JPH0518053B2 - - Google Patents

Info

Publication number
JPH0518053B2
JPH0518053B2 JP18615984A JP18615984A JPH0518053B2 JP H0518053 B2 JPH0518053 B2 JP H0518053B2 JP 18615984 A JP18615984 A JP 18615984A JP 18615984 A JP18615984 A JP 18615984A JP H0518053 B2 JPH0518053 B2 JP H0518053B2
Authority
JP
Japan
Prior art keywords
light
measured
sample
incident
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18615984A
Other languages
Japanese (ja)
Other versions
JPS6162841A (en
Inventor
Sadao Minagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59186159A priority Critical patent/JPS6162841A/en
Publication of JPS6162841A publication Critical patent/JPS6162841A/en
Publication of JPH0518053B2 publication Critical patent/JPH0518053B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、分光反射率測定装置、特に、分光光
度計を単色光光源とし、物質表面の分光反射率特
性及び物質表面にコーテングされた薄膜の厚さの
測定に用いられる分光反射率測定装置に関するも
のである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention uses a spectral reflectance measuring device, particularly a spectrophotometer, as a monochromatic light source to measure the spectral reflectance characteristics of a material surface and the thin film coated on the material surface. The present invention relates to a spectral reflectance measuring device used for measuring thickness.

〔発明の背景〕[Background of the invention]

従来、分光光度計を単色光光源として、得られ
た単色光を被測定試料に入射させ、被測定試料で
反射した単色光を検知して物質表面の分光反射率
特性を測定する装置が用いられているが、単色光
の被測定試料に対する入射角は例えば、30゜,45゜
のように大きいので、偏光成分を含む分光器から
の単色光を入射光として反射光を測定した結果は
正確なものではなく、これをカバーするために、
グランテーラ偏光プリズムを同時使用したりし
て、(1)式の計算式から被測定試料の実際の表面反
射率Rを求めている。
Conventionally, devices have been used that use a spectrophotometer as a monochromatic light source, make the monochromatic light incident on the sample to be measured, and detect the monochromatic light reflected by the sample to measure the spectral reflectance characteristics of the surface of the material. However, since the angle of incidence of monochromatic light on the sample to be measured is large, for example 30° or 45°, the results of measuring the reflected light using monochromatic light from a spectrometer that includes a polarized component as incident light may not be accurate. To cover this, rather than
The actual surface reflectance R of the sample to be measured is determined from the calculation formula (1) by simultaneously using a Grand-Taylor polarizing prism.

R=R90゜+R0゜/2 ……(1) ここで、R90゜:偏光子角90゜で測定した表面反
射率 R0゜:偏光子角0゜で測定した表面反射率 しかし、この従来の方法は測定操作が複雑で、
かつその価格も高く、しかも手計算によつている
ため、この測定結果は信頼性が若干乏しい面があ
つた。このような欠点をおぎなうために、入射角
を狭め12.5゜とした反射測定装置も用いられてい
るが、入射角が狭いため、限られた空間に必要な
光学部品を配置して取り付ける上で、制限が厳し
く充分その機能を発揮することができない。
R = R 90 ° + R 0 ° / 2 ... (1) where, R 90 °: Surface reflectance measured at a polarizer angle of 90° R 0 °: Surface reflectance measured at a polarizer angle of 0° However, This traditional method requires complicated measurement operations;
Moreover, since it was expensive and depended on manual calculations, the reliability of this measurement result was somewhat low. In order to overcome these drawbacks, reflection measuring devices with a narrower angle of incidence of 12.5° are also used, but because of the narrow angle of incidence, it is difficult to arrange and install the necessary optical components in a limited space. It has severe restrictions and cannot fully demonstrate its functions.

なお、特開昭48−69587、特開昭49−130277、
特開昭51−39179、特開昭51−61875、特開昭51−
86481、特開昭51−98584、特開昭53−20985の各
号公報には、関連する技術が記載されているが、
何れも絶対反射率測定に関するである。
In addition, JP-A-48-69587, JP-A-49-130277,
JP-A-51-39179, JP-A-51-61875, JP-A-51-
86481, JP-A No. 51-98584, and JP-A No. 53-20985, related technologies are described.
Both relate to absolute reflectance measurements.

