JPH0795404B2 - Solid electrolyte membrane - Google Patents

Solid electrolyte membrane

Info

Publication number
JPH0795404B2
JPH0795404B2 JP2017344A JP1734490A JPH0795404B2 JP H0795404 B2 JPH0795404 B2 JP H0795404B2 JP 2017344 A JP2017344 A JP 2017344A JP 1734490 A JP1734490 A JP 1734490A JP H0795404 B2 JPH0795404 B2 JP H0795404B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrode
electrolyte membrane
membrane
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017344A
Other languages
Japanese (ja)
Other versions
JPH03222206A (en
Inventor
弘一 立花
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2017344A priority Critical patent/JPH0795404B2/en
Publication of JPH03222206A publication Critical patent/JPH03222206A/en
Publication of JPH0795404B2 publication Critical patent/JPH0795404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、固体電解質型燃料電池、固体電解質型酸素セ
ンサ、酸素ポンプなどの電気化学デバイスに用いる固体
電解質膜に関する。
TECHNICAL FIELD The present invention relates to a solid electrolyte membrane used in electrochemical devices such as a solid oxide fuel cell, a solid oxide oxygen sensor, and an oxygen pump.

従来の技術 従来、この種の電気化学デバイスにおいては、固体電解
質としてYSZ(イットリア安定化ジルコニア)が多用さ
れている。そして例えば高温固体電解質型燃料電池にお
いて用いる固体電解質膜としては、固体電解質粉末スラ
リーを基体に塗布・焼成して作製した膜、テープキャス
ティングにより作製した膜などが一般に用いられてい
る。
2. Description of the Related Art Conventionally, in this type of electrochemical device, YSZ (yttria-stabilized zirconia) is frequently used as a solid electrolyte. Then, for example, as a solid electrolyte membrane used in a high temperature solid oxide fuel cell, a membrane prepared by coating and firing a solid electrolyte powder slurry on a substrate, a membrane prepared by tape casting, etc. are generally used.

固体電解質を用いる電気化学デバイスにおいては、固体
電解質の表面に直接電極を形成するのが一般的である。
電極の形成には蒸着やスパッタなどの薄膜形成法を始め
として各種の方法があるが、生産性の面から、スクリー
ン印刷やスラリー塗布・焼成あるいは電極シートと固体
電解質シートの貼合わせなどの方法がしばしば用いられ
る。
In an electrochemical device using a solid electrolyte, it is common to form an electrode directly on the surface of the solid electrolyte.
There are various methods for forming electrodes, including thin film forming methods such as vapor deposition and sputtering, but from the viewpoint of productivity, methods such as screen printing, slurry coating / firing, or laminating electrode sheets and solid electrolyte sheets are available. Often used.

発明が解決しようとする課題 ところが、従来の固体電解質膜は主として固体電解質微
粉末を用いて緻密に作製され、特に塗布法やテープキャ
スティング法によって作製される固体電解質膜の表面は
一般に平滑性に富んでいる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, conventional solid electrolyte membranes are mainly prepared by using fine solid electrolyte fine particles, and in particular, the surface of solid electrolyte membranes prepared by coating method or tape casting method is generally smooth. I'm out.

したがって、このような平滑な固体電解質膜上に形成さ
れる電極と固体電解質との接触界面は概ね二次元的な接
触状態を呈しており、強固な接合が得難い状態にある。
また、電極が酸化物からなる場合には、固体電解質との
反応を避けるためにできるだけ低温で焼結させることが
必要であるが、その結果良好な接合が得られないことが
しばしば起こる。そのため、デバイスの長期使用におい
て接合状態が変化して特性の劣化が生じたり、あるいは
熱衝撃によって電極の剥離が生じたりする問題がある。
Therefore, the contact interface between the electrode formed on such a smooth solid electrolyte membrane and the solid electrolyte exhibits a substantially two-dimensional contact state, and it is difficult to obtain a strong bond.
Further, when the electrode is made of an oxide, it is necessary to sinter at a temperature as low as possible in order to avoid reaction with the solid electrolyte, but as a result, good bonding is often not obtained. Therefore, there is a problem in that the bonding state changes and the characteristics deteriorate when the device is used for a long period of time, or the electrodes are separated due to thermal shock.

本発明は上記問題点を解消することを目的とする。The present invention aims to solve the above problems.

課題を解決するための手段 本発明は、固体電解質からなる繊維を固体電解質膜の表
面に付着させる、あるいは固体電解質からなる繊維の一
部が固体電解質膜の表面上に露出するように埋め込むこ
とを特徴とする。
Means for Solving the Problems The present invention comprises attaching a fiber made of a solid electrolyte to the surface of a solid electrolyte membrane, or embedding a part of the fiber made of a solid electrolyte so as to be exposed on the surface of the solid electrolyte membrane. Characterize.

作用 固体電解質膜に電極を形成する場合に、固体電解質膜の
表面に存在する固体電解質からなる繊維(もしくはその
一部)が電極内にくい込む状態となるため、熱衝撃等に
も強く、固体電解質と電極の接合界面が安定な状態に保
たれる結果、信頼度の高い電気化学デバイスを得ること
ができる。
Action When forming an electrode on the solid electrolyte membrane, the fibers (or part of it) made of the solid electrolyte present on the surface of the solid electrolyte membrane are difficult to enter into the electrode, so they are resistant to thermal shock and the like As a result of keeping the bonding interface between the electrode and the electrode stable, a highly reliable electrochemical device can be obtained.

実施例1 第1図は、本発明の実施例になる固体電解質膜の断面構
造を示す模式図である。1は粒径約1μmのYSZ(8mol
%Y2O3)粉末を用いてテープキャスティング法により作
製した固体電解質膜、2は固体電解質膜表面に埋め込ま
れた直径約3μm、長さ約10〜15μmのYSZからなる固
体電解質繊維である。固体電解質繊維を埋め込んだ膜
は、予め作製した未焼成の固体電解質膜上に固体電解質
繊維を分散させた溶液を均一に塗布し、ほぼ乾燥した状
態でプレスした後1500℃で焼成することによって作製し
た。
Example 1 FIG. 1 is a schematic diagram showing a cross-sectional structure of a solid electrolyte membrane according to an example of the present invention. 1 is YSZ with a particle size of about 1 μm (8 mol
% Y 2 O 3 ) powder is used for the solid electrolyte membrane produced by the tape casting method, and 2 is a solid electrolyte fiber made of YSZ embedded in the surface of the solid electrolyte membrane and having a diameter of about 3 μm and a length of about 10 to 15 μm. The membrane in which the solid electrolyte fibers are embedded is prepared by uniformly applying a solution in which the solid electrolyte fibers are dispersed on a pre-produced unfired solid electrolyte membrane, pressing in a substantially dry state, and then firing at 1500 ° C. did.

第2図は、このようにして作製した固体電解質膜上にさ
らに(LaSr)−MnO3系粉末スラリーを塗布し乾燥させた
後、1300℃で焼成した後の積層膜の断面構造を模式的に
示している。固体電解質繊維が電極3内にくい込んでい
る状態を示したものである。
FIG. 2 schematically shows a cross-sectional structure of the laminated film after the (LaSr) -MnO 3 system powder slurry was further applied onto the solid electrolyte membrane thus prepared, dried, and baked at 1300 ° C. Shows. It shows a state in which the solid electrolyte fibers are hard to be embedded in the electrode 3.

このようにして作製した積層膜を以下のようにして評価
した。なお、比較のために、固体電解質繊維を埋め込ん
でいない膜に前記と同じ電極を形成した積層膜を前記同
様の方法で作製した。積層膜を空気中、RT〜1000℃(30
0℃/hの昇降温)のヒートサイクル試験(連続50回)に
供し、試験後積層膜の断面を観察することにより、固体
電解質と電極の剥離の有無などを調べた。その結果、固
体電解質繊維を埋め込んだ試料の場合、固体電解質と電
極の接合界面には何等の異常も認められず、初期の接合
状態が良好に保たれていることがわかった。
The laminated film thus produced was evaluated as follows. For comparison, a laminated film in which the same electrode as that described above was formed on a film in which solid electrolyte fibers were not embedded was prepared by the same method as described above. Laminate the film in air at RT to 1000 ° C (30
The film was subjected to a heat cycle test (continuous heating and cooling at 0 ° C./h) (continuously 50 times), and the cross section of the laminated film was observed after the test to examine the presence or absence of peeling between the solid electrolyte and the electrode. As a result, it was found that in the case of the sample in which the solid electrolyte fiber was embedded, no abnormality was observed at the bonding interface between the solid electrolyte and the electrode, and the initial bonding state was kept good.

しかし、固体電解質繊維を用いていない試料において
は、電極の一部に剥離が生じたり電極と固体電解質膜双
方にマイクロクラックの発生が認められた。
However, in the sample in which the solid electrolyte fiber was not used, peeling occurred in a part of the electrode and generation of microcracks in both the electrode and the solid electrolyte membrane.

実施例2 プレス成形により作製したYSZからなる固体電解質基板
の表面に実施例1と同様にして固体電解質繊維を埋め込
み、1500℃で焼成して直径14mm厚さ2mmのディスクを作
製した。さらに固体電解質繊維が埋め込まれた面に実施
例1と同様の方法で(LaSr)MnO3系酸化物電極(厚さ約
100μm)を形成し、もう一方の面に白金電極、ディス
ク周囲に白金参照極を取り付けた試料を作製した。比較
のために固体電解質繊維を用いていない試料を同様の方
法で作製した。そして作製したそれぞれ5個の試料を10
00℃で1000時間放置し、交流インピーダンス測定によ
り、放置前後の酸化物電極の1000℃における界面導電率
を求めて比較した。その結果を表に示した。
Example 2 Solid electrolyte fibers were embedded in the surface of a solid electrolyte substrate made of press-formed YSZ in the same manner as in Example 1 and fired at 1500 ° C. to produce a disk having a diameter of 14 mm and a thickness of 2 mm. Further, a (LaSr) MnO 3 -based oxide electrode (having a thickness of about
100 μm) was formed, a platinum electrode was attached to the other surface, and a platinum reference electrode was attached around the disk to prepare a sample. For comparison, a sample not using the solid electrolyte fiber was prepared by the same method. Then, each of the 5 samples prepared was 10
The sample was allowed to stand at 00 ° C. for 1000 hours, and by measuring the AC impedance, the interfacial conductivity at 1000 ° C. of the oxide electrode before and after standing was determined and compared. The results are shown in the table.

この結果、固体電解質繊維を埋め込んだ場合には界面導
電率の変化はほとんどなく接合状態が良好に保たれる
が、固体電解質繊維を用いていない場合には接合状態に
変化が生じていることが明らかに認められた。また、初
期の界面導電率から判断して、固体電解質繊維により電
極反応面積が増し、反応速度が向上する効果も現われて
いると判断される。
As a result, when the solid electrolyte fiber is embedded, there is almost no change in the interfacial conductivity and the bonded state is kept good, but when the solid electrolyte fiber is not used, the bonded state may change. Clearly recognized. Also, judging from the initial interfacial conductivity, it is considered that the solid electrolyte fibers have an effect of increasing the electrode reaction area and improving the reaction rate.

このように、固体電解質繊維を用いることにより、電極
と固体電解質の接合状態が著しく良化し、電極反応の改
善と安定化に寄与することが明らかである。
As described above, it is apparent that the use of the solid electrolyte fiber significantly improves the bonding state between the electrode and the solid electrolyte and contributes to the improvement and stabilization of the electrode reaction.

以上の実施例では、固体電解質としてYSZ(イットリア
安定化ジルコニア)を、電極として(LaSr)MnO3を用い
たが、これに限定するものではない。また実施例では、
固体電解質繊維を固体電解質膜に埋め込んだ場合につい
て述べたが、例えば固体電解質繊維を分散させたスラリ
ーを塗布して高温で焼付け、表面に付着させても同様の
効果を得ることができる。さらに、固体電解質膜の片面
のみでなく、両面に固体電解質繊維を付着もしくは埋め
込むこともできる。固体電解質繊維のサイズも適宜設計
できる。付着あるいは埋め込み方法も実施例に限定する
ものではない。
In the above examples, YSZ (yttria-stabilized zirconia) was used as the solid electrolyte and (LaSr) MnO 3 was used as the electrode, but the present invention is not limited to this. Also in the example,
Although the case where the solid electrolyte fiber is embedded in the solid electrolyte membrane has been described, the same effect can be obtained by applying a slurry in which the solid electrolyte fiber is dispersed, baking at high temperature, and adhering it to the surface. Furthermore, not only one surface of the solid electrolyte membrane but also solid electrolyte fibers can be attached or embedded on both surfaces. The size of the solid electrolyte fiber can be appropriately designed. The method of attachment or embedding is not limited to the example.

発明の効果 固体電解質からなる繊維を固体電解質膜の表面に付着あ
るいは埋め込むことにより、電極と固体電解質の接合状
態を向上させることができ、信頼性の高い電気化学デバ
イスを得ることができる。
EFFECTS OF THE INVENTION By adhering or embedding a fiber made of a solid electrolyte on the surface of a solid electrolyte membrane, it is possible to improve the bonding state between an electrode and the solid electrolyte, and to obtain a highly reliable electrochemical device.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の固体電解質膜の断面図、第
2図は電極を形成した積層膜の断面図である。 1……固体電解質膜、2……固体電解質繊維、3……電
極。
FIG. 1 is a cross-sectional view of a solid electrolyte membrane of one embodiment of the present invention, and FIG. 2 is a cross-sectional view of a laminated membrane having electrodes formed thereon. 1 ... Solid electrolyte membrane, 2 ... Solid electrolyte fiber, 3 ... Electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】固体電解質からなる繊維を固体電解質膜表
面に付着させたことを特徴とする固体電解質膜。
1. A solid electrolyte membrane comprising fibers made of a solid electrolyte adhered to the surface of the solid electrolyte membrane.
【請求項2】固体電解質からなる繊維の一部を固体電解
質膜表面上に露出するように埋め込んだことを特徴とす
る請求項1記載の固体電解質膜。
2. The solid electrolyte membrane according to claim 1, wherein a part of the fiber made of the solid electrolyte is embedded so as to be exposed on the surface of the solid electrolyte membrane.
JP2017344A 1990-01-26 1990-01-26 Solid electrolyte membrane Expired - Fee Related JPH0795404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017344A JPH0795404B2 (en) 1990-01-26 1990-01-26 Solid electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017344A JPH0795404B2 (en) 1990-01-26 1990-01-26 Solid electrolyte membrane

Publications (2)

Publication Number Publication Date
JPH03222206A JPH03222206A (en) 1991-10-01
JPH0795404B2 true JPH0795404B2 (en) 1995-10-11

Family

ID=11941438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017344A Expired - Fee Related JPH0795404B2 (en) 1990-01-26 1990-01-26 Solid electrolyte membrane

Country Status (1)

Country Link
JP (1) JPH0795404B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3267034B2 (en) * 1993-03-10 2002-03-18 株式会社村田製作所 Method for manufacturing solid oxide fuel cell
JP3070328B2 (en) * 1993-03-22 2000-07-31 松下電器産業株式会社 Fibrous solid electrolyte molded body
DE4314323C2 (en) * 1993-04-30 1998-01-22 Siemens Ag High-temperature fuel cell with an improved solid electrolyte / electrode interface and method for producing a multilayer structure with an improved solid electrolyte / electrode interface
DK200001482A (en) 2000-10-05 2002-04-06 Forskningsct Risoe Electrochemical cell and process for making same.

Also Published As

Publication number Publication date
JPH03222206A (en) 1991-10-01

Similar Documents

Publication Publication Date Title
JP5255173B2 (en) Roughened electrolyte interface layer for solid oxide fuel cells
JP3324195B2 (en) Manufacturing method of oxygen sensor
US4477487A (en) Method of producing oxygen concentration cells
JPS6213622B2 (en)
US5110442A (en) Reinforced electrolyte function elements
JPS6126022B2 (en)
JPH0795404B2 (en) Solid electrolyte membrane
JP4125849B2 (en) Oxygen sensor element
JP3668050B2 (en) Heater integrated oxygen sensor and manufacturing method thereof
JP2603373B2 (en) Electrochemical element
US4530751A (en) Electrochemical cell and method of producing the same
JP4153298B2 (en) Electrochemical cell and method for producing the same
JP3860768B2 (en) Oxygen sensor element
JP2001118590A (en) High conductivity solid electrolyte film and method for manufacturing the same
JP2612584B2 (en) Manufacturing method of oxygen detection element
JPH0676842A (en) Flat plate solid electrolyte fuel cell
JPH09129250A (en) Cell for solid electrolyte fuel cell
JP3793563B2 (en) Manufacturing method of oxygen sensor
JP4113479B2 (en) Oxygen sensor element
JP2867851B2 (en) Oxygen concentration sensor and method for forming trap layer thereof
JPH09170999A (en) Manufacture of oxygen sensor
JPH065220B2 (en) Oxygen concentration detector
JP4802441B2 (en) A method for producing a thin film for proton conductive solid electrolyte.
JPH0371056A (en) Production of electrochemical element
JP3036443B2 (en) Manufacturing method of hydrocarbon detection sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees