JPH05180797A - Oxygen concentration sensor - Google Patents

Oxygen concentration sensor

Info

Publication number
JPH05180797A
JPH05180797A JP3360555A JP36055591A JPH05180797A JP H05180797 A JPH05180797 A JP H05180797A JP 3360555 A JP3360555 A JP 3360555A JP 36055591 A JP36055591 A JP 36055591A JP H05180797 A JPH05180797 A JP H05180797A
Authority
JP
Japan
Prior art keywords
particles
oxygen concentration
sensor
sensor element
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3360555A
Other languages
Japanese (ja)
Inventor
Tsuyako Fukaya
津也子 深谷
Kazuaki Takada
和明 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3360555A priority Critical patent/JPH05180797A/en
Publication of JPH05180797A publication Critical patent/JPH05180797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To achieve a prevention of an electrode from peeling and higher durability and performance of a sensor by producing a number of grooves with the width thereof larger than the particle size of ceramics of a sensor element base material on the surface thereof to make ceramic particles adhere to the surface thereof with the particle size being almost the same as the width of the grooves. CONSTITUTION:A cylindrical sensor element 1 whose one end is closed with zirconia particles of an average particle size of about 1-2mum is formed and a number of grooves 2 are formed in the direction orthogonal to the length of the element 1 on the outer surface thereof with both the width and depth of about 10-28mum. Then, the element 1 is dipped into a suspension which contains zirconia particles 3 of about 1-2mum being mixed with the second zirconia particles 3 with an average particle size of about 10-20mum, a binder, a solvent, a plasticizer and the like and then, the particles 3 are made to adhere onto the element 1 by baking. Thereafter, internal and external platinum electrodes 4 and 5 with a specified shape are formed on the inner and outer surfaces of the element 1 and a protective layer 6 is formed on the electrode 4. As a result, the particles 3 are fitted into the grooves 2 and bonded firmly on the outer surface of the element 1 being dispersed evenly. Thus, the electrode 4 is bonded on the outer surface of the element 1 evenly and firmly either.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸素濃度センサ、更に詳
しくは電極を剥がれ難くした酸素濃度センサに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen concentration sensor, and more particularly to an oxygen concentration sensor in which electrodes are hard to peel off.

【0002】[0002]

【従来の技術】排ガスセンサとして用いられている酸素
濃度センサとしては、例えばジルコニア型酸素濃度セン
サやチタニア型酸素濃度センサが挙げられる。ジルコニ
ア型酸素濃度センサは、固体電解質であるジルコニアを
カップ状の素子とし、この素子の内側と外側との酸素濃
度差により発生する起電力を利用して排ガス中の酸素濃
度を検出するものである。又、チタニア型酸素濃度セン
サは、酸化物半導体であるチタニア素子の電気抵抗が酸
素濃度によって変化することを利用して排ガス中の酸素
濃度を検出するものである。
2. Description of the Related Art As an oxygen concentration sensor used as an exhaust gas sensor, for example, a zirconia type oxygen concentration sensor or a titania type oxygen concentration sensor can be cited. Zirconia type oxygen concentration sensor is a solid electrolyte zirconia is a cup-shaped element, the oxygen concentration in the exhaust gas is detected by using the electromotive force generated by the oxygen concentration difference between the inside and outside of this element .. Further, the titania-type oxygen concentration sensor detects the oxygen concentration in the exhaust gas by utilizing the fact that the electric resistance of the titania element which is an oxide semiconductor changes depending on the oxygen concentration.

【0003】ところで、前記の様な種々のタイプの酸素
濃度センサのいずれにおいても、センサ素子の表面には
酸素濃度に対応する検出信号を電気的に取り出すための
表裏で一対となる電極が設けられている。電極は通常貴
金属ペースト例えば白金ペーストを塗布後焼成する所謂
印刷法によって形成されることが多い。しかし、センサ
素子基材上に直接白金電極を形成すると、酸素濃度セン
サを長時間使用したとき白金電極とセンサ素子基材との
境界面の接着不良による電極の剥離や白金粒子の凝集に
より電極性能が低下するという問題が起こる。
By the way, in any of the various types of oxygen concentration sensors as described above, a pair of electrodes are provided on the surface of the sensor element for electrically extracting a detection signal corresponding to the oxygen concentration. ing. The electrodes are often formed by a so-called printing method in which a noble metal paste such as a platinum paste is applied and then baked. However, if a platinum electrode is directly formed on the sensor element base material, when the oxygen concentration sensor is used for a long time, the electrode performance may be deteriorated due to peeling of the electrode due to poor adhesion between the platinum electrode and the sensor element base material or aggregation of platinum particles. The problem of decreasing

【0004】前記問題を解決するため、従来、第一のセ
ラミック粒子(例えば、ジルコニア粒子やチタニア粒
子)からなるセンサ素子基材(例えばジルコニア素子又
はチタニア素子)の表裏で一対となる表面のうちの少な
くとも一方の表面に、該第一のセラミック粒子と同一材
料からなり且つ該第一のセラミック粒子よりも平均粒径
の大きな第二のセラミック粒子を付着させ、更にその上
に電極(例えば白金電極)を形成してなる酸素濃度セン
サが使用されている。この場合、第二のセラミック粒子
は平らなセンサ素子基材表面に塗布又は浸漬の手段によ
って付着される。
In order to solve the above-mentioned problems, conventionally, of a pair of front and back surfaces of a sensor element substrate (eg, zirconia element or titania element) made of first ceramic particles (eg, zirconia particles or titania particles). Second ceramic particles made of the same material as the first ceramic particles and having an average particle size larger than that of the first ceramic particles are attached to at least one surface, and an electrode (for example, a platinum electrode) is further deposited thereon. An oxygen concentration sensor formed by forming is used. In this case, the second ceramic particles are deposited on the flat sensor element substrate surface by means of coating or dipping.

【0005】前記方法を用いて、例えばジルコニア素子
表面に所定性状のジルコニア粒子を付着させるとジルコ
ニア素子表面が凹凸になり且つその表面積が増大するの
で、ジルコニア素子表面に形成される電極例えば白金電
極がジルコニア素子表面に強固に接着されるとともに白
金粒子の凝集が防止される。
When, for example, zirconia particles having a predetermined property are attached to the surface of the zirconia element by using the above method, the surface of the zirconia element becomes uneven and the surface area increases, so that an electrode formed on the surface of the zirconia element, for example, a platinum electrode is It firmly adheres to the surface of the zirconia element and prevents the platinum particles from aggregating.

【0006】[0006]

【発明が解決しようとする課題】ところが、前記のよう
にジルコニア素子表面に所定性状のジルコニア粒子を付
着させその上に白金電極を形成する場合においても、素
子表面にジルコニア粒子を均一に付着させることは困難
であり、その結果ジルコニア粒子の付着にむらが生じ、
ジルコニア粒子が付着されなかった部分については依然
として電極の剥離や白金粒子の凝集の問題が起こり易
い。又、ジルコニア粒子の粒径にばらつきがある場合に
も、付着に際して粒径の選択は行われないので種々の粒
径のジルコニア粒子がジルコニア素子表面に付着するこ
ととなり、この上に電極を形成する場合にむらが生じ易
い。
However, even when the zirconia particles having a predetermined property are adhered to the surface of the zirconia element and the platinum electrode is formed on the zirconia particle as described above, the zirconia particles should be evenly adhered to the element surface. Is difficult, resulting in uneven adhesion of zirconia particles,
In the part where the zirconia particles are not adhered, the problems of electrode peeling and platinum particle aggregation still tend to occur. Further, even if the particle size of the zirconia particles varies, the particle size is not selected at the time of adhesion, so that zirconia particles of various particle sizes adhere to the surface of the zirconia element, and the electrode is formed on this. In this case, unevenness is likely to occur.

【0007】本発明は前記従来技術の問題点を解決する
ためのものであり、その目的とするところは、従来の酸
素濃度センサに比べて電極が剥離し難く、耐久性及び性
能が向上した酸素濃度センサを提供することにある。
The present invention is to solve the above-mentioned problems of the prior art. The object of the present invention is to improve the durability and performance of the oxygen in which the electrode is less likely to be peeled off as compared with the conventional oxygen concentration sensor. It is to provide a concentration sensor.

【0008】[0008]

【課題を解決するための手段】即ち、本発明の酸素濃度
センサは、第一のセラミック粒子からなるセンサ素子基
材の表裏で一対となる表面のうちの少なくとも一方の表
面に、該第一のセラミック粒子よりも平均粒径の大きな
第二のセラミック粒子が付着され、更にその上に電極が
形成されてなる酸素濃度センサにおいて、前記センサ素
子基材の表面に前記第二のセラミック粒子の平均粒径と
同程度の幅を有する溝を多数形成し、該溝を形成した表
面に前記第二のセラミック粒子を付着せしめてなること
を特徴とする。
That is, the oxygen concentration sensor of the present invention comprises a sensor element substrate comprising a first ceramic particle, the first and second surfaces of which are provided on at least one of the front and back surfaces. In an oxygen concentration sensor in which second ceramic particles having an average particle size larger than that of the ceramic particles are attached, and electrodes are further formed on the second ceramic particles, the average particle size of the second ceramic particles on the surface of the sensor element substrate. A large number of grooves having a width substantially equal to the diameter are formed, and the second ceramic particles are adhered to the surface on which the grooves are formed.

【0009】第一のセラミック粒子の材料は、センサ素
子基材の材料として慣用される材料例えば所望によりイ
ットリアなどの慣用の添加成分を含むジルコニア、チタ
ニア等であってよい。第一のセラミック粒子の形状や平
均粒径などの性状は目的とするセンサ素子の性能などに
応じて適宜選択する。
The material of the first ceramic particles may be a material conventionally used as a material for a sensor element substrate, for example, zirconia, titania or the like optionally containing a conventional additive component such as yttria. Properties such as the shape and average particle size of the first ceramic particles are appropriately selected depending on the intended performance of the sensor element.

【0010】センサ素子基材の大きさや形状は特に限定
されない。センサ素子基材の形状としては例えば円柱
状、角柱状、円筒状、角筒状等の種々の形状又はこれら
を組み合わせた形状であってよい。又、センサ素子基材
の成形方法も慣用の方法例えば成形型を用いる方法、セ
ラミックグリーンシートを積層する方法、これらを組み
合わせた方法等を用いることができる。
The size and shape of the sensor element substrate are not particularly limited. The shape of the sensor element base material may be, for example, various shapes such as a cylindrical shape, a prismatic shape, a cylindrical shape, and a rectangular tube shape, or a combination thereof. Further, as the method of molding the sensor element base material, a conventional method such as a method using a molding die, a method of laminating ceramic green sheets, or a method of combining these can be used.

【0011】第二のセラミック粒子の材料は、第一のセ
ラミック粒子の材料と同様にこの分野で慣用のものを用
いることができる。第二のセラミック粒子の材料は第一
のセラミック粒子の材料と同一でも異なっていてもよ
い。材料が同一であると相互の接着性が向上するので都
合が良い。この場合、第二のセラミック粒子は第一のセ
ラミック粒子を素材として慣用の方法により形成しても
よい。第二のセラミック粒子の形状や平均粒径などの性
状は、第一のセラミック粒子よりも平均粒径の大きなも
のを適宜選択する。又、第二のセラミック粒子による被
覆厚さも適宜選択するが、通常数十μmないし数百μm
とするのが好ましい。なお、第二のセラミック粒子はセ
ンサ素子基材の表裏で一対となる表面のうち両方に付着
させてもよいし、又はいずれか一つ(通常は外表面)に
付着させてもよい。
As the material for the second ceramic particles, those conventionally used in this field can be used similarly to the material for the first ceramic particles. The material of the second ceramic particles may be the same as or different from the material of the first ceramic particles. It is convenient that the same material improves mutual adhesiveness. In this case, the second ceramic particles may be formed by a conventional method using the first ceramic particles as a raw material. The shape and average particle size of the second ceramic particles are appropriately selected such that the average particle size is larger than that of the first ceramic particles. The coating thickness of the second ceramic particles is appropriately selected, but is usually several tens μm to several hundreds μm.
Is preferred. The second ceramic particles may be attached to both of the front and back surfaces of the sensor element substrate, which are paired, or one of them (usually the outer surface).

【0012】電極は例えば白金、パラジウム、金、銀等
を含む貴金属ペーストを用いて例えば印刷法によって形
成してもよいし、又は、例えばメッキ法等の他の慣用の
方法によって形成してもよい。電極の数、大きさ、形状
等は適宜選択する。所望により、電極の上に更に溶射法
や浸漬法によってスピネルなどのセラミックを被覆して
保護層を形成してもよい。
The electrodes may be formed, for example, by a printing method using a noble metal paste containing platinum, palladium, gold, silver or the like, or may be formed by another conventional method such as a plating method. .. The number, size, shape, etc. of the electrodes are appropriately selected. If desired, a ceramic such as spinel may be coated on the electrode by a thermal spraying method or a dipping method to form a protective layer.

【0013】センサ素子表面に形成する溝は、第二のセ
ラミック粒子の平均粒径と同程度の幅例えば数十μm程
度の幅を有し且つ第二のセラミック粒子の一部分がその
中に入ることができるものであればよい。溝は平面形状
として、直線状、鋸歯状、曲線状、又はこれらを組み合
わせた形状等の種々の形状で形成してよい。又、複数の
溝を互いに平行状、交差状、放射状、同心円状、又はこ
れらを組み合わせた形状等の種々の形状で形成してもよ
い。更に、溝の断面形状も第二のセラミック粒子の一部
分を入れ得るものであれば例えば半円状、U字状、V字
状、矩形状等の種々の形状であってよいが、第二のセラ
ミック粒子は通常球形であるので、溝の断面形状は半円
状又はU字状であることが好ましい。
The groove formed on the surface of the sensor element has a width similar to the average particle diameter of the second ceramic particles, for example, a width of several tens of μm, and a part of the second ceramic particles enter therein. Anything can be used. The groove may be formed in various shapes such as a linear shape, a sawtooth shape, a curved shape, or a combination thereof as a planar shape. Further, the plurality of grooves may be formed in various shapes such as a parallel shape, a cross shape, a radial shape, a concentric shape, or a combination thereof. Further, the cross-sectional shape of the groove may be various shapes such as a semicircular shape, a U-shape, a V-shape, and a rectangular shape as long as it can accommodate a part of the second ceramic particles. Since the ceramic particles are usually spherical, the cross-sectional shape of the groove is preferably semicircular or U-shaped.

【0014】溝を形成する手段としては慣用の溝形成手
段を用いることができ、例えばセンサ素子基材の表面を
切削してもよいし、又はセンサ素子基材を成形する際に
成形型により同時に形成してもよい。更に、これらの方
法を組み合わせて用いてもよい。
As a means for forming the groove, a conventional groove forming means can be used. For example, the surface of the sensor element base material may be cut, or at the same time when the sensor element base material is formed, a molding die is used. It may be formed. Furthermore, these methods may be used in combination.

【0015】溝に第二のセラミック粒子の一部分を入れ
る方法は、慣用の方法例えば所望により適するバインダ
ーを含む第二のセラミック粒子の懸濁液をセンサ素子基
材に塗布又は噴霧するか、或いは前記懸濁液にセンサ素
子基材を浸漬することにより行うことができる。
The method of putting a portion of the second ceramic particles in the groove can be carried out by a conventional method, for example, by coating or spraying a suspension of the second ceramic particles containing a suitable binder with the sensor element substrate. It can be performed by immersing the sensor element substrate in the suspension.

【0016】[0016]

【作用】センサ素子基材の表面に第二のセラミック粒子
の平均粒径と同程度の幅を有する溝を多数形成し、溝を
形成した表面に第二のセラミック粒子を付着せしめてな
るため、溝に第二のセラミック粒子の一部分が入り、ア
ンカー効果によってセンサ素子基材と均一且つ強固に結
合し、その上に形成される電極の剥離や電極材料粒子の
凝集が防止される。
Since a large number of grooves having a width similar to the average particle diameter of the second ceramic particles are formed on the surface of the sensor element base material, and the second ceramic particles are adhered to the grooved surface, A part of the second ceramic particles enters the groove and is uniformly and firmly bonded to the sensor element base material by the anchor effect, and peeling of the electrode formed thereon and aggregation of the electrode material particles are prevented.

【0017】[0017]

【実施例】以下の実施例及び比較例により、本発明を更
に詳細に説明する。なお、以下の実施例及び比較例にお
いては説明の都合上、固体電解質であるジルコニア素子
を用いた酸素濃度センサの場合について説明するが、本
発明は他の素子を用いた酸素濃度センサの場合について
も適用し得ることは勿論である。
The present invention will be described in more detail with reference to the following examples and comparative examples. In the following Examples and Comparative Examples, for the sake of explanation, a case of an oxygen concentration sensor using a zirconia element that is a solid electrolyte will be described, but the present invention relates to the case of an oxygen concentration sensor using another element. Of course, it is also applicable.

【0018】実施例1 平均粒径1ないし2μmの第一のジルコニア粒子を用い
て、図1のような一端が閉鎖された筒状のセンサ素子1
を形成した。次いでセンサ素子1の外表面(外側電極を
設けるべき部分)に、幅及び深さがともに10ないし2
0μmの溝2をセンサ素子1の長さ方向と直交する方向
に切削により多数形成した。次いで、平均粒径10ない
し20μmの第二のジルコニア粒子3及びバインダーと
してポリビニルアルコール、溶媒としてトリクロロエタ
ン、エタノール及び可塑剤、解膠剤を混合した1ないし
2μmのジルコニア粒子を含んだ懸濁液にセンサ素子1
を浸漬した後取り出し、約120℃で2時間乾燥後約1
50℃で2時間焼成することにより、センサ素子1上に
第二のジルコニア粒子3を付着させた。
Example 1 A cylindrical sensor element 1 having one end closed as shown in FIG. 1 using first zirconia particles having an average particle size of 1 to 2 μm.
Formed. Then, on the outer surface of the sensor element 1 (the portion where the outer electrode is to be provided), the width and depth are both 10 to 2
A large number of 0 μm grooves 2 were formed by cutting in a direction orthogonal to the length direction of the sensor element 1. Then, a sensor was added to the suspension containing the second zirconia particles 3 having an average particle diameter of 10 to 20 μm, polyvinyl alcohol as a binder, trichloroethane as a solvent, ethanol and a plasticizer, and 1 to 2 μm zirconia particles mixed with a peptizer. Element 1
After soaking, take out and dry at about 120 ° C for 2 hours, then about 1
The second zirconia particles 3 were attached onto the sensor element 1 by firing at 50 ° C. for 2 hours.

【0019】次いで、センサ素子1の内表面及び外表面
に所定の大きさ、形状及び厚さの外側白金電極4及び内
側白金電極5を印刷法又はメッキ法によって形成した。
その後、外側白金電極4の上にスピネルなどのセラミッ
クを用いて溶射法又は浸漬法によって所定の厚さの保護
層6を形成した。
Next, an outer platinum electrode 4 and an inner platinum electrode 5 having a predetermined size, shape and thickness were formed on the inner surface and outer surface of the sensor element 1 by a printing method or a plating method.
After that, a protective layer 6 having a predetermined thickness was formed on the outer platinum electrode 4 by using a ceramic such as spinel by a thermal spraying method or a dipping method.

【0020】図2に、図1のA部分の拡大図を示す。図
2から明らかな如く、第二のジルコニア粒子3は溝2に
嵌入されているので、センサ素子1の外表面に均一に分
散され且つセンサ素子1の外表面に強固に結合してい
る。それ故、第二のジルコニア粒子3上に形成された外
側白金電極4もセンサ素子1の外表面に均一に形成され
且つ第二のジルコニア粒子3を介してセンサ素子1の外
表面に強固に結合している。又、溝2に一部が入り易い
第二のジルコニア粒子3(例えば溝2の幅と粒径がほぼ
等しい)が優先的に溝2に入ることが判る。
FIG. 2 shows an enlarged view of portion A in FIG. As is apparent from FIG. 2, since the second zirconia particles 3 are fitted in the grooves 2, they are uniformly dispersed on the outer surface of the sensor element 1 and firmly bonded to the outer surface of the sensor element 1. Therefore, the outer platinum electrode 4 formed on the second zirconia particles 3 is also uniformly formed on the outer surface of the sensor element 1 and firmly bonded to the outer surface of the sensor element 1 via the second zirconia particles 3. is doing. Further, it can be seen that the second zirconia particles 3 (for example, the width of the groove 2 and the particle size are almost equal) which are likely to enter the groove 2 preferentially enter the groove 2.

【0021】図3に示す如く、センサ素子1をセンサホ
ルダー7に組み込み、他の部品を装着して実施例1の酸
素濃度センサを得た。図3中、他に8は保護カバー、9
はフランジ、10及び11は外筒、12はばね、13,
14及び15はブッシュ、16は充填材、17はリード
線を示す。
As shown in FIG. 3, the sensor element 1 was assembled in the sensor holder 7 and other components were mounted to obtain the oxygen concentration sensor of Example 1. In FIG. 3, 8 is a protective cover and 9 is another.
Is a flange, 10 and 11 are outer cylinders, 12 is a spring, 13,
14 and 15 are bushes, 16 is a filler, and 17 is a lead wire.

【0022】実施例2 板状のセンサ素子1を使用したこと以外は実施例1と同
様にして、実施例2の酸素濃度センサを得た。
[0022] except for using Example 2 plate-shaped sensor element 1 in the same manner as in Example 1 to obtain an oxygen concentration sensor of Example 2.

【0023】実施例3 ジルコニア懸濁液にセンサ素子1を浸漬する代わりに所
定濃度のジルコニアペーストをセンサ素子1に塗布した
こと以外は実施例1と同様にして、実施例3の酸素濃度
センサを得た。
[0023] except that the coated zirconia paste having a predetermined concentration, instead of immersing the sensor element 1 in Example 3 zirconia suspension on the sensor element 1 in the same manner as in Example 1, the oxygen concentration sensor of Example 3 Obtained.

【0024】実施例4 板状のセンサ素子1を使用したこと以外は実施例3と同
様にして、実施例4の酸素濃度センサを得た。
[0024] except for using Example 4 plate-shaped sensor element 1 in the same manner as in Example 3, to obtain an oxygen concentration sensor of Example 4.

【0025】比較例 センサ素子1に溝2を形成しなかったこと以外は実施例
1と同様にして、比較例の酸素濃度センサを得た。図6
に比較例の酸素濃度センサのセンサ素子1の部分拡大図
を示す。図6から明らかな如く、溝2がないため第二の
ジルコニア粒子3の付着状態が不均一でセンサ素子1の
外表面に第二のジルコニア粒子3が付着している部分と
付着していない部分とがある。又、第二のジルコニア粒
子3の粒径にばらつきがある場合、種々の粒径の第二の
ジルコニア粒子3がセンサ素子1の外表面に不均一に付
着しているのが判る。
[0025] Except for not forming the groove 2 in Comparative Example sensor element 1 in the same manner as in Example 1 to obtain an oxygen concentration sensor of the comparative example. Figure 6
A partially enlarged view of the sensor element 1 of the oxygen concentration sensor of the comparative example is shown in FIG. As is apparent from FIG. 6, since the second zirconia particles 3 do not have the grooves 2 and the adhesion state of the second zirconia particles 3 is non-uniform, the portions where the second zirconia particles 3 are attached to the outer surface of the sensor element 1 There is. Further, when the particle diameters of the second zirconia particles 3 vary, it can be seen that the second zirconia particles 3 having various particle diameters are nonuniformly attached to the outer surface of the sensor element 1.

【0026】性能比較試験 実施例1の酸素濃度センサと比較例の酸素濃度センサを
自動車の排気系に装着し、走行試験を行って、走行距離
とセンサ出力との関係を調べた。図4にその結果を示
す。図4から明らかな如く、実施例1の酸素濃度センサ
は走行距離が長くなってもセンサ出力は低下しなかった
が、比較例の酸素濃度センサは走行距離の増大によりセ
ンサ出力が低下し始めた。
Performance Comparison Test The oxygen concentration sensor of Example 1 and the oxygen concentration sensor of Comparative Example were mounted on an exhaust system of an automobile and a running test was conducted to examine the relationship between the running distance and the sensor output. The results are shown in FIG. As is apparent from FIG. 4, the sensor output of the oxygen concentration sensor of Example 1 did not decrease even when the traveling distance increased, but the sensor output of the oxygen concentration sensor of the comparative example began to decrease due to the increase of the traveling distance. ..

【0027】又、実施例1の白丸及び比較例の白星にお
ける実施例1の酸素濃度センサと比較例の酸素濃度セン
サの出力の時間変化を各々図5(a)及び図5(b)に
示す。図5(a)のように、実施例1の酸素濃度センサ
は出力が時間とともに正弦波状に規則的に変化してい
る。一方、図5(b)のように、比較例の酸素濃度セン
サは出力が時間とともに鋸歯状波状に不規則に変化して
おり、酸素濃度センサの性能が低下していることが判
る。
5 (a) and 5 (b) show the changes over time in the outputs of the oxygen concentration sensor of Example 1 and the oxygen concentration sensor of Comparative Example in the white circle of Example 1 and the white star of Comparative Example, respectively. .. As shown in FIG. 5A, in the oxygen concentration sensor of the first embodiment, the output regularly changes in a sinusoidal shape with time. On the other hand, as shown in FIG. 5B, it can be seen that the output of the oxygen concentration sensor of the comparative example changes irregularly in a sawtooth wave shape with time, and the performance of the oxygen concentration sensor deteriorates.

【0028】[0028]

【発明の効果】本発明の酸素濃度センサは前述の如き構
成を有し、センサ素子基材の表面に第二のセラミック粒
子の平均粒径と同程度の幅を有する溝を多数形成し、溝
を形成した表面に第二のセラミック粒子を付着せしめて
なるため、溝に第二のセラミック粒子の一部分が入り、
アンカー効果によってセンサ素子基材と均一且つ強固に
結合し、その上に形成される電極の剥離や電極材料粒子
の凝集が防止され、酸素濃度センサの耐久性及び性能が
向上する。
The oxygen concentration sensor of the present invention has the structure as described above, and a large number of grooves having a width similar to the average particle size of the second ceramic particles are formed on the surface of the sensor element substrate. Since the second ceramic particles are made to adhere to the surface where is formed, a part of the second ceramic particles enters the groove,
The anchor effect uniformly and firmly binds to the sensor element substrate, prevents peeling of the electrode formed thereon and aggregation of electrode material particles, and improves the durability and performance of the oxygen concentration sensor.

【0029】又、センサ素子基材の表面に第二のセラミ
ック粒子が均一に付着しているのでセンサ素子基材を焼
成する際や酸素濃度センサの使用時に熱膨張の影響が均
一化され、素子強度が向上することにより素子割れが防
止される。
Further, since the second ceramic particles are evenly adhered to the surface of the sensor element base material, the influence of thermal expansion is made uniform when firing the sensor element base material or when using the oxygen concentration sensor, The improved strength prevents cracking of the device.

【0030】更に、個々のセンサ素子間の性能のばらつ
きが小さくなるので、生産性が向上し生産コストも低下
する。
Furthermore, since variations in performance among individual sensor elements are reduced, productivity is improved and production cost is also reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の酸素濃度センサのセンサ素
子の断面図である。
FIG. 1 is a sectional view of a sensor element of an oxygen concentration sensor according to a first embodiment of the present invention.

【図2】図1のセンサ素子のA部分の拡大図である。FIG. 2 is an enlarged view of a portion A of the sensor element of FIG.

【図3】本発明の実施例1の酸素濃度センサの断面図で
ある。
FIG. 3 is a cross-sectional view of the oxygen concentration sensor according to the first embodiment of the present invention.

【図4】本発明及び比較例の酸素濃度センサを自動車に
装着した際の、走行距離とセンサ出力との関係を示す図
である。
FIG. 4 is a diagram showing a relationship between a mileage and a sensor output when the oxygen concentration sensors of the present invention and a comparative example are mounted on an automobile.

【図5】本発明及び比較例の酸素濃度センサを自動車に
装着した際の、長距離走行後のセンサ出力の時間変化を
示す図である。
FIG. 5 is a diagram showing a change over time in sensor output after traveling a long distance when the oxygen concentration sensors of the present invention and the comparative example are mounted on an automobile.

【図6】比較例の酸素濃度センサのセンサ素子の部分拡
大断面図である。
FIG. 6 is a partially enlarged sectional view of a sensor element of an oxygen concentration sensor of a comparative example.

【符号の説明】[Explanation of symbols]

1 センサ素子 2 溝 3 第二のジルコニア粒子 4 外側白金電極 5 内側白金電極 6 保護層 7 センサホルダー 8 保護カバー 9 フランジ 10,11 外筒 12 ばね 13,14,15 ブッシュ 16 充填材 17 リード線 1 Sensor Element 2 Groove 3 Second Zirconia Particle 4 Outer Platinum Electrode 5 Inner Platinum Electrode 6 Protective Layer 7 Sensor Holder 8 Protective Cover 9 Flange 10,11 Outer Cylinder 12 Spring 13,14,15 Bush 16 Filler 17 Lead Wire

Claims (1)

【整理番号】 C1176 【特許請求の範囲】[Reference number] C1176 [Claims] 【請求項1】 第一のセラミック粒子からなるセンサ素
子基材の表裏で一対となる表面のうちの少なくとも一方
の表面に、該第一のセラミック粒子よりも平均粒径の大
きな第二のセラミック粒子が付着され、更にその上に電
極が形成されてなる酸素濃度センサにおいて、 前記センサ素子基材の表面に前記第二のセラミック粒子
の平均粒径と同程度の幅を有する溝を多数形成し、該溝
を形成した表面に前記第二のセラミック粒子を付着せし
めてなることを特徴とする酸素濃度センサ。
1. A second ceramic particle having an average particle size larger than that of the first ceramic particle on at least one surface of a pair of front and back surfaces of a sensor element substrate made of the first ceramic particle. Is attached, further in the oxygen concentration sensor having an electrode formed thereon, in the surface of the sensor element base material, a large number of grooves having a width similar to the average particle diameter of the second ceramic particles are formed, An oxygen concentration sensor characterized in that the second ceramic particles are adhered to the surface on which the groove is formed.
JP3360555A 1991-12-27 1991-12-27 Oxygen concentration sensor Pending JPH05180797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3360555A JPH05180797A (en) 1991-12-27 1991-12-27 Oxygen concentration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3360555A JPH05180797A (en) 1991-12-27 1991-12-27 Oxygen concentration sensor

Publications (1)

Publication Number Publication Date
JPH05180797A true JPH05180797A (en) 1993-07-23

Family

ID=18469909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3360555A Pending JPH05180797A (en) 1991-12-27 1991-12-27 Oxygen concentration sensor

Country Status (1)

Country Link
JP (1) JPH05180797A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544586B1 (en) 1998-02-16 2003-04-08 Ngk Spark Plug Co. Ltd. Method for manufacturing gas sensor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544586B1 (en) 1998-02-16 2003-04-08 Ngk Spark Plug Co. Ltd. Method for manufacturing gas sensor element

Similar Documents

Publication Publication Date Title
KR100230601B1 (en) Oxygen sensor element and method of producing the same
JP5173042B2 (en) Manufacturing method of gas sensor
JPH0475460B2 (en)
JP3956435B2 (en) Oxygen sensor element
CN107407652B (en) Method for producing a gas sensor and corresponding gas sensor
JP2574452B2 (en) Oxygen sensor, method of manufacturing the same, and method of preventing poisoning
US5707503A (en) Oxygen sensor element
JPH0122899B2 (en)
JPS6126022B2 (en)
JPH05180797A (en) Oxygen concentration sensor
US8194388B2 (en) Electric component comprising external electrodes and method for the production of an electric component comprising external electrodes
US5476003A (en) Measuring sensor for determining gas compositions
US5144279A (en) Resistor element with thin porous metallic layer covered with glass coating
US6036829A (en) Oxygen sensor
US20040217000A1 (en) Gas sensor element and manufacturing the same
WO2020262106A1 (en) Gas sensor and method for manufacturing gas sensor
JPS61254848A (en) Formation of electrode
JP3633584B2 (en) Oxygen concentration detector and manufacturing method thereof
JPH0147739B2 (en)
JP2007322184A (en) Ammonia gas sensor
JPH04123402A (en) Thin film resistance body
JPH0795404B2 (en) Solid electrolyte membrane
JPH01132947A (en) Ceramic substrate with metal oxide semiconductor film and manufacture thereof
JPH09170999A (en) Manufacture of oxygen sensor
JP2001135871A (en) Method for manufacturing laminated piezoelectric body