〔発明の目的〕[Purpose of the invention]

本発明は、物質表面の分光反射率を偏光特性に
影響されずに正確に測定可能な分光反射率測定装
置の提供を可能とするものである。
The present invention makes it possible to provide a spectral reflectance measurement device that can accurately measure the spectral reflectance of a material surface without being affected by polarization characteristics.

〔発明の概要〕[Summary of the invention]

本発明は、被測定試料に単色光を入射させる手
段と、前記被測定試料で反射した前記単色光を検
知する手段とを有する分光反射率測定装置におい
て、前記被測定試料に単色光を入射させる手段
が、該単色光と45゜をなす角度に配置され、光透
過部と光反射部とを有する光分岐鏡を通過した単
色光を前記被測定試料に入射角0で入射させる手
段であり、前記被測定試料で反射した前記単色光
を検知する手段が、前記被測定試料で反射した光
が前記光分岐鏡反射部の前記光反射部で反射した
光を検知する手段であることを特徴とするもので
ある。
The present invention provides a spectral reflectance measuring device having means for making monochromatic light incident on a sample to be measured, and means for detecting the monochromatic light reflected by the sample to be measured, in which monochromatic light is made incident on the sample to be measured. means is arranged at an angle of 45° with the monochromatic light and causes the monochromatic light that has passed through a light branching mirror having a light transmitting part and a light reflecting part to be incident on the sample to be measured at an incident angle of 0; The means for detecting the monochromatic light reflected by the sample to be measured is a means for detecting the light reflected by the sample to be measured and reflected by the light reflecting section of the light branching mirror reflecting section. It is something to do.

本発明は入射角と偏光との関係を検討した結果
得られたものである。
The present invention was obtained as a result of studying the relationship between incident angle and polarization.

第2図は被測定試料として石英板ガラスを用い
た場合の入射角に対する反射率の関係を示したも
ので、横軸には入射角(φ1)、縦軸には反射率
(%R)がとつてあり、A,Bは屈折率nが1.46、
波長λが546.1nmの場合の0゜偏光、90゜偏光の場
合、すなわち、偏光子角0゜,90゜で測定した結果
を示している。この図は、入射角が大きくなれば
なる程、0゜偏光と90゜偏光の場合の反射率は大き
く異なり、逆に入射角が0゜に近づく程偏光の影響
がなくなることを示している。
Figure 2 shows the relationship between the reflectance and the incident angle when a quartz plate glass is used as the sample to be measured.The horizontal axis shows the incident angle ( φ1 ), and the vertical axis shows the reflectance (%R). The refractive index n of A and B is 1.46,
The results are shown for 0° polarized light and 90° polarized light when the wavelength λ is 546.1 nm, that is, the results measured at polarizer angles of 0° and 90°. This figure shows that as the angle of incidence increases, the reflectance of 0° and 90° polarized light differs greatly, and conversely, as the angle of incidence approaches 0°, the influence of polarization disappears.

また、被測定物質上にコーテイングされた薄膜
を測定する場合に、膜厚dは ここで、d:膜厚 θ:入射角 n:屈折率 N:λ1〜λ2間の干渉による山の数 λ1,λ2:測定波長 で表わされるが、測定波長範囲を400〜700nm間
における平均膜厚検出限界は、n=1.5とした場
合、入射角45゜の時には0.35μであるのに、入射角
0゜の時には0.30μとなり、入射角0゜の場合に膜厚の
検出限界値が良好となることを示している。
In addition, when measuring a thin film coated on a substance to be measured, the film thickness d is Here, d: Film thickness θ: Incident angle n: Refractive index N: Number of peaks due to interference between λ 1 and λ 2 λ 1 , λ 2 : Expressed in measurement wavelength, the measurement wavelength range is between 400 and 700 nm. When n = 1.5, the average film thickness detection limit is 0.35μ at an incident angle of 45°;
When the incident angle is 0°, it is 0.30 μ, indicating that the film thickness detection limit value is good when the incident angle is 0°.

従つて本発明は光透過部と光反射部とを有する
光分岐鏡(ビームスプリツタ)を用い、入射角を
0゜とすることを可能とし、これによつて偏光成分
の影響をなくし正確な分光反射特性の測定を可能
とすると同時に、薄膜の平均膜厚検出限界を向上
させることを可能とするものである。
Therefore, the present invention uses a beam splitter having a light transmitting part and a light reflecting part to adjust the incident angle.
0°, thereby eliminating the influence of polarization components and enabling accurate measurement of spectral reflection characteristics, and at the same time, making it possible to improve the average film thickness detection limit of thin films. .

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の分光反射率測定装置の一実施
例の構成説明図で、1は分光光度計、2は分光反
射率測定装置、3は分光光度計1で作られた単色
光、4は反射鏡、5はビームスプリッタ、6はビ
ームスプリンタ5を通過した単色光が入射角0゜で
入射する位置に設置される被測定試料、7は検知
器を示している。ビームスプリンタ5は、例えば
アルミニウム板にスリツト状又はスポツト状に穿
孔されて反射鏡4で反射した単色光が透過可能な
光透過部5aと被測定試料6で反射した単色光が
反射する光反射部5bとよりなる。この他、例え
ば硝子板を基板としてその被測定試料側に、例え
ばアルミニウムをスリツト状又はスポツト状に蒸
着して構成してもよく、また光透過部は硝子板よ
りなる基材に設けられたスリツト状又はスポツト
状の穿孔によつて構成され、光反射部はこの穿孔
の設けられた基材の被測定試料側に例えばアルミ
ニウムを蒸着して構成してもよい。しかし光透過
部を基材の穿孔によつて形成する場合が基材の吸
収特性の影響を除去できる点で効果的である。こ
の光透過部5bと光反射部5bの面積比率は50:
50になるようになつている。
FIG. 1 is a configuration explanatory diagram of an embodiment of the spectral reflectance measuring device of the present invention, where 1 is a spectrophotometer, 2 is a spectral reflectance measuring device, 3 is monochromatic light produced by the spectrophotometer 1, and 4 is a spectral reflectance measuring device. 5 is a reflecting mirror, 5 is a beam splitter, 6 is a sample to be measured installed at a position where the monochromatic light that has passed through the beam splitter 5 is incident at an incident angle of 0°, and 7 is a detector. The beam splinter 5 includes, for example, a light transmitting section 5a that is bored in the form of a slit or spot in an aluminum plate and through which the monochromatic light reflected by the reflecting mirror 4 can pass through, and a light reflecting section through which the monochromatic light reflected by the sample to be measured 6 is reflected. 5b and more. In addition, aluminum may be vapor-deposited in the form of slits or spots on the sample to be measured side using a glass plate as a substrate, and the light transmitting part may be formed by slits provided in the base material made of a glass plate. The light reflecting portion may be formed by vapor-depositing aluminum, for example, on the sample-to-be-measured side of the substrate provided with the perforations. However, forming the light transmitting portion by perforating the base material is effective in that the influence of the absorption characteristics of the base material can be removed. The area ratio of the light transmitting part 5b and the light reflecting part 5b is 50:
It's starting to turn 50.

このように構成されている分光反射率測定装置
2では、分光光度計1で作られた単色光3は反射
鏡4によつて垂直に上方に反射され、ビームスプ
リツタ5の光透過部5aを通過し被測定試料6の
表面に垂直入射、すなわち、入射角0゜で入射す
る。この入射光は被測定試料6の表面反射光とし
し再び入射光と同一経路を経てビームスプリツタ
5の光反射部5bの例えばアルミニウム面によつ
て反射され分光光度計1内の検知器7に入射す
る。このようにして、検知器7に入射した光の強
さが被測定試料の表面の反射率そのものとなる。
検知器7に入射した光は分光光度計1の機能によ
り、光電変換され増幅され測定結果はCRT及び
記録計等に表示及び記録される。
In the spectral reflectance measuring device 2 configured as described above, the monochromatic light 3 produced by the spectrophotometer 1 is vertically reflected upward by the reflecting mirror 4 and passes through the light transmitting section 5a of the beam splitter 5. The light passes through the surface of the sample to be measured 6 and is incident vertically, that is, at an incident angle of 0°. This incident light is reflected from the surface of the sample 6 to be measured, and is reflected again by the aluminum surface of the light reflecting portion 5b of the beam splitter 5, for example, through the same path as the incident light, and reaches the detector 7 in the spectrophotometer 1. incident. In this way, the intensity of the light incident on the detector 7 becomes the reflectance of the surface of the sample to be measured.
The light incident on the detector 7 is photoelectrically converted and amplified by the function of the spectrophotometer 1, and the measurement results are displayed and recorded on a CRT, recorder, etc.

この実施例では、被測定試料表面に単色光を0゜
で入射させることができるので、被測定物質の表
面の分光反射率について偏光成分の影響のない正
確な測定結果を得ることができる。
In this embodiment, since monochromatic light can be incident on the surface of the sample to be measured at 0°, it is possible to obtain accurate measurement results for the spectral reflectance of the surface of the sample to be measured without the influence of polarization components.

また、この実施例の分光反射率測定装置を用い
て、被測定物質の表面にコーテングされた薄膜の
厚を測定する場合、例えば屈折率が1.5、波長範
囲が400〜500nmの場合、検出可能膜厚は約0.76μ
となる。これを45゜入射の時の検出可能膜厚が約
0.66μであるのと比べると、検出膜厚差は0.1μと
なり、この実施例の分光反射率測定装置を用いた
場合はより薄い膜厚まで検出可能である。
In addition, when measuring the thickness of a thin film coated on the surface of a substance to be measured using the spectral reflectance measuring device of this example, for example, when the refractive index is 1.5 and the wavelength range is 400 to 500 nm, the detectable film Thickness is approximately 0.76μ
becomes. The detectable film thickness at 45° incidence is approximately
Compared to 0.66μ, the detected film thickness difference is 0.1μ, and when the spectral reflectance measurement device of this embodiment is used, it is possible to detect even thinner film thicknesses.

〔発明の効果〕〔Effect of the invention〕

本発明は、物質表面の分光反射率を偏光特性に
影響されずに正確に測定可能な分光反射率測定装
置の提供を可能とするもので、産業上の効果の大
なるものである。
The present invention makes it possible to provide a spectral reflectance measurement device that can accurately measure the spectral reflectance of a material surface without being affected by polarization characteristics, and has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の分光反射率測定装置の一実施
例の構成説明図、第2図は被測定物質として石英
板ガラスを用いた場合の入射角に対する反射率の
関係を示す線図である。 1……分光光度計、2……分光反射率測定装
置、3……単色光、4……反射鏡、5……ビーム
スプツタ、5a……光透過部、5b……光反射
部、6……被測定試料、7……検出部。
FIG. 1 is an explanatory diagram of the configuration of an embodiment of the spectral reflectance measuring device of the present invention, and FIG. 2 is a diagram showing the relationship between reflectance and incident angle when quartz plate glass is used as the substance to be measured. DESCRIPTION OF SYMBOLS 1...Spectrophotometer, 2...Spectral reflectance measuring device, 3...Monochromatic light, 4...Reflector, 5...Beam sputter, 5a...Light transmitting part, 5b...Light reflecting part, 6... Sample to be measured, 7...detection section.

Claims (1)

【特許請求の範囲】 1 被測定試料に単色光を入射させる手段と、前
記被測定試料で反射した前記単色光を検知する手
段とを有する分光反射率測定装置において、前記
被測定試料に単色光を入射させる手段が、該単色
光と45゜をなす角度に配置され、光透過部と光反
射部とを有する光分岐鏡を通過した単色光を前記
被測定試料に入射角0で入射させる手段であり、
前記被測定試料で反射した前記単色光を検知する
手段が、前記被測定試料で反射した光が前記光分
岐鏡の前記光反射部で反射した光を検知する手段
であることを特徴とする分光反射率測定装置。 2 前記光分岐鏡の前記光反射部が、透明基板上
に格子状又はスポツト状に形成された光反射性物
質よりなる特許請求の範囲第1項記載の分光反射
率測定装置。 3 前記分岐鏡の前記光反射部が、少なくとも前
記被測定試料の反射光が入射する側が、光反射性
物質よりなり、前記光透過部が、前記分岐鏡に設
けられた穿孔である特許請求の範囲第1項記載の
分光反射率測定装置。
[Scope of Claims] 1. A spectral reflectance measuring device having means for making monochromatic light incident on the sample to be measured and means for detecting the monochromatic light reflected by the sample to be measured, wherein monochromatic light is applied to the sample to be measured. The means for making the monochromatic light incident is arranged at an angle of 45° with the monochromatic light, and means for making the monochromatic light that has passed through a light branching mirror having a light transmitting part and a light reflecting part enter the sample to be measured at an incident angle of 0. and
Spectroscopy characterized in that the means for detecting the monochromatic light reflected by the sample to be measured is a means for detecting the light reflected by the sample to be measured and reflected by the light reflecting part of the light branching mirror. Reflectance measuring device. 2. The spectral reflectance measuring device according to claim 1, wherein the light reflecting portion of the light branching mirror is made of a light reflecting material formed in a grid or spot shape on a transparent substrate. 3. The light reflecting part of the branching mirror is made of a light reflecting material at least on the side where the reflected light from the sample to be measured is incident, and the light transmitting part is a perforation provided in the branching mirror. The spectral reflectance measuring device according to scope 1.
JP59186159A 1984-09-04 1984-09-04 Apparatus for measuring spectral reflectance Granted JPS6162841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59186159A JPS6162841A (en) 1984-09-04 1984-09-04 Apparatus for measuring spectral reflectance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59186159A JPS6162841A (en) 1984-09-04 1984-09-04 Apparatus for measuring spectral reflectance

Publications (2)

Publication Number Publication Date
JPS6162841A JPS6162841A (en) 1986-03-31
JPH0518053B2 true JPH0518053B2 (en) 1993-03-10

Family

ID=16183412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59186159A Granted JPS6162841A (en) 1984-09-04 1984-09-04 Apparatus for measuring spectral reflectance

Country Status (1)

Country Link
JP (1) JPS6162841A (en)

Also Published As

Publication number Publication date
JPS6162841A (en) 1986-03-31

Similar Documents

Publication Publication Date Title
US4332476A (en) Method and apparatus for studying surface properties
US5255075A (en) Optical sensor
US5963327A (en) Total internal reflection electromagnetic radiation beam entry to, and exit from, ellipsometer, polarimeter, reflectometer and the like systems
JPH10507833A (en) Spectroscopic ellipsometer
US6181421B1 (en) Ellipsometer and polarimeter with zero-order plate compensator
US5526117A (en) Method for the determination of characteristic values of transparent layers with the aid of ellipsometry
JPH06103252B2 (en) High resolution ellipsometer apparatus and method
JP4399126B2 (en) Spectroscopic ellipsometer
US3449051A (en) Differential optical system and optical elements therefor
US7184145B2 (en) Achromatic spectroscopic ellipsometer with high spatial resolution
JPH0640071B2 (en) Highly accurate humidity measurement method using the second derivative curve of water vapor absorption line
JPH0815130A (en) Fourier transform phase modulation spectroellipsometry
JP3520379B2 (en) Optical constant measuring method and device
US4932780A (en) Interferometer
US10168138B1 (en) Inspecting a slab of material
JPH08271337A (en) Spectroscope
JP4032511B2 (en) Method for measuring optical constants of thin films
Smith An automated scanning ellipsometer
JPH031615B2 (en)
JPH0518053B2 (en)
JPS61200407A (en) Fourier transformation type infrared film thickness measuring apparatus
JPH05264440A (en) Polarization analyzing apparatus
US10563975B1 (en) Dual-sensor arrangment for inspecting slab of material
JPS6179109A (en) Reflection type glass strain inspecting device
JPS6244215B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees