JP3430162B2 - Pattern exposure method - Google Patents

Pattern exposure method

Info

Publication number
JP3430162B2
JP3430162B2 JP2001150300A JP2001150300A JP3430162B2 JP 3430162 B2 JP3430162 B2 JP 3430162B2 JP 2001150300 A JP2001150300 A JP 2001150300A JP 2001150300 A JP2001150300 A JP 2001150300A JP 3430162 B2 JP3430162 B2 JP 3430162B2
Authority
JP
Japan
Prior art keywords
pattern
wafer
reticle
exposure
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001150300A
Other languages
Japanese (ja)
Other versions
JP2002033274A (en
Inventor
良忠 押田
憲 藤井
誠 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001150300A priority Critical patent/JP3430162B2/en
Publication of JP2002033274A publication Critical patent/JP2002033274A/en
Application granted granted Critical
Publication of JP3430162B2 publication Critical patent/JP3430162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微細な回路パタ−ンを露
光するパターン露光方法に係り、特に、パタ−ンの線幅
が0.5μm以下の回路パタ−ンを、露光中の低周波振
動等に影響されることなく、高い精度の線幅で、しかも
高精度に重ね合わせるのに好適なパタ−ン露光方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pattern exposure method for exposing a fine circuit pattern, and more particularly to a low frequency during exposure of a circuit pattern having a line width of 0.5 .mu.m or less. The present invention relates to a pattern exposure method suitable for superimposing lines with high accuracy and with high accuracy without being affected by vibration and the like.

【0002】[0002]

【従来の技術】半導体の回路パタ−ンの線幅は、従来
0.8μmであったため、該パタ−ンの線幅のばらつき
は±0.08μm、アライメント精度もほぼこの値と同
程度で足りていた。このため従来は、ウエハをステップ
アンドリピ−トで移動させながら、レチクルのパタ−ン
をウエハ上に1/5に縮小露光する際、ステップ移動後
に若干の時間を置いて露光を開始するようにすれば、ス
テップ移動に伴う振動も上記精度内に収まり、所定の目
標精度にパタ−ンを露光することが可能であった。とこ
ろが、パタ−ンの線幅の微細化要求は急速に進んでお
り、0.5〜0.3μmの線幅の時代になりつつある。
2. Description of the Related Art Since the line width of a semiconductor circuit pattern has conventionally been 0.8 .mu.m, the line width variation of the pattern is. +-. 0.08 .mu.m, and the alignment accuracy is about the same value. Was there. For this reason, conventionally, when the reticle pattern is reduced and exposed to ⅕ on the wafer while the wafer is moved by step and repeat, the exposure is started with some time after the step movement. If so, the vibration accompanying the step movement can be kept within the above accuracy, and the pattern can be exposed to a predetermined target accuracy. However, the demand for miniaturization of the pattern line width is rapidly advancing, and the age of the line width of 0.5 to 0.3 μm is about to come.

【0003】[0003]

【発明が解決しようとする課題】しかし、パタ−ンの線
幅が0.5〜0.3μmに微細化すると、ステップ移動
後かなりの時間を経過しても、そして、露光装置の除震
機構が作動しても数ヘルツ以下の低周波数の振動が残留
する。これは露光装置の剛性をかなり高めても同様で、
前記周波数や構造物の共振周波数に相当する振動が僅か
ではあるが残留する。このため、マスクまたはレチク
ル,投影光学系およびウエハの3者の相対的な位置は、
僅かではあるが常時変化している。従って、露光をアラ
イメントを行なった後に開始しても、アライメントと露
光開始との間にレチクル像とウエハの相対位置がずれて
しまう問題があり、また、露光時間そのものが0.2〜
0.4秒程度となるため、露光中にレチクル像とウエハ
の相対位置が変化していく状態下で露光されることにな
り、パタ−ンの線幅のばらつきや、重ね合わせ精度の低
下が避けられず、所定の目標精度が得られないという問
題点を有していた。
However, if the pattern line width is reduced to 0.5 to 0.3 .mu.m, even after a considerable amount of time has passed after the step movement, the vibration isolation mechanism of the exposure apparatus is used. Even if is activated, low-frequency vibrations of a few hertz or less remain. This is the same even if the rigidity of the exposure apparatus is increased considerably,
Vibrations corresponding to the above-mentioned frequency and the resonance frequency of the structure are small but remain. Therefore, the relative positions of the mask or reticle, the projection optical system, and the wafer are:
It is changing slightly, but constantly. Therefore, even if the exposure is started after the alignment is performed, there is a problem that the relative position between the reticle image and the wafer is deviated between the alignment and the start of the exposure, and the exposure time itself is 0.2 to
Since the time is about 0.4 seconds, the exposure is performed in a state where the relative position between the reticle image and the wafer changes during the exposure, resulting in variations in pattern line width and deterioration in overlay accuracy. There is a problem that it cannot be avoided and a predetermined target accuracy cannot be obtained.

【0004】本発明は、上記従来技術の問題点に鑑み、
低周波の振動が残留して露光中にレチクル像とウエハと
の相対位置の変化が発生しても、パタ−ンの線幅のばら
つきや、重ね合わせ精度の低下を防止することができ、
パタ−ンの線幅が0.5μm以下の回路パタ−ンを、高
い精度の線幅で、しかも高精度に重ね合わせることがで
きるパターン露光方法を提供することを目的とする。
The present invention has been made in view of the above problems of the prior art.
Even if the low-frequency vibration remains and the relative position between the reticle image and the wafer changes during exposure, it is possible to prevent variations in the line width of the pattern and a decrease in overlay accuracy.
An object of the present invention is to provide a pattern exposure method capable of superimposing a circuit pattern having a pattern line width of 0.5 μm or less with a high precision line width and a high precision.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明のパターン露光方法は、マスクまたはレチク
ルに露光光を照射し、投影光学系を介して前記マスクま
たはレチクル上のパタ−ンの光学像により、既にパタ−
ンが形成されているウエハを重ね露光するパタ−ン露光
方法において、アライメント検出系を用いて前記ウエハ
上のパターンと前記マスクまたはレチクル上のパターン
の相対的な位置ずれ量を検出し、前記露光光を前記マス
クまたはレチクルに照射中に前記ウエハを保持するステ
ージ,投影光学系,マスクまたはレチクルを保持するス
テージのうちの少なくともいずれか2つ以上の位置を計
測して前記パタ−ンの投影光学系を介した投影像とウエ
ハとの間の振動に伴う相対位置の変位量を求め、前記ウ
エハ上のパターンと前記マスクまたはレチクル上のパタ
ーンの相対的な位置ずれ量の情報と前記振動に伴う相
対位置の変位量の情報とに応じて、前記ウエハを保持す
るステ−ジおよび/またはマスクまたはレチクルを保持
するステ−ジを補正変位させて前記投影像とウエハとの
間の相対位置を補正することにより前記既にパタ−ンが
形成されているウエハ上に露光光を照射して重ね露光す
る構成にしたものである。
In order to achieve the above object, the pattern exposure method of the present invention irradiates a mask or reticle with exposure light and exposes the pattern on the mask or reticle through a projection optical system. The optical image has already
In a pattern exposure method for exposing a wafer having a pattern formed thereon in an overlapping manner, an alignment detection system is used to detect a relative positional deviation amount between the pattern on the wafer and the pattern on the mask or reticle, and the exposure is performed. Light the mass
Position of at least two of the stage for holding the wafer, the projection optical system, the stage for holding the mask or the reticle during irradiation of the mask or reticle, and measuring the position through the projection optical system of the pattern. to determine the displacement of the relative position due to vibration between the projection image and the wafer was the relative positional deviation amount of information of the pattern on the pattern on the wafer the mask or reticle, relative position due to the vibration correcting the relative position between the projection image and a wafer di is corrected displacement - stearyl for holding the di- and / or mask or reticle - according to the displacement amount of information and, stearyl to hold the wafer Thus , the exposure light is radiated onto the wafer on which the pattern has already been formed, and the exposure is performed in an overlapping manner.

【0006】ここで、前記投影像とウエハとの間の相対
位置を補正しながら露光することにより、線幅が0.5
μm以下の回路パターンを重ね露光する、という構成に
してもよい。また、前記アライメント検出系を用いた前
記ウエハ上のパターンと前記マスクまたはレチクル上の
パターンの相対的な位置ずれ量の検出を投影露光の前に
行う、という構成にしてもよい。また、前記マスクまた
はレチクル上のパタ−ンの光学像により、既にパタ−ン
が形成されているウエハを重ね露光した後、前記ウエハ
を移動させて当該ウエハ上の重ね露光した領域に隣接す
る領域を前記マスクまたはレチクル上のパターンの光学
像により重ね露光する、という構成にしてもよい。
Here, by exposing while correcting the relative position between the projected image and the wafer, the line width becomes 0.5.
A configuration in which a circuit pattern of μm or less is overlaid and exposed may be used. In addition, before using the alignment detection system
The pattern on the wafer and the mask or reticle
Detection of the relative displacement of the pattern before projection exposure
It may be configured to perform. Also, the mask
Has already been detected by the optical image of the pattern on the reticle.
After the wafer on which the
To move it to the area adjacent to the overexposed area on the wafer.
Area of the mask or pattern on the reticle
It is also possible to adopt a configuration in which imagewise exposure is performed.

【0007】[0007]

【作用】上記構成としたことにより、マスクまたはレチ
クル(以下、単にレチクルという)上のパターンの投影
像とウエハとの間の振動に伴う相対位置の微小変位量
が、変位検出系によりレチクル,投影光学系,ウエハの
それぞれについて投影露光中においても計測可能にな
る。この場合、投影光学系における変位計測位置を、レ
チクルとウエハとの間の距離を5対1に内分した位置に
すると、投影光学系とウエハとの両者が変位しないでレ
チクルのみがΔLr変位した場合におけるウエハ上での
レチクル像の変位量は−1/5ΔLrとなり、また、投
影光学系のみがΔLi変位した場合のウエハ上でのレチ
クル像の変位量は6/5ΔLiとなることから、投影露
光中に計測すべき全変位量ΔLは次式で与えられる、 ΔL=ΔLw+6/5ΔLi−1/5ΔLr ……(1) ここで、ΔLwはウエハにおける基準位置(例えばチッ
プの中心)との微小変位量である。
With the above configuration, the minute displacement amount of the relative position due to the vibration between the projected image of the pattern on the mask or reticle (hereinafter, simply referred to as "reticle") and the wafer is detected by the displacement detection system. optical system, it becomes possible to measure the projected shadows during exposure with the respective wafer. In this case, when the displacement measurement position in the projection optical system is set to a position where the distance between the reticle and the wafer is internally divided into 5: 1, both the projection optical system and the wafer are not displaced and only the reticle is displaced by ΔLr. In this case, the displacement amount of the reticle image on the wafer is -1/5 ΔLr, and the displacement amount of the reticle image on the wafer is 6/5 ΔLi when only the projection optical system is displaced by ΔLi. The total amount of displacement ΔL to be measured is given by the following formula: ΔL = ΔLw + 6 / 5ΔLi-1 / 5ΔLr (1) where ΔLw is a minute displacement with respect to the reference position (for example, the center of the chip) on the wafer. Is.

【0008】上記計測時におけるサンプリングは、残留
している微小振動の主要周波数の4倍以上の周波数で
うことによって、該振動の振幅と位相との概略を把握す
ることが可能になり、所定の計測精度を得ることができ
る。例えば、ウエハステ−ジのステップ移動直後に残留
する数十〜百数十Hzの早く減衰する比較的周波数の高
い振動が十分に減衰した後に露光を行う場合には、露光
装置の除震機能でも減衰し切れない数Hzの振動の影響
除去のために、該数Hzの4倍以上の十数Hz以上のサ
ンプリング周波数で行い、上記ステップ移動後の残留振
動の完全な減衰を待たずに露光する場合には、前記数十
〜百数十Hzの4倍以上の数百Hzのサンプリング周波
数で行われる。
[0008] Sampling during the measurement, the row at least four times the frequency of the dominant frequency of the minute vibration remaining
By doing so, it is possible to grasp the outline of the amplitude and phase of the vibration, and it is possible to obtain a predetermined measurement accuracy. For example, when the exposure is performed after the vibration of a relatively high frequency of tens to hundreds of tens of Hz that remains immediately after the step movement of the wafer stage is sufficiently damped, the vibration removal function of the exposure apparatus also dampens it. In order to remove the influence of vibration of several Hz which cannot be completely performed, exposure is performed without waiting for complete attenuation of residual vibration after the above step movement, by performing sampling frequency of ten or more Hz which is four times or more of the several Hz. The sampling frequency is several hundreds of Hz, which is four times as large as the above several tens to several hundreds of Hz.

【0009】前記投影像とウエハとの間の相対位置を補
正しながら露光する。例えば、上記サンプリングデータ
露光中常に微動制御手段(投影像とウエハとの間の相
対位置変位を補正制御する手段)にフィードバックする
ことによって、残留振動制御する。そして、この制御
状態下でレチクル像に対するウエハのずれ、すなわち前
記計測された全変位量ΔLを、該微動制御手段によりウ
エハステージまたはレチクルステージの一方、或いは両
方を微動させて補正する。この補正により、前記僅かで
はあるが常時発生しているレチクル,投影光学系,ウエ
ハの3者の相対的な位置変化があっても、レチクル像と
ウエハとが精度よく重ね合わされ、パタ−ンの線幅が
0.5μm以下の回路パタ−ンであっても、高精度の線
幅並びにアライメント精度で露光することが可能にな
る。
The relative position between the projected image and the wafer is corrected.
Exposing while correcting. For example, the sampling data
Always fine motion control means during exposure (the phase between the projection image and the wafer
Feedback to the means for correcting and controlling displacement to position)
It allows to control the residual vibration. Then, under this control state, the deviation of the wafer with respect to the reticle image, that is, the total displacement amount ΔL measured is corrected by finely moving one or both of the wafer stage and the reticle stage by the fine movement control means. With this correction, the reticle image and the wafer are accurately superimposed even if there is a relative positional change between the reticle, the projection optical system, and the wafer, which are slightly generated at all times, and the pattern of the pattern is accurately overlapped. Even if the circuit pattern has a line width of 0.5 μm or less, it is possible to perform exposure with high line width and alignment accuracy.

【0010】なお、ウエハステージ等を微動制御する
際、前記サンプリングデータのほか、露光装置の機構の
固有の振動特性を考慮した予め得られている複数のサン
プル点のデ−タを利用して予測制御を行なうことによ
り、更に精度の高い露光を行うことができる。
When finely controlling the wafer stage or the like, prediction is performed by using data of a plurality of sample points which are obtained in advance in consideration of the vibration characteristics peculiar to the mechanism of the exposure apparatus, in addition to the sampling data. By performing the control, more accurate exposure can be performed.

【0011】[0011]

【実施例】以下、本発明の一実施例を図1ないし図3を
参照して説明する。図1はパターン露光装置の概略構成
を示す図、図2は露光パターンの各部の変位状態を示す
図、図3はステップ移動後の残留振動と計測・露光の
イミングとの関係を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing a schematic configuration of a pattern exposure apparatus, FIG. 2 is a diagram showing a displacement state of each part of an exposure pattern, and FIG. 3 is a residual vibration after a step movement and measurement / exposure timing.
It is a figure which shows the relationship with imming .

【0012】図1において、1は露光光源を含む露光光
学系で、この中には露光光源よりの出射光をレチクルス
テージ3上に載置されたレチクル2に照射する露光照明
系と、レチクル2に対する露光光11をON−OFF制
御可能なシャッタ機能とを備えている。4はレチクル2
を透過した光をウエハステージ6に載置されたウエハ5
上に縮小して投影露光する縮小レンズを含む投影光学系
で、既にパターンの形成されているウエハ5の表面にレ
チクル2上のパターンの1/5倍の像を結ぶように構成
されている。7はウエハ5に形成されているパターンと
レチクル2のパターンとの相対的な位置を検出するアラ
イメント検出系、8はアライメント検出光で、該検出方
法は、前記相対的な位置が露光位置にて検出可能な方
法、例えば、特公昭63−60525号公報や特開昭6
1−220326号公報に記載されている方法が用いら
れる。検出にはCCD一次元撮像素子が使用され、検出
されたデータは高速にAD変換され、ディジタル・シグ
ナル・プロセッサ(DSP)を使用して数msのサンプ
リング周期で検出するように構成されている。また、ア
ライメント検出系7はアライメント検出光8に露光光1
1と同一波長の光を用いているため、アライメント検出
を長時間行うとレジストが感光するので、アライメント
検出を短時間で行い、その後はアライメント検出光8を
遮光して、ウエハ5に入射されないようにしている。9
は前記シャッタ機能がONの露光状態下で、レチクル2
上のパタ−ンの投影光学系4による投影像とウエハ5と
の間の振動に伴う相対位置の変位量を計測するレーザ測
長器で、アライメント検出系7とともに変位検出系を構
成する。該変位検出系においては、前記振動の主要周波
数の4倍以上の周波数を有するサンプル周波数でサンプ
リングして計測する構成になっている。レーザ測長器9
は、アライメント検出系7で検出した瞬間におけるレチ
クル2,投影光学系4,ウエハ5の投影光学系4の光軸
4aに垂直な方向の各変位を、レ−ザビ−ム31、3
2、33を介して計測する。図1においては光軸4aに
垂直な1方向の各変位を計測しているが、実際には図示
されていない紙面に直角な方向の検出系が組み込まれお
り、光軸4aに垂直な2方向についてそれぞれ計測され
るようになっている。そして、投影光学系4の変位検出
位置は、図1に示すようにレチクル2とウエハ5との間
をL:L=5:1に内分する位置Cである。10は
上記レーザ測長器9とアライメント検出系7とで構成さ
れる変位検出系により計測されたレチクル2上のパタ−
ンの投影光学系4による投影像とウエハ5との間の相対
位置の変化状態および変位量に応じて、ウエハ5または
レチクル2の一方を、或いはその両方を微動変位させ、
前記投影像とウエハ5との間の相対位置変位を補正制御
する微動制御手段である。
In FIG. 1, reference numeral 1 denotes an exposure optical system including an exposure light source, in which an exposure illumination system for irradiating light emitted from the exposure light source to a reticle 2 mounted on a reticle stage 3 and a reticle 2 are provided. And a shutter function capable of ON-OFF control of the exposure light 11 for. 4 is reticle 2
The light transmitted through the wafer 5 placed on the wafer stage 6
A projection optical system including a reduction lens that performs projection exposure after reducing the size is configured to form an image of 1/5 times the pattern on the reticle 2 on the surface of the wafer 5 on which the pattern is already formed. Reference numeral 7 is an alignment detection system for detecting a relative position between the pattern formed on the wafer 5 and the pattern of the reticle 2, 8 is an alignment detection light, and the detection method is such that the relative position is an exposure position. Detectable methods such as Japanese Patent Publication No. 63-60525 and Japanese Patent Laid-Open No.
The method described in JP-A 1-220326 is used. A CCD one-dimensional image sensor is used for detection, and the detected data is AD-converted at high speed and is detected at a sampling period of several ms using a digital signal processor (DSP). Further, the alignment detection system 7 converts the alignment detection light 8 into the exposure light 1
Since the light having the same wavelength as that of No. 1 is used, if the alignment detection is performed for a long time, the resist is exposed. Therefore, the alignment detection is performed in a short time, and thereafter the alignment detection light 8 is shielded so that it does not enter the wafer 5. I have to. 9
Is the reticle 2 under the exposure condition in which the shutter function is ON.
A laser length measuring device that measures the displacement amount of the relative position due to the vibration between the projected image of the projection optical system 4 of the upper pattern and the wafer 5 constitutes the displacement detection system together with the alignment detection system 7. The displacement detection system is configured to sample and measure at a sampling frequency having a frequency four times or more the main frequency of the vibration. Laser length measuring device 9
Are laser beams 31, 3 for the respective displacements of the reticle 2, the projection optical system 4, and the wafer 5 in the direction perpendicular to the optical axis 4a of the projection optical system 4 at the moment detected by the alignment detection system 7.
Measure through 2, 33. In FIG. 1, each displacement in one direction perpendicular to the optical axis 4a is measured. However, a detection system not shown in the figure, which is perpendicular to the plane of the paper, is incorporated in the two directions perpendicular to the optical axis 4a. About each is measured. The displacement detection position of the projection optical system 4 is a position C that internally divides between the reticle 2 and the wafer 5 into L 1 : L 2 = 5: 1 as shown in FIG. 10 is
It is composed of the laser length measuring device 9 and the alignment detection system 7.
Pattern on the reticle 2 which is measured by the displacement detecting system which -
One or both of the wafer 5 and the reticle 2 are finely displaced according to the change state and the amount of displacement of the relative position between the projection image of the projection optical system 4 and the wafer 5.
It is fine movement control means for correcting and controlling the relative positional displacement between the projected image and the wafer 5.

【0013】上記構成としたことにより、露光光学系1
より出射した露光光11はレチクル2上の回路パタ−ン
を照明し、レチクル2を透過した光は投影光学系4にお
ける縮小レンズによりウエハ5の表面にレチクル2上の
パタ−ンの1/5倍の像を結ぶ。この結像と既に形成さ
れているウエハ5のパターンとを精度良く位置合わせ
し、レチクル2の像をウエハ5に重ね露光する必要があ
るため、アライメント検出系7によりウエハ5のパタ−
ンとレチクル2のパタ−ンの相対的な位置ずれが検出さ
れる。
With the above arrangement, the exposure optical system 1
The exposure light 11 emitted thereby illuminates the circuit pattern on the reticle 2, and the light transmitted through the reticle 2 is applied to the surface of the wafer 5 by the reduction lens in the projection optical system 4 to 1/5 of the pattern on the reticle 2. Double the image. Since it is necessary to precisely align this image formation with the pattern of the wafer 5 already formed and to expose the image of the reticle 2 on the wafer 5 in an overlapping manner, the alignment detection system 7 patterns the wafer 5.
The relative displacement between the pattern of the reticle 2 and the pattern of the reticle 2 is detected.

【0014】上記レーザ測長器9による位置ずれの検出
投影露光中に行われ、図2に示すようにレチクル2,
投影光学系4,ウエハ5のそれぞれについて、ウエハ5
における基準位置(例えばチップの中心)Wに対する投
影光学系4の光軸4aに垂直な方向の微小変位ΔLr,
ΔLi,ΔLwが求められる。この場合、投影光学系4
における変位計測位置が、レチクル2とウエハ5との間
の距離を5対1に内分した位置Cにあるため、投影光学
系4とウエハ5との両者が変位しないで、レチクル2の
みがレチクル2の基準位置AよりΔLr変位した図2
(a)の場合には、ウエハ5上でのレチクル像の変位量
はウエハ5の基準位置Wより−1/5ΔLrとなる。ま
た、投影光学系4のみがレチクル2の基準位置AよりΔ
Li変位した図2(b)の場合には、ウエハ上5でのレ
チクル像の変位量はウエハ5の基準位置Wより6/5Δ
Liとなる。さらに、ウエハ5のみがレチクル2の基準
位置AよりΔLw変位した図2(c)の場合には、ウエ
ハ上5でのレチクル像の変位量はウエハ5の基準位置W
からもΔLwとなる。なお、上記位置ずれは、投影光学
系4の傾きについては影響されず、図2(d)に示すよ
うにΔL=0になる。
The position shift detection by the laser length measuring device 9 is performed during the projection exposure, and the reticle 2, as shown in FIG.
For each of the projection optical system 4 and the wafer 5, the wafer 5
Projecting with respect to the reference position (e.g., center of the chip) W in
A minute displacement ΔLr in a direction perpendicular to the optical axis 4a of the shadow optical system 4 ,
ΔLi and ΔLw are obtained . In this case, the projection optical system 4
Since the displacement measurement position in is at the position C, which is the distance between the reticle 2 and the wafer 5 divided by 5: 1, both the projection optical system 4 and the wafer 5 are not displaced, and only the reticle 2 is reticle. 2 displaced from the reference position A by ΔLr
In the case of (a), the displacement amount of the reticle image on the wafer 5 is −1 / 5ΔLr from the reference position W of the wafer 5. Further, only the projection optical system 4 has a distance Δ from the reference position A of the reticle 2.
In the case of the Li displacement shown in FIG. 2B, the displacement amount of the reticle image on the wafer 5 is 6 / 5Δ from the reference position W of the wafer 5.
It becomes Li. Further, in the case of FIG. 2C in which only the wafer 5 is displaced from the reference position A of the reticle 2 by ΔLw, the displacement amount of the reticle image on the wafer 5 is the reference position W of the wafer 5.
Is also ΔLw. The positional deviation is not affected by the inclination of the projection optical system 4, and ΔL = 0 as shown in FIG.

【0015】上記各微小変位ΔLr,ΔLi,ΔLwか
ら、投影露光中に計測すべき全変位量ΔLを、前記
(1)式より求め、微動制御手段10によりウエハステ
ージ6またはレチクルステージ3の一方、または両者
を、求めたΔLだけ微動させて位置ずれを補正する。上
記ΔLr,ΔLi,ΔLwの各値は、パタ−ン露光中も
常時検出されているから、露光中の振動等による露光パ
タ−ンのウエハ5上の僅かな位置ずれでも、常時ΔLだ
けウエハ5等を微動補正することが可能になり、良好な
パタ−ン形状を正しいアライメント位置に露光すること
が可能となる。なお、上記ΔLr,ΔLi,ΔLwの検
出は、例えば、レチクル2の変位量が問題にならないほ
ど小さい場合は、ΔLrの計測を省略し、ΔLiおよび
ΔLwの検出値からΔLを求め、この値によりウエハス
テ−ジ6等を微動制御するようにしてもよい。
From the above-mentioned minute displacements ΔLr, ΔLi, and ΔLw, the total displacement amount ΔL to be measured during the projection exposure is obtained from the equation (1), and one of the wafer stage 6 and the reticle stage 3 is controlled by the fine movement control means 10. Alternatively, both are slightly moved by the obtained ΔL to correct the positional deviation. Since the respective values of .DELTA.Lr, .DELTA.Li, and .DELTA.Lw are always detected during the pattern exposure, even if the exposure pattern slightly shifts on the wafer 5 due to vibration during the exposure, the wafer 5 is always .DELTA.L. It becomes possible to make fine movement corrections for the like, and it becomes possible to expose a good pattern shape to the correct alignment position. In the detection of ΔLr, ΔLi, and ΔLw, for example, when the displacement amount of the reticle 2 is so small as not to be a problem, the measurement of ΔLr is omitted, and ΔL is obtained from the detected values of ΔLi and ΔLw. -It is also possible to control the movement of the gear 6 and the like.

【0016】前記図1に示すようなパターン露光装置に
おいては、該装置の各系を支持している構造体が固有の
共振周波数を有しており、これらの周波数の残留振動が
発生する。例えば、ウエハステ−ジ6のステップ移動直
後には、数十〜百数十Hzの比較的周波数の高い減衰の
早い振動が残留するが、該振動が減衰しても露光装置の
除震機能では減衰し切れない数Hzの振動が残留する。
しかし、これらの残留振動は、図3(a)または(b)
に実線で示すような基本的な周波数の波形からなってい
るため、上記計測時におけるサンプリングを、残留して
いる微小振動の主要周波数の4倍以上の周波数、すなわ
ち、残留振動の周波数が上記数Hzの場合はその4倍以
上の十数Hz以上のサンプリング周波数、また、上記ス
テップ移動後の残留振動の完全な減衰を待たずに露光す
る場合のように、数十〜百数十Hzの場合にはその4倍
以上の数百Hzのサンプリング周波数で行うことによ
り、該振動のおおよその振幅と位相とを把握することが
可能になる。
In the pattern exposure apparatus as shown in FIG. 1, the structure supporting each system of the apparatus has its own resonance frequencies, and residual vibrations at these frequencies occur. For example, immediately after the step movement of the wafer stage 6, a relatively high-frequency, fast-damping vibration of several tens to hundreds of tens Hz remains, but even if the vibration is damped, it is damped by the anti-vibration function of the exposure apparatus. The vibration of several Hz which cannot be completely left remains.
However, these residual vibrations are not shown in Fig. 3 (a) or (b).
Since the waveform has a basic frequency as shown by the solid line, the sampling at the time of the above measurement is more than 4 times the main frequency of the residual minute vibration, that is, the frequency of the residual vibration is the above number. In the case of Hz, a sampling frequency of ten or more Hz, which is four times or more that of Hz, and in the case of several tens to one hundred and several tens Hz, as in the case of exposure without waiting for the complete attenuation of the residual vibration after the above step movement, It is possible to grasp the approximate amplitude and phase of the vibration by performing sampling at a sampling frequency of several hundred Hz, which is four times or more that of the vibration.

【0017】上記サンプリングデータは露光中常に微動
制御手段10にフィードバックされ、前記残留振動が制
御される。図3(a)はこの状態の説明図で、露光中計
測制御(つまり、ステップ移動中以外はすべて前記各部
の微小変位を計測している場合)における残留振動と計
測・露光開始時点との関係を示す。図からわかるよう
に、実線で示す無制御の残留振動が、ステップ移動直後
から計測制御されて点線で示すように平らになり、その
安定した状態で露光が開始される。これは、減衰の遅い
低周波数の残留振動の安定を待った上で露光を開始して
いた従来に比べて、工程を短縮することができる効果を
有する。前記残留振動が制御された状態下でレチクル像
に対するウエハ5のずれ、すなわち前記計測された全変
位量ΔLを、微動制御手段10によりウエハステージ6
またはレチクルステージ3のいずれか一方、或いは両者
を微動させて補正する。この補正により、前記僅かでは
あるが常時発生しているレチクル2,投影光学系4,ウ
エハ5の3者の相対的な位置変化があっても、レチクル
像とウエハ5とが精度よく重ね合わされ、パタ−ンの線
幅が0.5μm以下の回路パタ−ンであっても、高精度
の線幅並びにアライメント精度で露光することが可能に
なる。なお、ウエハステージ等を微動制御する際、前記
サンプリングデータのほか、露光装置の機構の固有の振
動特性を考慮した予め得られている複数のサンプル点の
デ−タを利用して予測制御を行なうことにより、更に精
度の高い露光を行うことができる。
The above sampling data is constantly fed back to the fine movement control means 10 during exposure to control the residual vibration. FIG. 3A is an explanatory diagram of this state, and shows the relationship between the residual vibration and the measurement / exposure start time in the measurement control during exposure (that is, when the minute displacements of the respective parts are all measured except during the step movement). Indicates. As can be seen from the figure, the uncontrolled residual vibration indicated by the solid line is measured and controlled immediately after the step movement and becomes flat as indicated by the dotted line, and the exposure is started in the stable state. This has the effect that the process can be shortened as compared with the conventional method in which the exposure is started after waiting for the stabilization of the low-frequency residual vibration with slow damping. The deviation of the wafer 5 with respect to the reticle image under the condition that the residual vibration is controlled, that is, the total displacement amount ΔL measured is controlled by the fine movement control means 10 by the wafer stage 6
Alternatively, one or both of the reticle stages 3 are finely moved to correct. With this correction, the reticle image and the wafer 5 are accurately superposed on each other even if there is a relative positional change between the reticle 2, the projection optical system 4, and the wafer 5 which are generated slightly but constantly. Even if the circuit pattern has a line width of 0.5 μm or less, it is possible to perform exposure with high line width and alignment accuracy. When finely controlling the wafer stage or the like, predictive control is performed by utilizing the data of a plurality of sample points obtained in advance in consideration of the characteristic vibration characteristics of the mechanism of the exposure apparatus, in addition to the sampling data. As a result, exposure with higher accuracy can be performed.

【0018】前記ウエハステージ6等の投影露光中にに
おける微動制御は、該露光中の振動デ−タから得ること
が現状に即したものであり望ましいが、該振動データが
得られないような場合には、図3(b)に示すように、
露光直前に行うアライメント検出を行っている時の露光
パタ−ンとウエハ5との相対位置を、上記のサンプリン
グ周期で検出したデ−タを用いたり、或いは、レ−ザ測
長器9で露光直前に検出した前記ΔLr,ΔLi,ΔL
wのデ−タを用い、ウエハステ−ジ6等を駆動しても良
い。この場合、検出デ−タからその後の露光中に起こる
振動を予測し、この振動予測からウエハステ−ジ6等を
微小駆動すれば、図3(b)の点線に示すように、露光
中でも正しい位置に安定してウエハステ−ジ6等を制御
することが可能である。
Fine movement control during projection exposure of the wafer stage 6 or the like is desired to be obtained from vibration data during the exposure, which is desirable in accordance with the current situation, but in the case where the vibration data cannot be obtained. , As shown in FIG.
The relative position between the exposure pattern and the wafer 5 when the alignment detection is performed immediately before the exposure is performed by using the data detected in the above sampling cycle, or the exposure is performed by the laser measuring device 9. The ΔLr, ΔLi, ΔL detected immediately before
The wafer stage 6 or the like may be driven by using the data of w. In this case, if the vibration occurring during the subsequent exposure is predicted from the detected data and the wafer stage 6 or the like is finely driven from this vibration prediction, as shown by the dotted line in FIG. It is possible to stably control the wafer stage 6 and the like.

【0019】なお、レチクル像とウエハ5との相対位置
の計測方法としては、前記方法以外に、例えば、レチク
ル2上のパタ−ンとウエハ5上のパタ−ンの像の相対位
置を直接計測するようにしても良い。この場合、露光中
に計測するため、計測手段が露光光11を遮らないよう
にすることが不可欠である。
As a method for measuring the relative position between the reticle image and the wafer 5, other than the above method, for example, the relative position between the image on the reticle 2 and the image on the wafer 5 is directly measured. It may be done. In this case, since the measurement is performed during the exposure, it is indispensable that the measuring means does not block the exposure light 11.

【0020】また、図示していないが、上記相対位置の
変化の計測を、前記レチクル2上のパターンを投影する
方法と反対に、ウエハ5上のパタ−ンを投影光学系4を
通してレチクル2近傍に結像し、その結像とレチクル2
上のパタ−ンとの相対位置検出により行なうことも可能
である。
Although not shown, the measurement of the change in the relative position is carried out in the vicinity of the reticle 2 through the projection optical system 4 on the pattern on the wafer 5 contrary to the method of projecting the pattern on the reticle 2. Image on the reticle 2
It is also possible to detect the relative position with the upper pattern.

【0021】[0021]

【発明の効果】以上説明したように本発明は、パターン
露光方法において、低周波の振動が残留して露光中にレ
チクル像とウエハとの相対位置の変化が発生しても、パ
タ−ンの線幅のばらつきや、重ね合わせ精度の低下を防
止することができ、パタ−ンの線幅が0.5μm以下の
回路パタ−ンを、高い精度の線幅で、しかも高精度に重
ね合わせることができる効果を奏する。
As described above, according to the present invention, in the pattern exposure method, even if the low-frequency vibration remains and the relative position between the reticle image and the wafer changes during the exposure, the pattern It is possible to prevent variations in line width and deterioration of overlay accuracy, and to overlay circuit patterns with a line width of 0.5 μm or less with high precision and high precision. There is an effect that can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るパターン露光装置の一実施例の概
略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an embodiment of a pattern exposure apparatus according to the present invention.

【図2】露光パターンの各部の変位状態を示す図であ
る。
FIG. 2 is a diagram showing a displacement state of each part of an exposure pattern.

【図3】本発明のステップ移動後の残留振動と計測・露
光のタイミングとの関係を示す図である。
FIG. 3 is a diagram showing a relationship between residual vibration after step movement and timing of measurement / exposure according to the present invention.

【符号の説明】[Explanation of symbols]

1…露光光学系、2…レチクル、3…レチクルステー
ジ、4…投影光学系、5…ウエハ、6…ウエハステー
ジ、7…アライメント検出系、8…アライメント検出
光、9…レーザ測長器、10…微動制御手段、11…露
光光、31,32,33…レーザビーム。
1 ... Exposure optical system, 2 ... Reticle, 3 ... Reticle stage, 4 ... Projection optical system, 5 ... Wafer, 6 ... Wafer stage, 7 ... Alignment detection system, 8 ... Alignment detection light, 9 ... Laser length measuring device, 10 ... fine movement control means 11, exposure light, 31, 32, 33 ... laser beam.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村山 誠 神奈川県横浜市戸塚区吉田町292番地 株式会社 日立製作所 生産技術研究所 内 (56)参考文献 特開 昭60−32050(JP,A) 特開 平3−50819(JP,A) 特開 平1−288647(JP,A)   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Makoto Murayama               292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa               Hitachi, Ltd. Production Technology Laboratory               Within                (56) References JP-A-60-32050 (JP, A)                 JP-A-3-50819 (JP, A)                 JP-A-1-288647 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マスクまたはレチクルに露光光を照射
し、投影光学系を介して前記マスクまたはレチクル上の
パタ−ンの光学像により、既にパタ−ンが形成されてい
るウエハを重ね露光するパタ−ン露光方法であって、ア
ライメント検出系を用いて前記ウエハ上のパターンと前
記マスクまたはレチクル上のパターンの相対的な位置ず
れ量を検出し、前記露光光を前記マスクまたはレチクル
に照射中に前記ウエハを保持するステージ,投影光学
系,マスクまたはレチクルを保持するステージのうちの
少なくともいずれか2つ以上の位置を計測して前記パタ
−ンの投影光学系を介した投影像とウエハとの間の振動
に伴う相対位置の変位量を求め、前記ウエハ上のパター
ンと前記マスクまたはレチクル上のパターンの相対的な
位置ずれ量の情報と前記振動に伴う相対位置の変位量
の情報とに応じて、前記ウエハを保持するステ−ジおよ
び/またはマスクまたはレチクルを保持するステ−ジを
補正変位させて前記投影像とウエハとの間の相対位置を
補正することにより前記既にパタ−ンが形成されている
ウエハ上に露光光を照射して重ね露光することを特徴と
するパタ−ン露光方法。
1. A pattern in which a mask or reticle is irradiated with exposure light, and a wafer on which a pattern is already formed is overlaid and exposed by an optical image of the pattern on the mask or reticle through a projection optical system. An exposure method, wherein an amount of relative positional deviation between the pattern on the wafer and the pattern on the mask or reticle is detected by using an alignment detection system, and the exposure light is transmitted to the mask or reticle.
Position of at least any two of the stage for holding the wafer, the projection optical system, the stage for holding the mask or the reticle during irradiation, and the projected image through the projection optical system of the pattern. and obtains the displacement of the relative position due to vibration between the wafer, the relative positional deviation amount of information of the pattern on the pattern on the wafer the mask or reticle, the displacement of the relative position due to the vibration depending of the information, stearyl holding the wafer - stearyl holds the di- and / or mask or reticle - said by correcting the relative position between the projection image and a wafer di is corrected displacement already A pattern exposure method comprising irradiating exposure light onto a wafer on which a pattern is formed to perform overlapping exposure.
【請求項2】 前記投影像とウエハとの間の相対位置を
補正しながら露光することにより、線幅が0.5μm以
下の回路パターンを重ね露光することを特徴とする請求
項1記載のパタ−ン露光方法。
2. The pattern according to claim 1, wherein the exposure is performed while correcting the relative position between the projected image and the wafer, whereby the circuit pattern having a line width of 0.5 μm or less is overlapped and exposed. Exposure method.
【請求項3】 前記アライメント検出系を用いた前記ウ
エハ上のパターンと前記マスクまたはレチクル上のパタ
ーンの相対的な位置ずれ量の検出を、前記投影露光の前
に行うことを特徴とする請求項1記載のパタ−ン露光方
法。
3. The relative positional deviation amount between the pattern on the wafer and the pattern on the mask or reticle using the alignment detection system is detected before the projection exposure. The pattern exposure method described in 1.
【請求項4】 前記マスクまたはレチクル上のパタ−ン
の光学像により、既にパタ−ンが形成されているウエハ
を重ね露光した後、前記ウエハを移動させて当該ウエハ
上の重ね露光した領域に隣接する領域を前記マスクまた
はレチクル上のパターンの光学像により重ね露光するこ
とを特徴とする請求項1記載のパタ−ン露光方法。
4. A wafer on which a pattern has already been formed is overlapped and exposed by an optical image of the pattern on the mask or reticle, and then the wafer is moved to an overlapped and exposed region on the wafer. 2. A pattern exposure method according to claim 1, wherein adjacent areas are exposed by an optical image of the pattern on the mask or reticle.
JP2001150300A 2001-05-21 2001-05-21 Pattern exposure method Expired - Fee Related JP3430162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001150300A JP3430162B2 (en) 2001-05-21 2001-05-21 Pattern exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001150300A JP3430162B2 (en) 2001-05-21 2001-05-21 Pattern exposure method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP00075792A Division JP3429783B2 (en) 1992-01-07 1992-01-07 Pattern exposure method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002242803A Division JP2003124112A (en) 2002-08-23 2002-08-23 Pattern exposure method

Publications (2)

Publication Number Publication Date
JP2002033274A JP2002033274A (en) 2002-01-31
JP3430162B2 true JP3430162B2 (en) 2003-07-28

Family

ID=18995337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001150300A Expired - Fee Related JP3430162B2 (en) 2001-05-21 2001-05-21 Pattern exposure method

Country Status (1)

Country Link
JP (1) JP3430162B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343075A (en) * 2003-04-14 2004-12-02 Asml Netherlands Bv Projection system and its using method

Also Published As

Publication number Publication date
JP2002033274A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
JP3275368B2 (en) Exposure method and apparatus
JPH0945603A (en) Alignment method and device between mask and mask or mask and work
JP2005129674A (en) Scanning aligner and method of manufacturing device
JPH07135167A (en) Scanning aligner and device manufacturing method using the same
JP2008300579A (en) Exposure apparatus and device manufacturing method
US5227838A (en) Exposure system
JP3429783B2 (en) Pattern exposure method and apparatus
JP3430162B2 (en) Pattern exposure method
JP3244783B2 (en) Alignment apparatus and method, and exposure apparatus and semiconductor device manufacturing method using the same
JP6436856B2 (en) Exposure apparatus, exposure method, and article manufacturing method
JP2705778B2 (en) Projection exposure equipment
JP2003124112A (en) Pattern exposure method
KR102189048B1 (en) Detecting apparatus, detecting method, computer program, lithography apparatus, and article manufacturing method
JP7312053B2 (en) Exposure apparatus and article manufacturing method
CN112327579B (en) Exposure apparatus and method for manufacturing article
JP2637412B2 (en) Positioning method
JP3823417B2 (en) Exposure apparatus and exposure method
JPH11288866A (en) Scanning-aligner and exposure method therefor
JPH10144596A (en) Aligner and manufacture of device
JP2003347201A (en) Method for adjusting resist pattern width
JP2569537B2 (en) Alignment device
JPH10172901A (en) Scanning projection aligner and manufacture of device using the same
JP2009231642A (en) Scanning type exposure device and manufacturing method for device
JPH1083952A (en) Alignment device and projection aligner using this
JP2002043218A (en) Exposure method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees