JPH05179902A - Gas turbine air-cooled cascade blade - Google Patents

Gas turbine air-cooled cascade blade

Info

Publication number
JPH05179902A
JPH05179902A JP79392A JP79392A JPH05179902A JP H05179902 A JPH05179902 A JP H05179902A JP 79392 A JP79392 A JP 79392A JP 79392 A JP79392 A JP 79392A JP H05179902 A JPH05179902 A JP H05179902A
Authority
JP
Japan
Prior art keywords
blade
cooling
cooling air
fins
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP79392A
Other languages
Japanese (ja)
Inventor
Kenichiro Takeishi
賢一郎 武石
Yoichiro Iritani
陽一郎 入谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP79392A priority Critical patent/JPH05179902A/en
Publication of JPH05179902A publication Critical patent/JPH05179902A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To secure a large heat transfer rate with cooling air through relatively small flow resistance, thereby improving cooling performance and heat efficiency by installing each projection in each tip of fins at specified intervals, in these fins being projected so as to be crossed with the cooling air in the inner part of a blade. CONSTITUTION:In a gas turbine air-cooled cascade blade, cooling air is made to flow in the inner part of a blade 4, while a lot of fins 1 are projected out of a wall surface 3 of the blade 4 at a specified angle (for example, 60 deg.) so as to be crossed with a flow of the cooling air. In this case, each rectangular projection 2 is installed in respective tips (apex) at specified intervals. In succession, the height (h) from the wall surface 3 to a base of the projection 2 and height H from the wall surface 3 to a tip part of the projection 2 are set up in each fin 1 respectively. With this constitution, when the flow of the cooling air goes beyond each fin 1 and each projection 2, a heat transfer rate with the large cooling air is securable with relatively small flow resistance. Therefore the extent of cooling performance is improved and, what is more, such an air-cooled cascade blade as resistible to high temperature is thus securable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービンの空気冷
却翼、詳しくはその内部の冷却フィンに関する。
FIELD OF THE INVENTION This invention relates to gas turbine air cooling blades, and more particularly to cooling fins therein.

【0002】[0002]

【従来の技術】図3、図4は従来のガスタービン空冷翼
の内部の模式的斜視図である。両図において1は冷却空
気流に交叉する形で翼の壁面3からhの高さで突出させ
た冷却促進のためのフィンである。図3は冷却空気流に
対しフィン1がほぼ直交状に交叉した例を、図4はほぼ
60°の角度で斜交した例をそれぞれ示す。
2. Description of the Related Art FIGS. 3 and 4 are schematic perspective views of the interior of a conventional gas turbine air cooling blade. In both figures, 1 is a fin for cooling promotion which is projected from the wall surface 3 of the blade at a height h so as to intersect with the cooling air flow. FIG. 3 shows an example in which the fins 1 cross at a substantially right angle to the cooling air flow, and FIG. 4 shows an example in which the fins 1 cross at an angle of approximately 60 °.

【0003】図3の場合より、図4のように斜交させた
場合の方が熱伝達率(従って冷却率)が向上することを
文献(トランザクション・オブ・ザ・エーエスエムイ
ー,ジャーナル オブ ヒート トランスファー第10
7巻,ページ628〜635(1985))が報告して
いる。
It can be seen from the literature (Transaction of the ASME, Journal of Heat Transfer) that the heat transfer rate (and hence the cooling rate) is improved when the oblique crossing as shown in FIG. Tenth
7, vol. 628-635 (1985)).

【0004】[0004]

【発明が解決しようとする課題】上記従来のガスタービ
ン空冷翼には解決すべき次の課題があった。
The above conventional gas turbine air cooling blade has the following problems to be solved.

【0005】即ち、図3及び図4のフィンは冷却空気流
れをはく離させて、フィン後方の流れに乱れを与えて、
熱伝達率を高めるものである。
That is, the fins shown in FIGS. 3 and 4 separate the cooling air flow to give turbulence to the flow behind the fins.
It increases the heat transfer rate.

【0006】フィンの高さを高くする程、フィン後方に
生じるはく離は激しくなり、熱伝達率が向上するが、そ
の一方で流動抵抗が大きくなる。即ち、ガスタービン空
冷翼の場合には、翼内部の対流冷却空気の、入口圧力及
び出口圧力は規定されているから、流動抵抗が大きくな
れば冷却空気の流速が低下して、熱伝達率が低下すると
いう問題があった。
As the height of the fins is increased, the peeling that occurs behind the fins becomes more severe and the heat transfer rate is improved, but on the other hand, the flow resistance is increased. That is, in the case of a gas turbine air cooling blade, since the inlet pressure and the outlet pressure of the convective cooling air inside the blade are regulated, the flow velocity of the cooling air decreases as the flow resistance increases, and the heat transfer coefficient increases. There was a problem of lowering.

【0007】したがって、熱伝達率の向上を図る一方
で、流動抵抗の増加を少なく抑えることが必要である。
Therefore, it is necessary to suppress the increase in flow resistance to a minimum while improving the heat transfer coefficient.

【0008】本発明は上記課題解決のため、流動抵抗増
加に比して熱伝達率の増加割合の高いガスタービン空冷
翼を提供することを目的とする。
In order to solve the above problems, it is an object of the present invention to provide a gas turbine air cooling blade having a higher rate of increase in heat transfer rate than an increase in flow resistance.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題の解決
手段として、冷却促進のため翼内部に冷却空気を流すと
共に冷却空気流に交叉するフィンを突出させたガスター
ビン空冷翼において、上記フィンの先端が所要の間隔で
突起を具備してなることを特徴とするガスタービン空冷
翼を提供しようとするものである。
As a means for solving the above-mentioned problems, the present invention provides a gas turbine air-cooling blade in which cooling air is flown into the blade for promoting cooling and a fin intersecting with the cooling air flow is projected. SUMMARY OF THE INVENTION An object of the present invention is to provide a gas turbine air-cooling blade, characterized in that the tips of the blades are provided with protrusions at required intervals.

【0010】[0010]

【作用】本発明は上記のように構成されるので次の作用
を有する。
Since the present invention is constructed as described above, it has the following actions.

【0011】即ち、翼内の冷却空気流に交叉してフィン
が突出すると、その後方では流れが乱れる。一般に層流
よりは乱流の方が熱伝達率が高いことはよく知られてい
る事実である。
That is, when the fins project while intersecting with the cooling air flow in the blade, the flow is disturbed behind them. It is a well known fact that turbulent flow generally has a higher heat transfer coefficient than laminar flow.

【0012】従ってフィン後流の乱れは相応して熱伝達
率を高める。
Turbulence behind the fins accordingly increases the heat transfer coefficient.

【0013】他方、流動抵抗は、突起体においては大別
して、動圧抵抗と渦等を含む乱れの抵抗とが相加された
形となる。
On the other hand, the flow resistance is roughly divided into the form in which the dynamic pressure resistance and the turbulence resistance including vortices are added in the projection body.

【0014】従って動圧抵抗を小さく、乱れの抵抗の増
加を許容すれば、抵抗増加に比してより熱伝達率の大き
い突起体を得ることができる。
Therefore, if the dynamic pressure resistance is small and the turbulence resistance is allowed to increase, it is possible to obtain a protrusion having a larger heat transfer coefficient than the resistance increase.

【0015】本発明の構成では、冷却空気流に交叉して
突出させたフィンの先端に所要の間隔で突起を設けるの
で、突起が流れを阻む面積に比し、渦等を発生させて流
れを乱す突起の外周部は、突起の左右(流れ方向の)両
側及び先端(頂部)に存在する。即ち、動圧抵抗を生ず
る面積に比し、乱れ発生の外周線が長くなるので、流動
抵抗に比して熱伝達率がより大きくなる。
In the structure of the present invention, since the projections are provided at the required intervals at the tips of the fins which are projected so as to intersect the cooling air flow, the flow is generated by generating vortices or the like as compared with the area where the projections block the flow. The outer peripheral portions of the disturbing protrusions are present on both the left and right sides (in the flow direction) of the protrusions and the tips (tops). That is, since the outer peripheral line of turbulence is longer than the area where the dynamic pressure resistance is generated, the heat transfer coefficient is larger than the flow resistance.

【0016】[0016]

【実施例】本発明の一実施例を図1及び図2により説明
する。なお、従来例と同様の構成部材には同符号を付
し、必要ある場合を除き、説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. The same components as those in the conventional example are designated by the same reference numerals, and the description thereof will be omitted unless necessary.

【0017】図1は従来例に対応させて示した、本実施
例のガスタービン空冷翼内部の一部片側の模式的斜視
図、図2は図1の実施例の適用されたガスタービン空冷
翼内部全体の断面図である。
FIG. 1 is a schematic perspective view of a part of one side of the inside of the gas turbine air cooling blade of the present embodiment shown corresponding to the conventional example, and FIG. 2 is a gas turbine air cooling blade to which the embodiment of FIG. 1 is applied. It is sectional drawing of the whole inside.

【0018】両図において、1は冷却空気流れに対し、
約60°の角度で交叉して翼4の壁面3から突出して設
けられたフィン、2はフィン1の先端(頂部)を所要間
隔で矩形状に突起させた矩形突起、3は翼4の内側の壁
面、4は内部に冷却空気を貫流可能に構成された翼であ
る。
In both figures, 1 is for cooling air flow,
Fins provided so as to project from the wall surface 3 of the blade 4 intersecting at an angle of about 60 °, 2 is a rectangular projection in which the tip (top portion) of the fin 1 is projected in a rectangular shape at a required interval, and 3 is the inside of the blade 4. Walls 4 are blades configured to allow cooling air to flow therethrough.

【0019】なお、矩形突起2は、冷却空気の衝突効率
を高めるため、図示のように複数のフィン1相互で千鳥
配置に設けられている。
The rectangular projections 2 are provided in a staggered arrangement among the plurality of fins 1 as shown in the drawing in order to improve the collision efficiency of the cooling air.

【0020】壁面3から矩形突起2の先端迄の高さは
H、基部迄の高さはhである。なお、ここに矩形突起2
は、それを複数の独立体の付加と見ても、或はフィン1
の頂部が所要の間隔で凹凸に成形されていて、その凸部
であるとしても同義であることは云うまでもない。
The height from the wall surface 3 to the tip of the rectangular protrusion 2 is H, and the height from the base portion is h. In addition, here the rectangular protrusion 2
Seeing it as the addition of multiple independent bodies, or fin 1
Needless to say, even if the tops of the are formed in a concavo-convex pattern at a required interval, and the projections are the same.

【0021】次に上記構成の作用について説明する。Next, the operation of the above configuration will be described.

【0022】図1において、冷却空気が矢印のように流
れると、フィン1の高さhの部分と、Hの部分とを起え
て冷却空気は流れる。従ってその後流は乱れることにな
るが、仮りにフィン1が高さhで一様であった場合、即
ち、従来例と同様であった場合と、フィン1が高さHで
一様であった場合を比較すると、高さHの場合が、壁面
3からの高さ、越流から見れば落差が大きいので当然に
乱れが大きく、従って熱伝達率も大きい。他方、流動抵
抗について見ると、乱れによる抵抗は乱れが大きくなっ
たので相応して大きくなる。動圧抵抗も、高さがhから
Hに増大した訳であるから相応して増大する。即ち、高
さがhに対しHの場合、乱れが大きくなって熱伝達率も
相応して大きくなるが、動圧抵抗、乱れ抵抗も相応して
大きくなるので、熱伝達率/抵抗、という観点からは、
hをHに増加させることが常に効率的であるか否かは詳
細なテストを必要とする。
In FIG. 1, when the cooling air flows as shown by an arrow, the cooling air flows by raising the height h and the height H of the fin 1. Therefore, the subsequent flow is turbulent, but if the fins 1 were uniform at the height h, that is, the fins were uniform at the height H, that is, the fins 1 were uniform at the height H. Comparing the cases, in the case of the height H, since the height from the wall surface 3 and the head difference from the view of the overflow are large, the turbulence is naturally large, and thus the heat transfer coefficient is also large. On the other hand, looking at the flow resistance, the resistance due to turbulence increases correspondingly because the turbulence has increased. The dynamic pressure resistance also increases correspondingly since the height has increased from h to H. That is, when the height is H with respect to h, the turbulence increases and the heat transfer coefficient also increases correspondingly, but the dynamic pressure resistance and the turbulence resistance also increase correspondingly, so the heat transfer coefficient / resistance viewpoint From
Whether increasing h to H is always efficient requires detailed testing.

【0023】これに対し、本実施例の場合、矩形突起2
と2の間はフィン1の高さはhであり、仮りに矩形突起
2同士の間隔と矩形突起2の幅を同一にした場合、高さ
hとH間におけるフィン1の流れに対する面積は、hと
Hの各一様高さの場合の面積差の半分となる。従って動
圧抵抗も相応して小さくなる。ところが乱れは、矩形突
起2同士の間では落差による乱れは相応して小さくなる
ものの、新たに矩形突起2の側部による乱れが2個所、
加わることになり、全体の乱れは殆ど小さくならない。
従って、本実施例の場合、全体抵抗は小さくなっても乱
れは殆ど小さくならず、上記に比し、熱伝達率/抵抗が
明らかに大きく、小さい抵抗で、大きな熱伝達率が達成
される。以上に加え、図1では矩形突起2が千鳥配置に
なっているので矩形突起2同士の間を通った流れの主た
る部分は後流のフィン1の矩形突起2に当ることとな
り、乱れの効率が、従って熱伝達率が一層高まる。ま
た、フィン1が冷却空気流に約60°の斜角で交叉する
ので、この点からも高い熱伝達率が得られる。但し、矩
形突起2の千鳥配置や、冷却空気流にフィン1を斜めに
交叉させる構成の選択は自由であって、本発明がそれに
限定されるものではない。
On the other hand, in the case of this embodiment, the rectangular protrusion 2
2 and 2, the height of the fin 1 is h, and if the spacing between the rectangular protrusions 2 and the width of the rectangular protrusion 2 are the same, the area for the flow of the fin 1 between the height h and H is: It is half of the area difference for each uniform height of h and H. Therefore, the dynamic pressure resistance is correspondingly reduced. However, as for the turbulence, the turbulence due to the drop between the rectangular protrusions 2 is correspondingly reduced, but there are two new turbulences due to the side portions of the rectangular protrusions 2.
As a result, the total turbulence does not become small.
Therefore, in the case of the present embodiment, even if the total resistance becomes small, the turbulence hardly becomes small, and the heat transfer coefficient / resistance is obviously larger than the above, and a large heat transfer coefficient is achieved with a small resistance. In addition to the above, since the rectangular protrusions 2 are arranged in a zigzag manner in FIG. 1, the main part of the flow passing between the rectangular protrusions 2 hits the rectangular protrusions 2 of the fins 1 in the wake, and the turbulence efficiency is Therefore, the heat transfer coefficient is further increased. Further, since the fins 1 intersect the cooling air flow at an oblique angle of about 60 °, a high heat transfer coefficient can be obtained also from this point. However, the staggered arrangement of the rectangular protrusions 2 and the configuration in which the fins 1 cross the cooling air flow at an angle are arbitrary, and the present invention is not limited thereto.

【0024】因みに、従来の技術の項に引用した文献に
よれば流れ方向に対するフィンの傾斜角度が45〜75
°では熱伝達率が90°(直交)の場合より約25%増
加する。本実施例では、この範囲の代表値として60°
を採用したものである。
Incidentally, according to the literature cited in the section of the prior art, the inclination angle of the fin with respect to the flow direction is 45 to 75.
In the case of °, the heat transfer coefficient is increased by about 25% compared with the case of 90 ° (orthogonal). In this embodiment, 60 ° is a typical value in this range.
Is adopted.

【0025】図2は図1の実施例のガスタービン空冷翼
内部全体の断面図で、冷却流路を長くして冷却効率を高
めるため、翼4内は交互に隔壁4aで仕切られており、
冷却空気はそれらの間を蛇行して流れ、十分に翼4を冷
却する。
FIG. 2 is a sectional view of the inside of the gas turbine air-cooling blade of the embodiment of FIG. 1, in which the blades 4 are alternately partitioned by partition walls 4a in order to lengthen the cooling passage and enhance cooling efficiency.
The cooling air meanders between them and cools the blades 4 sufficiently.

【0026】以上の通り、本実施例によればフィン1の
先端が所要の間隔で矩形突起2を備えるので、冷却空気
の流れの抵抗に比し、乱れが大きくなり効率的に壁面3
を、従って翼4を冷却できるという利点がある。
As described above, according to the present embodiment, since the tips of the fins 1 are provided with the rectangular protrusions 2 at required intervals, the turbulence becomes large as compared with the resistance of the flow of the cooling air, and the wall surface 3 is efficiently used.
And therefore the blade 4 can be cooled.

【0027】[0027]

【発明の効果】本発明は上記のように構成されるので次
の効果を有する。
Since the present invention is constructed as described above, it has the following effects.

【0028】即ち、本発明によればガスタービン空冷翼
の内部に、冷却空気流に交叉して突出させたフィンの先
端が所要の間隔で、突起を具備するため、冷却空気流と
の熱伝達率が向上し、冷却性能が上って、より高温ガス
に耐えられる空冷翼が得られる。この結果、ガスタービ
ンの熱高率が向上する。
That is, according to the present invention, since the tips of the fins projecting so as to intersect the cooling air flow are provided with projections at a required interval inside the gas turbine air cooling blade, heat transfer with the cooling air flow is provided. The cooling rate is improved, the cooling performance is improved, and an air cooling blade that can withstand higher temperature gas can be obtained. As a result, the heat coefficient of the gas turbine is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の内部の一部片側の模式的斜
視図、
FIG. 1 is a schematic perspective view of a part of one side of an inside of an embodiment of the present invention,

【図2】上記実施例のガスタービン空冷翼(動翼)内部
全体の断面図、
FIG. 2 is a sectional view of the entire inside of the gas turbine air-cooling blade (moving blade) of the above embodiment,

【図3】従来の流れに直交して配置したフィンを有する
ガスタービン空冷翼内部の一部の斜視図、
FIG. 3 is a perspective view of a part of the inside of a gas turbine air cooling blade having fins arranged orthogonal to the conventional flow;

【図4】従来の流れに傾斜して配置したフィンを有する
ガスタービン空冷翼内部の一部の斜視図である。
FIG. 4 is a perspective view of a part of the inside of a gas turbine air-cooling blade having fins arranged to be inclined with respect to a conventional flow.

【符号の説明】[Explanation of symbols]

1 フィン 2 矩形突起 3 壁面 4 翼 4a 隔壁 1 fin 2 rectangular protrusion 3 wall surface 4 blade 4a partition wall

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷却促進のため翼内部に冷却空気を流す
と共に冷却空気流に交叉するフィンを突出させたガスタ
ービン空冷翼において、上記フィンの先端が所要の間隔
で突起を具備してなることを特徴とするガスタービン空
冷翼。
1. A gas turbine air-cooling blade in which cooling air is flown into the blade to promote cooling, and fins intersecting with the cooling air flow are projected, wherein the tips of the fins are provided with projections at required intervals. A gas turbine air cooling blade characterized by.
JP79392A 1992-01-07 1992-01-07 Gas turbine air-cooled cascade blade Withdrawn JPH05179902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP79392A JPH05179902A (en) 1992-01-07 1992-01-07 Gas turbine air-cooled cascade blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP79392A JPH05179902A (en) 1992-01-07 1992-01-07 Gas turbine air-cooled cascade blade

Publications (1)

Publication Number Publication Date
JPH05179902A true JPH05179902A (en) 1993-07-20

Family

ID=11483564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP79392A Withdrawn JPH05179902A (en) 1992-01-07 1992-01-07 Gas turbine air-cooled cascade blade

Country Status (1)

Country Link
JP (1) JPH05179902A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044573A (en) * 2002-07-10 2004-02-12 Mitsubishi Heavy Ind Ltd Stationary blade of gas turbine and gas turbine equipped with this stationary blade
JP2008148421A (en) * 2006-12-08 2008-06-26 Meidensha Corp Uninterruptible power supply unit or inverter apparatus
JP2010043568A (en) * 2008-08-11 2010-02-25 Ihi Corp Turbine blade and heat radiation acceleration component of turbine blade trailing edge part
US10287893B2 (en) 2013-11-15 2019-05-14 Hanwha Aerospace Co., Ltd. Turbine
FR3089549A1 (en) * 2018-12-07 2020-06-12 Safran Aircraft Engines Turbomachine hollow vane equipped with primary and secondary disturbers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044573A (en) * 2002-07-10 2004-02-12 Mitsubishi Heavy Ind Ltd Stationary blade of gas turbine and gas turbine equipped with this stationary blade
JP2008148421A (en) * 2006-12-08 2008-06-26 Meidensha Corp Uninterruptible power supply unit or inverter apparatus
JP2010043568A (en) * 2008-08-11 2010-02-25 Ihi Corp Turbine blade and heat radiation acceleration component of turbine blade trailing edge part
US10287893B2 (en) 2013-11-15 2019-05-14 Hanwha Aerospace Co., Ltd. Turbine
FR3089549A1 (en) * 2018-12-07 2020-06-12 Safran Aircraft Engines Turbomachine hollow vane equipped with primary and secondary disturbers

Similar Documents

Publication Publication Date Title
JP4115390B2 (en) Heat transfer device
US6578627B1 (en) Pattern with ribbed vortex generator
US5361828A (en) Scaled heat transfer surface with protruding ramp surface turbulators
JPH07189603A (en) Turbine cooled blade and cooling member
JPH08291988A (en) Structure of heat exchanger
WO1998044241A1 (en) Turbuletor for gaz turbine cooling blades
JP2966825B2 (en) Air conditioner heat exchanger
JPH05179902A (en) Gas turbine air-cooled cascade blade
JPS6027284B2 (en) hair dryer
JP4578715B2 (en) Heat sink device
US4159738A (en) Fan-assisted forced flow air-cooling heat exchanger system
JP2006312931A (en) Member having cooling passage therein
JP3268070B2 (en) Hollow cooling blade of gas turbine
JPH11173105A (en) Moving blade of gas turbine
JPS633183A (en) Finned heat exchanger
JP2001173403A (en) Cooling member
JPS633185A (en) Finned heat exchanger
JPH0638546A (en) Forcedly-air-cooled inverter apparatus
JPH08296403A (en) Gas turbine air cooled blade
JP2559299Y2 (en) Turbulence enhancer for heat exchanger
JP2002286244A (en) Air conditioner
JP3358975B2 (en) Gas turbine blades
JP3233752B2 (en) Air-cooled blade of gas turbine
JPS61285388A (en) Heat exchanger
JPH09318094A (en) Air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408