΔLr,ΔLi,ΔLwが、投影光学系
4の光軸4aに垂直方向に、投影露光中に行われる。こ
の場合、投影光学系4における変位計測位置が、レチク
ル2とウエハ5との間の距離を5対1に内分した位置C
にあるため、投影光学系4とウエハ5との両者が変位し
ないで、レチクル2のみがレチクル2の基準位置Aより
ΔLr変位した図2(a)の場合には、ウエハ5上での
レチクル像の変位量はウエハ5の基準位置Wより−1/
5ΔLrとなる。また、投影光学系4のみがレチクル2
の基準位置AよりΔLi変位した図2(b)の場合に
は、ウエハ上5でのレチクル像の変位量はウエハ5の基
準位置Wより6/5ΔLiとなる。さらに、ウエハ5の
みがレチクル2の基準位置AよりΔLw変位した図2
(c)の場合には、ウエハ上5でのレチクル像の変位量
はウエハ5の基準位置WからもΔLwとなる。なお、上
記位置ずれは、投影光学系4の傾きについては影響され
ず、図2(d)に示すようにΔL=0になる。
As shown in FIG. 2, the detection of the above positional deviation is performed with respect to each of the reticle 2, the projection optical system 4, and the wafer 5 with respect to a reference position (for example, a center of a chip) on the wafer 5.
The minute displacements ΔLr, ΔLi, and ΔLw with respect to W are performed during projection exposure in a direction perpendicular to the optical axis 4a of the projection optical system 4. In this case, the displacement measurement position in the projection optical system 4 is a position C where the distance between the reticle 2 and the wafer 5 is internally divided into 5: 1.
In FIG. 2A in which only the reticle 2 is displaced by ΔLr from the reference position A of the reticle 2 without displacing both the projection optical system 4 and the wafer 5, the reticle image on the wafer 5 Is -1 / 位置 from the reference position W of the wafer 5.
5ΔLr. Also, only the projection optical system 4 is
In the case of FIG. 2B displaced by ΔLi from the reference position A, the amount of displacement of the reticle image on the wafer 5 is 6/5 ΔLi from the reference position W of the wafer 5. Further, only the wafer 5 is displaced by ΔLw from the reference position A of the reticle 2 in FIG.
In the case of (c), the displacement amount of the reticle image on the wafer 5 is also ΔLw from the reference position W of the wafer 5. The displacement does not affect the inclination of the projection optical system 4 and becomes ΔL = 0 as shown in FIG.

【0015】上記各微小変位ΔLr,ΔLi,ΔLwか
ら、投影露光中に計測すべき全変位量ΔLを、前記
(1)式より求め、微動制御手段10によりウエハステ
ージ6またはレチクルステージ3の一方、または両者
を、求めたΔLだけ微動させて位置ずれを補正する。上
記ΔLr,ΔLi,ΔLwの各値は、パタ−ン露光中も
常時検出されているから、露光中の振動等による露光パ
タ−ンのウエハ5上の僅かな位置ずれでも、常時ΔLだ
けウエハ5等を微動補正することが可能になり、良好な
パタ−ン形状を正しいアライメント位置に露光すること
が可能となる。なお、上記ΔLr,ΔLi,ΔLwの検
出は、例えば、レチクル2の変位量が問題にならないほ
ど小さい場合は、ΔLrの計測を省略し、ΔLiおよび
ΔLwの検出値からΔLを求め、この値によりウエハス
テ−ジ6等を微動制御するようにしてもよい。
From the above-mentioned minute displacements ΔLr, ΔLi, and ΔLw, the total displacement ΔL to be measured during the projection exposure is obtained from the above equation (1), and fine movement control means 10 selects one of wafer stage 6 or reticle stage 3, Alternatively, both are finely moved by the obtained ΔL to correct the positional deviation. Since the values of .DELTA.Lr, .DELTA.Li and .DELTA.Lw are always detected even during the pattern exposure, even if the exposure pattern slightly shifts on the wafer 5 due to vibration during the exposure, the value of the wafer 5 is always .DELTA.L. And the like can be corrected for fine movement, and a good pattern shape can be exposed to a correct alignment position. In the detection of ΔLr, ΔLi, and ΔLw, for example, when the amount of displacement of the reticle 2 is small enough to cause no problem, the measurement of ΔLr is omitted, and ΔL is obtained from the detected values of ΔLi and ΔLw, and the wafer level is calculated from these values. The fine movement control of the jaws 6 and the like may be performed.

【0016】前記図1に示すようなパターン露光装置に
おいては、該装置の各系を支持している構造体が固有の
共振周波数を有しており、これらの周波数の残留振動が
発生する。例えば、ウエハステ−ジ6のステップ移動直
後には、数十〜百数十Hzの比較的周波数の高い減衰の
早い振動が残留するが、該振動が減衰しても露光装置の
除震機能では減衰し切れない数Hzの振動が残留する。
しかし、これらの残留振動は、図3(a)または(b)
に実線で示すような基本的な周波数の波形からなってい
るため、上記計測時におけるサンプリングを、残留して
いる微小振動の主要周波数の4倍以上の周波数、すなわ
ち、残留振動の周波数が上記数Hzの場合はその4倍以
上の十数Hz以上のサンプリング周波数、また、上記ス
テップ移動後の残留振動の完全な減衰を待たずに露光す
る場合のように、数十〜百数十Hzの場合にはその4倍
以上の数百Hzのサンプリング周波数で行うことによ
り、該振動のおおよその振幅と位相とを把握することが
可能になる。
In the pattern exposure apparatus as shown in FIG. 1, the structure supporting each system of the apparatus has a unique resonance frequency, and residual vibration of these frequencies occurs. For example, immediately after the step movement of the wafer stage 6, vibrations having a relatively high frequency of several tens to several hundreds of Hz and rapidly attenuating remain, but even if the vibrations attenuate, they are attenuated by the anti-vibration function of the exposure apparatus. Unreliable vibration of several Hz remains.
However, these residual vibrations are not shown in FIG. 3 (a) or (b).
Since the waveform of the basic frequency shown by the solid line is used, the sampling at the time of the above measurement is performed at a frequency four times or more the main frequency of the remaining minute vibration, that is, the frequency of the residual vibration In the case of Hz, the sampling frequency is four times or more, more than ten and several ten Hz, and in the case of several tens to one hundred and several tens Hz, such as when exposing without waiting for complete attenuation of the residual vibration after the above step movement. By performing the sampling at a sampling frequency of several hundred Hz which is four times or more of the above, it is possible to grasp the approximate amplitude and phase of the vibration.

【0017】上記サンプリングデータは露光中常に微動
制御手段10にフィードバックされ、前記残留振動が制
御される。図3(a)はこの状態の説明図で、露光中計
測制御(つまり、ステップ移動中以外はすべて前記各部
の微小変位を計測している場合)における残留振動と計
測・露光開始時点との関係を示す。図からわかるよう
に、実線で示す無制御の残留振動が、ステップ移動直後
から計測制御されて点線で示すように平らになり、その
安定した状態で露光が開始される。これは、減衰の遅い
低周波数の残留振動の安定を待った上で露光を開始して
いた従来に比べて、工程を短縮することができる効果を
有する。前記残留振動が制御された状態下でレチクル像
に対するウエハ5のずれ、すなわち前記計測された全変
位量ΔLを、微動制御手段10によりウエハステージ6
またはレチクルステージ3のいずれか一方、或いは両者
を微動させて補正する。この補正により、前記僅かでは
あるが常時発生しているレチクル2,投影光学系4,ウ
エハ5の3者の相対的な位置変化があっても、レチクル
像とウエハ5とが精度よく重ね合わされ、パタ−ンの線
幅が0.5μm以下の回路パタ−ンであっても、高精度
の線幅並びにアライメント精度で露光することが可能に
なる。なお、ウエハステージ等を微動制御する際、前記
サンプリングデータのほか、露光装置の機構の固有の振
動特性を考慮した予め得られている複数のサンプル点の
デ−タを利用して予測制御を行なうことにより、更に精
度の高い露光を行うことができる。
The above sampling data is always fed back to the fine movement control means 10 during the exposure to control the residual vibration. FIG. 3A is an explanatory diagram of this state, and shows the relationship between the residual vibration and the measurement / exposure start time in the measurement control during exposure (that is, when the minute displacement of each section is measured except during step movement). Is shown. As can be seen from the figure, the uncontrolled residual vibration indicated by the solid line is measured and controlled immediately after the step movement, becomes flat as indicated by the dotted line, and exposure is started in a stable state. This has an effect that the process can be shortened as compared with the related art in which the exposure is started after waiting for the stabilization of the low-frequency residual vibration with slow attenuation. The displacement of the wafer 5 with respect to the reticle image under the state where the residual vibration is controlled, that is, the measured total displacement ΔL is determined by the fine movement control means 10 on the wafer stage 6.
Alternatively, one or both of the reticle stages 3 are finely moved for correction. With this correction, the reticle image and the wafer 5 are accurately superimposed even if the relative position of the reticle 2, the projection optical system 4, and the wafer 5 is slightly but constantly generated. Even with a circuit pattern having a pattern line width of 0.5 μm or less, exposure can be performed with a highly accurate line width and alignment accuracy. When the fine movement control of the wafer stage or the like is performed, predictive control is performed using data of a plurality of sample points obtained in advance in consideration of the inherent vibration characteristics of the mechanism of the exposure apparatus, in addition to the sampling data. Thereby, exposure with higher accuracy can be performed.

【0018】前記ウエハステージ6等の投影露光中にに
おける微動制御は、該露光中の振動デ−タから得ること
が現状に即したものであり望ましいが、該振動データが
得られないような場合には、図3(b)に示すように、
露光直前に行うアライメント検出を行っている時の露光
パタ−ンとウエハ5との相対位置を、上記のサンプリン
グ周期で検出したデ−タを用いたり、或いは、レ−ザ測
長器9で露光直前に検出した前記ΔLr,ΔLi,ΔL
wのデ−タを用い、ウエハステ−ジ6等を駆動しても良
い。この場合、検出デ−タからその後の露光中に起こる
振動を予測し、この振動予測からウエハステ−ジ6等を
微小駆動すれば、図3(b)の点線に示すように、露光
中でも正しい位置に安定してウエハステ−ジ6等を制御
することが可能である。
The fine movement control during the projection exposure of the wafer stage 6 or the like is desirably based on the current situation to be obtained from the vibration data during the exposure, but in the case where the vibration data cannot be obtained. As shown in FIG. 3 (b),
The relative position between the exposure pattern and the wafer 5 during the alignment detection performed immediately before the exposure is performed by using data detected in the above-described sampling cycle, or by using the laser length measuring device 9 for exposure. ΔLr, ΔLi, ΔL detected immediately before
The wafer stage 6 and the like may be driven using the data of w. In this case, the vibration occurring during the subsequent exposure is predicted from the detected data, and if the wafer stage 6 or the like is minutely driven based on the predicted vibration, the correct position during the exposure can be obtained as shown by the dotted line in FIG. It is possible to stably control the wafer stage 6 and the like.

【0019】なお、レチクル像とウエハ5との相対位置
の計測方法としては、前記方法以外に、例えば、レチク
ル2上のパタ−ンとウエハ5上のパタ−ンの像の相対位
置を直接計測するようにしても良い。この場合、露光中
に計測するため、計測手段が露光光11を遮らないよう
にすることが不可欠である。
As a method for measuring the relative position between the reticle image and the wafer 5, other than the above method, for example, the relative position between the pattern on the reticle 2 and the image of the pattern on the wafer 5 is directly measured. You may do it. In this case, since the measurement is performed during the exposure, it is essential that the measurement unit does not block the exposure light 11.

【0020】また、図示していないが、上記相対位置の
変化の計測を、前記レチクル2上のパターンを投影する
方法と反対に、ウエハ5上のパタ−ンを投影光学系4を
通してレチクル2近傍に結像し、その結像とレチクル2
上のパタ−ンとの相対位置検出により行なうことも可能
である。
Although not shown, the change of the relative position is measured by projecting the pattern on the wafer 5 through the projection optical system 4 in the vicinity of the reticle 2, as opposed to the method of projecting the pattern on the reticle 2. And reticle 2
It is also possible to perform the detection by detecting the relative position with respect to the above pattern.

【0021】[0021]

【発明の効果】以上説明したように本発明は、パターン
露光方法において、低周波の振動が残留して露光中にレ
チクル像とウエハとの相対位置の変化が発生しても、パ
タ−ンの線幅のばらつきや、重ね合わせ精度の低下を防
止することができ、パタ−ンの線幅が0.5μm以下の
回路パタ−ンを、高い精度の線幅で、しかも高精度に重
ね合わせることができる効果を奏する。
As described above, according to the present invention, in the pattern exposure method, even if a low-frequency vibration remains and the relative position between the reticle image and the wafer changes during exposure, the pattern can be reduced. It is possible to prevent variations in line width and decrease in overlay accuracy, and to overlay circuit patterns with pattern line widths of 0.5 μm or less with high accuracy and high accuracy. It has the effect of being able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るパターン露光装置の一実施例の概
略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an embodiment of a pattern exposure apparatus according to the present invention.

【図2】露光パターンの各部の変位状態を示す図であ
る。
FIG. 2 is a diagram showing a displacement state of each part of an exposure pattern.

【図3】本発明のステップ移動後の残留振動と計測・露
光のタイミンクグとの関係を示す図である。
FIG. 3 is a diagram illustrating a relationship between residual vibration after step movement and timing of measurement and exposure according to the present invention.

【符号の説明】[Explanation of symbols]

1…露光光学系、2…レチクル、3…レチクルステー
ジ、4…投影光学系、5…ウエハ、6…ウエハステー
ジ、7…アライメント検出系、8…アライメント検出
光、9…レーザ測長器、10…微動制御手段、11…露
光光、31,32,33…レーザビーム。
DESCRIPTION OF SYMBOLS 1 ... Exposure optical system, 2 ... Reticle, 3 ... Reticle stage, 4 ... Projection optical system, 5 ... Wafer, 6 ... Wafer stage, 7 ... Alignment detection system, 8 ... Alignment detection light, 9 ... Laser length measuring device, 10 ... Fine movement control means, 11 exposure light, 31, 32, 33 laser beam.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年9月24日(2002.9.2
4)
[Submission date] September 24, 2002 (2002.9.2)
4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

請求項3】露光装置の光源から発射した露光光をマス
クまたはレチクルに照射し、前記露光装置の投影光学系
を介して前記マスクまたはレチクル上のパタ−ンの光学
像により、前記露光装置のステージ上に載置されている
既にパタ−ンが形成されたウエハを重ね露光するパタ−
ン露光方法であって、前記重ね露光中に前記露光装置の
複数の箇所の前記投影光学系の光軸に垂直な方向の位置
を非接触で計測して前記投影光学系を介した前記パタ−
ンの光学像とウエハとの間の前記投影光学系の光軸に垂
直な方向の相対位置の変位量を検出し、該検出した変位
量の情報に応じて前記光学像とウエハとの間の前記投影
光学系の光軸に垂直な方向の相対位置を補正しながら前
記既にパタ−ンが形成されているウエハ上に重ね露光す
ることを特徴とするパタ−ン露光方法。
3. Exposure light emitted from a light source of an exposure apparatus is masked.
The projection optical system of the exposure apparatus.
Of the pattern on the mask or reticle through
It is mounted on the stage of the exposure apparatus by an image
A pattern for overlapping exposure of a wafer on which a pattern has already been formed.
An exposure method, wherein the exposure apparatus
A plurality of positions in a direction perpendicular to the optical axis of the projection optical system;
Is measured in a non-contact manner through the projection optical system.
Perpendicular to the optical axis of the projection optical system between the optical image of the projector and the wafer.
The displacement amount of the relative position in the direct direction is detected, and the detected displacement
The projection between the optical image and the wafer according to quantity information
While correcting the relative position in the direction perpendicular to the optical axis of the optical system,
Note that over-exposure is performed on a wafer on which a pattern has already been formed.
A pattern exposure method.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、露光装置の光源から発射した露光光をマ
スクまたはレチクルに照射し、露光装置の投影光学系を
介してマスクまたはレチクル上のパタ−ンの光学像によ
り、露光装置のステージ上に載置されている既にパタ−
ンが形成されたウエハを重ね露光するパタ−ン露光方法
において、重ね露光中にステージ,投影光学系、マスク
またはレチクルを保持するステージのうちの少なくとも
いずれか2つ以上の位置をレーザ測長器を用いて所定の
サンプリング周期で計測してパタ−ンの投影光学系を介
した光学像とウエハとの間の相対位置の変位量を所定の
周期で検出し、この所定の周期で検出した変位量の情報
に応じてウエハを保持するステ−ジとマスクまたはレチ
クルを保持するステ−ジとの何れか又は両方を補正変位
させることにより光学像とウエハとの間の相対位置を補
正しながら既にパタ−ンが形成されているウエハ上に重
ね露光するようにした。
In order to achieve the above object, according to the present invention, a mask or a reticle is irradiated with exposure light emitted from a light source of an exposure apparatus, and the mask or the reticle is projected through a projection optical system of the exposure apparatus. Due to the optical image of the pattern above, the pattern already mounted on the stage of the exposure apparatus
In a pattern exposure method for overlappingly exposing a wafer on which a pattern is formed, at least two or more of a stage, a projection optical system, a mask or a stage for holding a reticle are positioned during the overlap exposure by using a laser length measuring device. , The amount of displacement of the relative position between the optical image and the wafer through the projection optical system of the pattern is detected at a predetermined cycle, and the displacement detected at the predetermined cycle is detected. By correcting and displacing one or both of the stage for holding the wafer and the stage for holding the mask or reticle in accordance with the information on the amount, the relative position between the optical image and the wafer is already corrected. The wafer was overexposed on the wafer on which the pattern was formed.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】また、上記目的を達成するために、本発明で
は、露光装置の光源から発射した露光光をマスクまたは
レチクルに照射し、露光装置の投影光学系を介してマス
クまたはレチクル上のパタ−ンの光学像により、露光装
置のステージ上に載置されている既にパタ−ンが形成さ
れたウエハを重ね露光するパタ−ン露光方法において、
重ね露光中にステージを含む露光装置の複数の箇所の投
影光学系の光軸に垂直な面内における各位置をレーザ測
長器を用いて計測してパタ−ンの投影光学系を介した光
学像とウエハとの間の相対位置の変位量を検出し、この
検出した変位量の情報に応じて光学像とウエハとの間の
投影光学系の光軸に垂直な面内での相対位置を補正しな
がら既にパタ−ンが形成されているウエハ上に重ね露光
するようにした。また、上記目的を達成するために、本発
明では、露光装置の光源から発射した露光光をマスクま
たはレチクルに照射し、露光装置の投影光学系を介して
マスクまたはレチクル上のパタ−ンの光学像により、露
光装置のステージ上に載置されている既にパタ−ンが形
成されたウエハを重ね露光するパタ−ン露光方法におい
て、重ね露光中に露光装置の複数の箇所の投影光学系の
光軸に垂直な方向の位置を非接触で計測して投影光学系
を介したパタ−ンの光学像とウエハとの間の投影光学系
の光軸に垂直な方向の相対位置の変位量を検出し、この
検出した変位量の情報に応じて光学像とウエハとの間の
投影光学系の光軸に垂直な方向の相対位置を補正しなが
ら既にパタ−ンが形成されているウエハ上に重ね露光す
るようにした。
In order to achieve the above object, according to the present invention, a mask or a reticle is irradiated with exposure light emitted from a light source of an exposure apparatus, and a pattern on the mask or the reticle is projected via a projection optical system of the exposure apparatus. A pattern exposure method for superposing and exposing a wafer having a pattern formed thereon, which is mounted on a stage of an exposure apparatus, by using an optical image of the pattern.
During overlay exposure, each position in a plane perpendicular to the optical axis of the projection optical system at a plurality of locations of the exposure apparatus including the stage is measured using a laser length measuring device, and the optics are projected through the projection optical system of the pattern. The amount of displacement of the relative position between the image and the wafer is detected, and the relative position in the plane perpendicular to the optical axis of the projection optical system between the optical image and the wafer is determined according to the information on the detected amount of displacement. While correcting, the wafer is over-exposed on a wafer on which a pattern has already been formed. To achieve the above object, according to the present invention, a mask or a reticle is irradiated with exposure light emitted from a light source of an exposure apparatus, and an optical pattern of the pattern on the mask or the reticle is projected through a projection optical system of the exposure apparatus. In a pattern exposure method for overlay exposure of an already patterned wafer placed on a stage of an exposure apparatus by using an image, light of a projection optical system at a plurality of positions of the exposure apparatus during the overlay exposure. The position in the direction perpendicular to the axis is measured in a non-contact manner and the displacement of the relative position in the direction perpendicular to the optical axis of the projection optical system between the optical image of the pattern via the projection optical system and the wafer is detected. Then, while correcting the relative position in the direction perpendicular to the optical axis of the projection optical system between the optical image and the wafer in accordance with the detected information on the amount of displacement, the optical image is superimposed on the wafer on which the pattern has already been formed. It was made to expose.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村山 誠 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 Fターム(参考) 5F046 AA23 BA04 CC01 CC02 CC16 DB05 ED01 FC05    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Makoto Murayama             292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa             Hitachi, Ltd., Production Technology Laboratory F term (reference) 5F046 AA23 BA04 CC01 CC02 CC16                       DB05 ED01 FC05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 マスクまたはレチクルに露光光を照射
し、投影光学系を介して前記マスクまたはレチクル上の
パタ−ンの光学像により、既にパタ−ンが形成されてい
るウエハを重ね露光するパタ−ン露光方法であって、前
記投影露光中に前記ウエハを保持するステージ,投影光
学系,マスクまたはレチクルを保持するステージのうち
の少なくともいずれか2つ以上の位置を計測して前記パ
タ−ンの投影光学系を介した投影像とウエハとの間の振
動に伴う相対位置の変位量を求め、該求めた変位量の情
報に応じてウエハを保持するステ−ジまたは/およびマ
スクまたはレチクルを保持するステ−ジを補正変位させ
ることにより前記投影像とウエハとの間の相対位置を補
正しながら前記既にパタ−ンが形成されているウエハ上
に重ね露光することを特徴とするパタ−ン露光方法。
1. A pattern for irradiating a mask or a reticle with exposure light and overlappingly exposing a wafer on which a pattern is already formed by an optical image of the pattern on the mask or the reticle via a projection optical system. A step of measuring at least two positions of a stage for holding the wafer, a projection optical system, a stage for holding a mask or a reticle during the projection exposure, and measuring the position of the pattern. The amount of displacement of the relative position accompanying the vibration between the projection image and the wafer via the projection optical system is determined, and the stage or / and mask or reticle for holding the wafer in accordance with the obtained information of the amount of displacement. By correcting and displacing the held stage to correct the relative position between the projected image and the wafer, it is possible to perform overlapping exposure on the wafer on which the pattern has already been formed. Characteristic pattern exposure method.
【請求項2】 前記投影像とウエハとの間の相対位置を
補正しながら露光することにより、線幅が0.5μm以
下の回路パターンを重ね露光することを特徴とする請求
項1記載のパタ−ン露光方法。
2. The pattern according to claim 1, wherein the exposure is performed while correcting the relative position between the projection image and the wafer so that a circuit pattern having a line width of 0.5 μm or less is overlaid. -Exposure method.
JP2002242803A 2002-08-23 2002-08-23 Pattern exposure method Pending JP2003124112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242803A JP2003124112A (en) 2002-08-23 2002-08-23 Pattern exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242803A JP2003124112A (en) 2002-08-23 2002-08-23 Pattern exposure method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001150300A Division JP3430162B2 (en) 2001-05-21 2001-05-21 Pattern exposure method

Publications (1)

Publication Number Publication Date
JP2003124112A true JP2003124112A (en) 2003-04-25

Family

ID=19196474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242803A Pending JP2003124112A (en) 2002-08-23 2002-08-23 Pattern exposure method

Country Status (1)

Country Link
JP (1) JP2003124112A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411093C (en) * 2005-02-04 2008-08-13 富士通株式会社 Positioning apparatus and method of controlling positioning apparatus
JP2008311487A (en) * 2007-06-15 2008-12-25 Yamaha Motor Co Ltd Component mounting apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411093C (en) * 2005-02-04 2008-08-13 富士通株式会社 Positioning apparatus and method of controlling positioning apparatus
JP2008311487A (en) * 2007-06-15 2008-12-25 Yamaha Motor Co Ltd Component mounting apparatus

Similar Documents

Publication Publication Date Title
JP2994232B2 (en) Mask-to-mask or mask-to-work alignment method and apparatus
KR100300621B1 (en) EXPOSURE DEVICE, EXPOSURE METHOD, EXPOSURE CONTROL APPARATUS, EXPOSURE CONTROL METHOD, LASER DEVICE, AND DEVICE MANUFACTURING METHOD
US20160124318A1 (en) Exposure method, exposure apparatus, and article manufacturing method
US5227838A (en) Exposure system
JPH05136023A (en) Projection aligner
JPH06204113A (en) Projection aligner and manufacture of semiconductor device using same
JP2000003874A (en) Exposure method and aligner
JP3244783B2 (en) Alignment apparatus and method, and exposure apparatus and semiconductor device manufacturing method using the same
JP3429783B2 (en) Pattern exposure method and apparatus
JP2003124112A (en) Pattern exposure method
JP3430162B2 (en) Pattern exposure method
JPH0743312A (en) Surface inspection device and aligner therewith
JP2006030021A (en) Position detection apparatus and position detection method
JPH11233420A (en) Projection aligner and position detection method
JP3823417B2 (en) Exposure apparatus and exposure method
CN112327579B (en) Exposure apparatus and method for manufacturing article
JPH11214296A (en) Circuit pattern manufacturing method and apparatus
JP2637412B2 (en) Positioning method
JP3636330B2 (en) Exposure method and apparatus
JP2009302399A (en) Exposure apparatus and device manufacturing method
JP2000250226A (en) Exposure device
JPH10326741A (en) Aligner and manufacture of device using the same
JPH11251213A (en) Aligner and method for determining position therein
JP2004186521A (en) Aligner
CN112327579A (en) Exposure apparatus and method for manufacturing article