JPH0517975A - Rainwater inflow amount estimating device - Google Patents

Rainwater inflow amount estimating device

Info

Publication number
JPH0517975A
JPH0517975A JP17545191A JP17545191A JPH0517975A JP H0517975 A JPH0517975 A JP H0517975A JP 17545191 A JP17545191 A JP 17545191A JP 17545191 A JP17545191 A JP 17545191A JP H0517975 A JPH0517975 A JP H0517975A
Authority
JP
Japan
Prior art keywords
rainfall
area
amount
inflow
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17545191A
Other languages
Japanese (ja)
Inventor
Tomio Yamada
富美夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17545191A priority Critical patent/JPH0517975A/en
Publication of JPH0517975A publication Critical patent/JPH0517975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sewage (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To improve accuracy of estimating an inflow amount of rainwater by reflecting rain fall distribution, making the best use of a narrow band property of a rainwater radar, as a rainfall amount in an equiarrival time region of an RRL method. CONSTITUTION:Power received by a radar transceiving device 2 is converted into a mesh-shaped rain amount distribution by a mesh rain amount data converting device 3 and also giving a flow down speed of rain water in a sewage trunk line or a branch pipe, obtained from an observed water level or flow amount, to an equiarrival time curve creating device 6 to create an equiarrival time curve such that a flow arrival time to a flow amount calculating point in an objective flow area becomes a predetermined inflow amount arithmetic period. These equiarrival time curve and mesh rain amount data are given to an area rainfall amount calculating device 4 to calculate an area rainfall amount in an equiarrival time region by performing area distribution of the mesh rain amount data relating to the equiarrival time region. This area rainfall amount is given to an outflow analyzer 5 and overlapped with a rainfall record in the past to calculate an inflow amount at each time corresponding to the inflow amount arithmetic period displayed in a display device 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は雨水排水を目的とする下
水道ポンプ場又は処理場のポンプ運転支援装置に係わ
り、特にレーダ雨量計による流域の降雨分布を考慮した
雨水流出解析法による雨水流入予測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pump operation support device for a sewer pumping station or a treatment plant for the purpose of draining rainwater, and in particular, rainwater inflow prediction by a rainwater runoff analysis method considering the rainfall distribution in a basin by a radar rain gauge. Regarding the device.

【0002】[0002]

【従来の技術】従来、雨水排水を目的とする下水道ポン
プ施設においては、降雨による雨水流入状況に応じて必
要なポンプ運転台数の決定や起動・停止のタイミングを
運転員が判断していた。運転員は降雨状況やポンプ場ポ
ンプ井水位の状況から長年の経験と勘により上記の決定
を行っていた。
2. Description of the Related Art Conventionally, in a sewer pump facility intended for drainage of rainwater, an operator has determined the number of pumps to be operated and the timing of starting and stopping according to the state of rainwater inflow due to rainfall. The operator made the above decision based on his experience and intuition for many years, based on the rainfall conditions and the pump well water level.

【0003】しかし、近年都市化の進行や下水道整備が
進み、降雨の大半がポンプ施設に流入することになり、
集中豪雨や台風、雷雨等による急激な雨水流入に対応す
る必要が生じてきた。
However, with the progress of urbanization and sewerage development in recent years, most of the rainfall will flow into the pump facility,
It has become necessary to deal with the sudden inflow of rainwater due to torrential rain, typhoons, and thunderstorms.

【0004】そこで、最近では降雨情報を雨水流出解析
手法に結びつけ、ポンプ施設への雨水流入量を定量的に
予測(以下単に流入予測と称する)する方式が導入され
ている。この流入予測方式は、現在時刻より数10分先
の流入量に対するポンプ運転時刻や台数の予測が可能と
なり、ひいては自家発電機の起動準備等降雨時の運転員
の負荷軽減のためのポンプ運転支援システムの方向へ進
むようになってきている。
Therefore, recently, a method has been introduced in which rainfall information is linked to a rainwater outflow analysis method to quantitatively predict the amount of rainwater inflow into the pump facility (hereinafter simply referred to as inflow prediction). This inflow prediction method makes it possible to predict the pump operation time and the number of pumps with respect to the inflow amount several tens of minutes ahead of the current time, and eventually to support the pump operation to reduce the load on the operator during rainfall, such as preparations for starting the private generator It is moving toward the system.

【0005】ところで、降雨流出解析手法としては、都
市域での下水道管渠流出量算定によく用いられるRRL
法(R0ad Resarch Laboratory)がある。以下このRRL
法について簡単に説明する。
By the way, as a rainfall runoff analysis method, RRL which is often used to calculate runoff of sewer pipes in urban areas.
There is a method (R0ad Resarch Laboratory). Below this RRL
The method will be briefly explained.

【0006】まず、流入量算定地点Pまでの流達時間を
求め、計算時間間隔Δt毎に図2のような等到達時間域
を達成しておく。流達時間の算定は下水管が満管状態で
あると仮定して水理学公式より流速を求め、Δt相当の
距離を算定して時間域境界線Li を作成することができ
る。次に流域に降る降雨強度Ii を図3のように観測し
て雨水流入量Pi を次式にて算定すると、 P0=0 P 1 =I 1 ・A 1 P 2 =I 1 ・A 2 +I2 ・A 1 P 3 =I 1 ・A 3 +I2 ・A 2 +I3 : ……(1) : P n =I 1 ・A n +I2 ・A n-1 +…In ・A 1 のようになり、これを雨水流入量の時間変化として示す
と図4のような曲線となる。ここで、上記(1)式にお
いて、Ai は等到達時間域面積である。次に降った雨は
直ぐに流出せず、いったん流域に蓄えられてから流出す
るため、図5に示す貯流量−流出量関数を介して図6に
示す流出量関数Qが得られる。
First, the delivery time to the inflow calculation point P is
Obtained and calculated at each equal time interval Δt
Has been achieved. The delivery time is calculated when the sewer pipe is full.
Assuming that there is, the flow velocity is calculated from the hydraulic formula and
Calculates distance and time domain boundary line LiCan create
It Next rainfall intensity I in the basiniAs shown in Figure 3
Rainwater inflow PiIs calculated by the following formula, P0 = 0 P1= I1・ A1  P2= I1・ A2+ I2・ A1  P3= I1・ A3+ I2・ A2+ I3  : …… (1): Pn= I1・ An+ I2・ An-1+ ... In・ A1  And this is shown as the change in rainwater inflow over time.
And the curve becomes as shown in FIG. Here, in the above formula (1),
And AiIs the equal arrival time area. The next rain
It does not immediately flow out, but once it is stored in the basin, it flows out
Therefore, as shown in FIG. 6 via the stored flow rate-outflow rate function shown in FIG.
The outflow function Q shown is obtained.

【0007】対象流域域が比較的大きく、遠方から流入
してくる流量の割合がポンプ施設間近より比較的大きい
場合には、降雨予測を行わなくても現在時刻までに降っ
た雨に基づいて計算しても数10分先の短時間予測の範
囲であれば、大きな誤差にならない。
When the target watershed is relatively large and the ratio of the flow rate flowing in from a distance is relatively larger than that in the vicinity of the pump facility, calculation is performed based on the rainfall that has occurred up to the current time without performing rainfall prediction. Even if it is within the range of short time prediction of several tens of minutes, no large error will occur.

【0008】[0008]

【発明が解決しようとする課題】このようにRRL法に
基づく方法では、等到達時間域は満管状態ではなく、流
達時間を早めに見積る傾向となる。これは流入量の立上
り波形予測を誤ることになり、精度上問題がある。
As described above, in the method based on the RRL method, the equal arrival time region is not in a full state and the delivery time tends to be estimated earlier. This causes a mistake in predicting the rising waveform of the inflow amount, which is a problem in accuracy.

【0009】また、降雨観測の方法として、従来は地上
雨量計が主であったが、地域降雨分布、即ち面的降雨分
布状況を把握する手段としてレーダ雨量計による導入が
大都市中心に計画されつつあり、従ってRRL法におい
て降雨分布を等到達時間域曲線に強調させる必要が生じ
ている。即ち、従来対象流域内の均一降雨分布を仮定し
ていたが、レーダ雨量計の場合、メッシュ単位(例えば
500m×500m) で情報が与えられるため、細かな降雨分布
情報量をできるだけ生かした形での等到達時間内面積降
雨量の算定が精度を向上させる上で重要である。本発明
は上記の不具合を解決し、レーダ雨量計に基づく流入予
測精度の向上を図ることができる雨水流入量予測装置を
提供することを目的とする。
Conventionally, as a method of rainfall observation, a ground rain gauge has been mainly used in the past, but a radar rain gauge is planned to be introduced mainly in large cities as a means for grasping the regional rainfall distribution, that is, the surface rainfall distribution situation. Therefore, in the RRL method, it is necessary to emphasize the rainfall distribution on the equal arrival time domain curve. That is, although a uniform rainfall distribution in the target watershed was conventionally assumed, in the case of a radar rain gauge, a mesh unit (for example,
Since the information is given in (500 m × 500 m), it is important to improve the accuracy by calculating the area rainfall within the equal arrival time by making the best use of the detailed rainfall distribution information amount. An object of the present invention is to provide a rainwater inflow prediction device that solves the above-mentioned problems and can improve the inflow prediction accuracy based on a radar rain gauge.

【0010】[0010]

【課題を解決するための手段】本発明は上記の目的を達
成するため、雨水排水を目的とする下水道ポンプ運転に
対し、レーダ雨量計による流域の降雨分布を考慮した雨
水流出解析法による雨水流入量予測装置において、レー
ダ空中線から電波を発射して雨滴で反射されてくる電波
を電力として受信するレーダ送受信手段と、このレーダ
送受信手段で受信した電力をメッシュ形状の雨量分布に
変換するメッシュ雨量データ変換手段と、観測した水位
あるいは流量から下水幹線あるいは枝管の雨水の流下速
度を演算する流速演算手段と、この流速演算手段で演算
した流速に基づいて対象流域内の流量算定点までの流達
時間が所定の流入量演算周期になるような等到達時間曲
線を作成する等到達時間曲線作成手段と、この等到達時
間曲線作成手段で得られた等到達時間域に対し、前記メ
ッシュ雨量データ変換手段で得られたメッシュ雨量デー
タの面積配分を行なって等到達時間域内面積降雨量の算
定を行なう面積降雨量算定手段と、この面積降雨量算定
手段で得られた面積降雨量を用いて過去の降雨履歴を重
合せて流入量演算周期に対応した各時刻における流入量
を算定する流出解析手段と、この流出解析手段で算定さ
れた各時刻における雨水流入量の時間変化を表示する流
入予測表示手段とを備えたものである。
In order to achieve the above-mentioned object, the present invention is directed to the operation of a sewer pump for the purpose of draining rainwater, and the inflow of rainwater by a rainwater runoff analysis method considering the rainfall distribution in the basin by a radar rain gauge. In the amount prediction device, radar transmitting / receiving means for emitting radio waves from a radar antenna and receiving radio waves reflected by raindrops as electric power, and mesh rainfall data for converting the electric power received by the radar transmitting / receiving means into a mesh-shaped rainfall distribution A conversion means, a flow velocity calculation means for calculating the flow velocity of rainwater from the sewer trunk line or branch pipe from the observed water level or flow rate, and the flow to the flow rate calculation point in the target basin based on the flow velocity calculated by this flow velocity calculation means. The equal arrival time curve creating means for creating an equal arrival time curve whose time becomes a predetermined inflow amount calculation cycle, and the equal arrival time curve creating means The area rainfall calculation means for calculating the area rainfall within the equal arrival time area by performing the area distribution of the mesh rainfall data obtained by the mesh rainfall data conversion means to the equal arrival time area, and the area rainfall amount. Outflow analysis means that calculates the inflow at each time corresponding to the inflow calculation cycle by superposing past rainfall history using the area rainfall obtained by the calculation means, and each time calculated by this outflow analysis means Inflow prediction display means for displaying the time change of the rainwater inflow in

【0011】[0011]

【作用】このような構成の雨水流入量予測装置にあって
は、面積降雨量算定手段により等到達時間曲線作成手段
で得られた等到達時間域に対し、メッシュ雨量データ変
換手段より得られるメッシュ雨量データの面積配分を行
なって等到達時間域内面積降雨量が算定され、さらにこ
の面積降雨量を用いて過去の降雨履歴と重合わせて流入
量演算周期に対応した各時刻における流入量が算定され
るので、レーダの狭域性を生かした降雨分布をRRL法
の等到達時間域内降雨量として高精度に反映させること
が可能となり、流入量予測値の精度を向上させることに
なる。また、等到達時間域も固定ではなく、流速により
可変としたため、流量に応じた雨水流達時間が見積られ
ることになり、流入波形予測値の精度を向上させること
ができる。
In the rainwater inflow predicting apparatus having such a structure, the mesh obtained by the mesh rainfall data converting means for the equal arrival time range obtained by the equal arrival time curve creating means by the area rainfall calculating means The area distribution of the rainfall data is performed to calculate the area rainfall within the equal arrival time area, and this area rainfall is used to calculate the inflow rate at each time corresponding to the inflow rate calculation cycle by combining with the past rainfall history. Therefore, it is possible to accurately reflect the rainfall distribution that makes use of the narrow range of the radar as the rainfall amount within the equal arrival time region of the RRL method, and improve the precision of the inflow forecast value. Further, since the equal arrival time region is not fixed but variable depending on the flow velocity, the rainwater arrival time corresponding to the flow rate can be estimated, and the accuracy of the inflow waveform prediction value can be improved.

【0012】[0012]

【実施例】以下本発明の一実施例を図面を参照して説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0013】図1は本発明装置全体の構成例を示す図で
あり、この装置にはレーダ空中線1およびレーダ送受信
装置2等からなるレーダ雨量計が設けられている。この
レーダ雨量計のうち少なくともレーダ空中線1は都市域
付近で比較的見通しのよい場所に据付けられ、レーダ送
受信装置2の制御のもとに動作するようになっている。
このレーダ送受信装置2は送信すべき信号を生成し、レ
ーダ空中線1から電波として発射し、雨雲から降る雨滴
で後方散乱されて戻ってくる電波を再びレーダ空中線1
を介して降雨量分布データに相当するレーダ受信電力デ
ータとして受信する。
FIG. 1 is a diagram showing a structural example of the entire apparatus of the present invention. This apparatus is provided with a radar rain gauge consisting of a radar antenna 1 and a radar transmitter / receiver 2. At least the radar antenna 1 of the radar rain gauge is installed in a place where the visibility is relatively good in the vicinity of the urban area, and operates under the control of the radar transmitter / receiver 2.
The radar transmitter / receiver 2 generates a signal to be transmitted, emits it from the radar antenna 1 as a radio wave, and returns the radio wave backscattered by raindrops falling from a rain cloud to the radar antenna 1 again.
It is received as radar reception power data corresponding to the rainfall distribution data.

【0014】このレーダ送受信装置2の受信電力はその
ままでは降雨データとしては使えないので、メッシュ雨
量データ変換装置3に与えて受信電力をメッシュ形状の
雨量分布データに変換する。このメッシュ雨量データ変
換装置3で変換されたメッシュ雨量分布データを面積降
雨量演算装置4に入力する。
Since the received power of the radar transmitter / receiver 2 cannot be used as rainfall data as it is, it is applied to the mesh rainfall data converter 3 to convert the received power into mesh-shaped rainfall distribution data. The mesh rainfall distribution data converted by the mesh rainfall data conversion device 3 is input to the area rainfall calculation device 4.

【0015】一方、ポンプ施設10に設置される水位計
により水位が計測され、その計測値を流速演算装置7に
与えて雨水の流下速度を演算する。この流速演算装置7
で求められた流下速度は等到達時間曲線作成装置6に加
えられ、ここで等到達時間曲線を作成して面積降雨量演
算装置4に与える。
On the other hand, the water level is measured by a water level gauge installed in the pump facility 10, and the measured value is given to the flow velocity calculation device 7 to calculate the flow velocity of rainwater. This flow velocity calculation device 7
The downflow velocity obtained in step 1 is added to the equal arrival time curve creation device 6, where an equal arrival time curve is created and given to the area rainfall amount calculation device 4.

【0016】この面積降雨量演算装置4は等到達時間域
内のメッシュ雨量データの面積配分を行ない、詳細を後
述する演算により面積降雨量の算定を行なう。この面積
降雨量演算装置4で求められた面積降雨量は流出解析装
置5に与えられ、ここで面積降雨量を用いて過去の降雨
履歴を重合わせ、各時刻における流入量を詳細を後述す
る解析法により求める。この流出解析装置5で求められ
た結果は、流入予測表示装置8により必要なグラフとし
て表示される。次に上記のように構成された雨水流入量
予測装置の作用について述べる。
The area rainfall calculation device 4 distributes the area of the mesh rainfall data within the equal arrival time region, and calculates the area rainfall by the calculation which will be described in detail later. The area rainfall calculated by the area rainfall calculator 4 is given to the runoff analyzer 5, where the past rainfall history is superposed using the area rainfall, and the inflow at each time is analyzed in detail later. Find by law. The result obtained by the outflow analysis device 5 is displayed as a required graph on the inflow prediction display device 8. Next, the operation of the rainwater inflow prediction device configured as described above will be described.

【0017】いま、ポンプ施設に設置された水位計によ
り水位が計測され、流速演算装置7にその計測値が入力
されると、流速演算装置7では以下に示す等流式に測定
水深hを代入して流速vを求め、等到達時間曲線作成装
置6に入力する。この等到達時間曲線作成装置6では、
この流速vを用いて以下のような手法により等到達時間
曲線を作成する。
Now, when the water level is measured by the water level gauge installed in the pump facility and the measured value is input to the flow velocity calculation device 7, the flow velocity calculation device 7 substitutes the measured water depth h into the following equal flow equation. Then, the flow velocity v is obtained and input to the equal arrival time curve creation device 6. In this equal arrival time curve creation device 6,
Using this flow velocity v, an equal arrival time curve is created by the following method.

【0018】等到達時間曲線は、図7に示すように幹線
の終端にある流出算定点Pに対し、任意の点x1 から
に対し、任意の点x1 からまでの間、流速v1 で流達
するとしてi番目の時間間隔Δt・iで進む距離l
1 は、 l1 =Δt・i・v1 ……(2) となる。下水幹線上点x2 を考えると、流速v2 で流下
するとまでの距離l2 は l2 =Δt・i・v2 ……(3) となる。一般に幹線に沿った部分の点x3 では、流域を
流達する時間tA と幹線を流下する時間tB の和 t=tA +tB ……(4) が等到達時間域を形成することになる。即ち、 t=lA /v1 +lB /v2 ……(5) 今、流速v1 とv2 に注目する。通常、下水管渠内を図
8のように水深hで流下する場合、等流式およびマニン
グ式を用いて流速vを求めることができる。 A=(1/2)・r2 ・(θ−sin θ)……(6) S=r・θ ……(7) θ=2cos -1(1−h/r) ……(8) R=A/S=(r/2)・(1−sin θ/θ)……(9) v=(1/n)・i1/2 ・R2/3 ……(10) Q=A・v ……(11)
As shown in FIG. 7, the iso-arrival time curve is obtained from arbitrary points x 1 to P with respect to the outflow calculation point P at the end of the main line.
Respect, between the x 1 arbitrary point to P, the distance proceeds in i-th time interval Delta] t · i as reaching the flow at a flow rate v 1 l
1 becomes l 1 = Δt · i · v 1 (2). Considering the point x 2 on the sewage trunk line, when flowing down at the flow velocity v 2 , the distance l 2 to P is l 2 = Δt · i · v 2 (3). Generally, at a point x 3 along the main line, the sum of the time t A for reaching the watershed and the time t B for flowing down the main line t = t A + t B (4) forms an equal arrival time region. Become. That is, t = l A / v 1 + l B / v 2 (5) Now, pay attention to the flow velocities v 1 and v 2 . Usually, when flowing down in the sewer pipe at a water depth h as shown in FIG. 8, the flow velocity v can be obtained by using the uniform flow equation and the Manning equation. A = (1/2) · r 2 ・ (Θ-sin θ) (6) S = r ・ θ (7) θ = 2cos -1 (1-h / r) (8) R = A / S = (r / 2)・ (1-sin θ / θ) …… (9) v = (1 / n) ・ i 1/2 ・ R 2/3 …… (10) Q = Av …… (11)

【0019】ここで、A:流積(m2 )、r:管半径
(m)、θ:角度、S:潤辺長、h:水深(m)、R:
径深(m)、v:流速(m/sec)、n:粗度計数、i:
管勾配、Q:流量(m3 /sec)
Here, A: accumulated product (m 2 ), R: pipe radius (m), θ: angle, S: wet side length, h: water depth (m), R:
Diameter (m), v: flow velocity (m / sec), n: roughness count, i:
Pipe slope, Q: Flow rate (m 3 / Sec)

【0020】管直径7mの場合の水深H、流量Q、流速
vの数値例を図9と図10に示す。また、図11は幹線
流下時間の図で、流量が増えるほど所定の距離を流下す
るに要する時間が短くなっているのが分かる。
Numerical examples of the water depth H, the flow rate Q, and the flow velocity v when the pipe diameter is 7 m are shown in FIGS. 9 and 10. Further, FIG. 11 is a diagram of the main line flow-down time, and it can be seen that the time required to flow down a predetermined distance becomes shorter as the flow rate increases.

【0021】いま、理解を容易にするため、中心を幹線
が貫いている円で囲まれた流域を考える。マニング式を
用いた等流式によれば、流域内の流量(m3 /s)ある
いは水深(m)が与えられれば、それに応じた等到達時
間曲線Li を作成することができる。例えば、流量が小
さいときは、図12のようにΔt時間間隔が密になり、
流量が大きくなるに従って図13のように疎になると考
えられる。
To facilitate understanding, consider a watershed surrounded by a circle with a main line passing through the center. According to the isokinetic equation using the Manning equation, the flow rate (m 3 / S) or the water depth (m) is given, it is possible to create the equal arrival time curve L i corresponding thereto. For example, when the flow rate is small, the Δt time intervals become close as shown in FIG. 12,
It is considered that the flow rate becomes sparse as shown in FIG. 13 as the flow rate increases.

【0022】ポンプ施設あるいは分水施設である流量算
定点は水位計が設置されている場合が多く、幹線流下
速度v1 については、時々刻々の水位計測値に基づいて
等到達時間曲線を変化させる。一方、流域の枝管等の流
達速度v2 の推定は、水位計が設置されていない場合が
多いので、流量算定点の水位計情報の関数として求め
る。即ち、 V2 =f(v1 ) ……(12) ただし、fは幹線の水位計測値と流達速度v2 とを関係
付ける関数 このようにして求められた等到達時間曲線は、面積降雨
量演算装置4に入力される。
A water level gauge is often installed at the flow rate calculation point P, which is a pump facility or a water diversion facility, and the main arrival speed v 1 changes the equal arrival time curve based on the measured water level every moment. Let On the other hand, in most cases, a water level gauge is not installed to estimate the reaching velocity v 2 of the branch pipes in the basin, so that it is obtained as a function of the water level gauge information at the flow rate calculation point P. That is, V 2 = f (v 1 ) (12) where f is a function that relates the water level measurement value of the main line and the reaching velocity v 2 The equal arrival time curve thus obtained is the area rainfall. It is input to the quantity calculation device 4.

【0023】一方、レーダ送受信装置2で受信された受
信電力がメッシュ雨量データ変換装置3によりメッシュ
雨量分布に変換されて面積降雨量演算装置4に入力され
ると、この面積降雨量演算装置4ではレーダ雨量メッシ
ュデータを次のような手法により等到達時間曲線に強調
させる。
On the other hand, when the reception power received by the radar transmitter / receiver 2 is converted into a mesh rainfall distribution by the mesh rainfall data converter 3 and input to the area rainfall calculator 4, the area rainfall calculator 4 Radar rainfall mesh data is emphasized on the equal arrival time curve by the following method.

【0024】図13は流域の等到達時間曲線とメッシュ
データを重ねた図である。面積降雨量の算定には、等到
達時間域内メッシュデータ(n個)の面積配分の考え方
をとる。即ち、 IAi (t)=Σaj ・rj (t)・Δt/1000……(13) ただし、j=1 〜n とし、 Ai :i番目の時間間隔Δt時刻における面積降雨量、 aj :等到達時間曲線Li-1 の領域にかかるメッシュj
の面積(m2 ) rj (t):時刻tにおけるメッシュjの降雨強度(mm
/hr) Δt:時間間隔(hr)
FIG. 13 is a diagram in which the equal arrival time curve of the basin and the mesh data are superimposed. For the calculation of the area rainfall, the area distribution of the mesh data (n pieces) within the equal arrival time area is used. That is, IA i (t) = Σa j · r j (t) · Δt / 1000 (13) where j = 1 to n, A i : Area rainfall at the i-th time interval Δt time, a j : mesh j over the area of equal arrival time curve L i-1
Area of (m 2 ) R j (t): rainfall intensity (mm) of mesh j at time t
/ hr) Δt: Time interval (hr)

【0025】このようにして面積降雨量演算装置4で
は、等到達時間域内のメッシュ雨量データの面積配分を
行ない、(13)式にて面積降雨量の算定が行われる。
この面積降雨量演算装置4で求められた面積降雨量を用
いて流出解析装置5により各時刻における流入量を次の
ようにして得る。例えば、図13のL2とL3 に囲まれ
た面積降雨量は IA3 =Σaj ・rj ・Δt/1000 ……(14) ただし、j=1〜10 で表される。即ち、(1)式に対して P1 =IA1 (t) P2 =IA2 (t-1)+IA1 (t) P3 =IA3 (t-2)+IA2 (t-1)+IA1 (t) : ……(15) : Pm =IAm (t-m+1)+……+ IA1 (t) として求められる。
In this way, the area rainfall calculation device 4 distributes the area of the mesh rainfall data within the equal arrival time region, and the area rainfall is calculated by the equation (13).
The inflow amount at each time is obtained by the outflow analysis device 5 using the area rainfall amount calculated by the area rainfall amount calculation device 4 as follows. For example, the area rainfall surrounded by L 2 and L 3 in FIG. 13 is IA 3 = Σa j · r j · Δt / 1000 (14) where j = 1 to 10 is represented. That is, P 1 = IA 1 (t) P 2 = IA 2 (t-1) + IA 1 (t) P 3 = IA 3 (t-2) + IA 2 (t-1) ) + IA 1 (t): (15): P m = IA m (t-m + 1) + ... + IA 1 (t).

【0026】ここで求められた流入量は、仮想的な流入
量であり、周知の貯溜量−流出量関数を用いて、流出量
曲線を得る。この場合、対象流域にポンプ施設が一つし
かない場合には、流出量がそのままポンプ施設への流入
予測値となる。この解析装置5で得られた結果は、流入
予測表示装置8にて必要なグラフとして表示される。
The inflow amount obtained here is a virtual inflow amount, and an outflow amount curve is obtained by using a well-known storage amount-outflow amount function. In this case, if there is only one pump facility in the target basin, the outflow amount will be the estimated inflow value to the pump facility. The result obtained by the analysis device 5 is displayed on the inflow prediction display device 8 as a necessary graph.

【0027】このように本実施例では、メッシュ雨量デ
ータ変換装置3で変換されたメッシュ雨量を面積降雨量
演算装置4に与え、一方ポンプ施設等に設置された水位
計により計測された棺渠水位を流速演算装置7に入力し
て流速を演算し、この流速を等到達時間曲線作成装置6
に与えて対象流域内の流量算定点までの流達時間が所定
の流入量演算周期になるような等到達時間曲線を作成
し、これをメッシュ雨量データ変換装置3で変換された
メッシュ雨量データと共に面積降雨量演算装置4に与え
て面積雨量の演算結果にRRL法を用いて雨水流出量を
算定し、これを流出解析装置5により貯溜量−流出流量
関数を用いてポンプ施設への流入量を求めるようにした
ので、レーダ雨量計に基づく流入予測精度の向上を図る
ことができる。
As described above, in this embodiment, the mesh rainfall converted by the mesh rainfall data converter 3 is applied to the area rainfall calculator 4, while the coffin water level measured by the water level gauge installed in the pump facility or the like. Is input to the flow velocity calculating device 7 to calculate the flow velocity, and the flow velocity is calculated using the equal arrival time curve creating device 6
To the flow rate calculation point in the target basin, an equal arrival time curve is created so that the inflow time calculation cycle becomes a predetermined inflow calculation period, and this is used together with the mesh rainfall data converted by the mesh rainfall data conversion device 3. The RRL method is applied to the area rainfall amount calculation device 4 to calculate the area rainfall amount, and the RRL method is used to calculate the rainwater outflow amount. Since it is determined, it is possible to improve the inflow prediction accuracy based on the radar rain gauge.

【0028】なお、上記実施例では水位計により流入管
渠の下水管内の水深を計測する場合について述べたが、
水位計がポンプ井水位を図っている場合には、貯溜量−
水位関係から水位変化を流量換算して流入量を推定する
ようにしてもよい。即ち、 流入量=g(水位変化)+ポンプ吐出量 ……(16) ただし、gは貯溜量−水位関係を表す関数である。この
ように推定した流入量を用いて等流式(6)〜(11)
式に流量を入力することにより、流速vを求めることが
できる。
In the above embodiment, the case where the water level in the sewer pipe of the inflow pipe is measured by the water level gauge has been described.
If the water level gauge is aiming at the pump well water level,
The inflow rate may be estimated by converting the water level change into a flow rate from the water level relationship. That is, inflow amount = g (water level change) + pump discharge amount (16) However, g is a function representing the storage amount-water level relationship. Using the inflow amount estimated in this way, the uniform flow equations (6) to (11)
The flow velocity v can be obtained by inputting the flow rate into the equation.

【0029】[0029]

【発明の効果】以上述べたように本発明によれば、レー
ダの狭域性を生かした降雨分布がRRL法の等到達時間
域内降雨量として反映されるので、流入予測値の精度を
向上させることができ、また等到達時間域も固定でな
く、流速により可変としているので、流量に応じた雨水
流達時間が見積られることになり、流入波形予測値の精
度の向上を図り得る雨水流入量予測装置を提供すること
ができる。
As described above, according to the present invention, since the rainfall distribution utilizing the narrowness of the radar is reflected as the rainfall amount within the equal arrival time region of the RRL method, the accuracy of the inflow prediction value is improved. In addition, the equal arrival time range is not fixed and is variable according to the flow velocity, so the rainwater arrival time according to the flow rate can be estimated, and the rainwater inflow amount that can improve the accuracy of the inflow waveform prediction value can be estimated. A prediction device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明による雨水流入量予測装置の一実
施例を示すブロック回路図。
FIG. 1 is a block circuit diagram showing an embodiment of a rainwater inflow prediction device according to the present invention.

【図2】流出解析手法を説明するための等到達時間域を
表す図。
FIG. 2 is a diagram showing a uniform arrival time region for explaining an outflow analysis method.

【図3】降雨強度の時間変化を示す図。FIG. 3 is a diagram showing changes in rainfall intensity over time.

【図4】雨水流入量の時間変化を示す図。FIG. 4 is a diagram showing changes over time in the amount of rainwater inflow.

【図5】貯溜量−流出量の関数を示す図。FIG. 5 is a diagram showing a function of stored amount-outflow amount.

【図6】仮想的流入流量とS−Q関数を介した後の流量
の関係図。
FIG. 6 is a relationship diagram of a virtual inflow flow rate and a flow rate after passing through an SQ function.

【図7】等到達時間曲線の算定方法を説明するための
図。
FIG. 7 is a diagram for explaining a method of calculating an equal arrival time curve.

【図8】等流式を説明するための下水管断面図。FIG. 8 is a sectional view of a sewer pipe for explaining the uniform flow method.

【図9】等流式を用いた水深と流量の関係を示す図。FIG. 9 is a diagram showing the relationship between water depth and flow rate using the uniform flow method.

【図10】同じく水深と流速の関係を示す図。FIG. 10 is a diagram showing a relationship between water depth and flow velocity.

【図11】マニング式による幹線流下時間を示す図。FIG. 11 is a diagram showing a main running time according to the Manning method.

【図12】流量小のときの等到達時間曲線を示す図。FIG. 12 is a diagram showing an equal arrival time curve when the flow rate is small.

【図13】雨量メッシュデータと等到達時間曲線を重ね
た図。
FIG. 13 is a diagram in which rainfall mesh data and isobaric curves are superimposed.

【図14】流入予測結果の表示例を示す図。FIG. 14 is a diagram showing a display example of an inflow prediction result.

【符号の説明】[Explanation of symbols]

1……レーダ空中線、2……レーダ送受信装置、3……
メッシュ雨量データ変換装置、4……面積降雨量演算装
置、5……流出解析装置、6……など到達時間曲線作成
装置、7……流速演算装置、8……流入予測表示装置、
9……水位計、10……ポンプ施設。
1 ... Radar antenna, 2 ... Radar transceiver, 3 ...
Mesh rainfall data conversion device, 4 ... Area rainfall calculation device, 5 ... Runoff analysis device, 6 ..., etc. Arrival time curve creation device, 7 ... Velocity calculation device, 8 ... Inflow prediction display device,
9 ... Water gauge, 10 ... Pump facility.

Claims (1)

【特許請求の範囲】 【請求項1】雨水排水を目的とする下水道ポンプ運転に
対し、レーダ雨量計による流域の降雨分布を考慮した雨
水流出解析法による雨水流入量の予測支援を行なう装置
において、レーダ空中線から電波を発射して雨滴で反射
されてくる電波を電力として受信するレーダ送受信手段
と、このレーダ送受信手段で受信した電力をメッシュ形
状の雨量分布に変換するメッシュ雨量データ変換手段
と、観測した水位あるいは流量から下水幹線あるいは枝
管の雨水の流下速度を演算する流速演算手段と、この流
速演算手段で演算した流速に基づいて対象流域内の流量
算定点までの流達時間が所定の流入量演算周期になるよ
うな等到達時間曲線を作成する等到達時間曲線作成手段
と、この等到達時間曲線作成手段で得られた等到達時間
域に対し、前記メッシュ雨量データ変換手段で得られた
メッシュ雨量データの面積配分を行なって等到達時間域
内面積降雨量の算定を行なう面積降雨量算定手段と、こ
の面積降雨量算定手段で得られた面積降雨量を用いて過
去の降雨履歴を重合せて流入量演算周期に対応した各時
刻における流入量を算定する流出解析手段と、この流出
解析手段で算定された各時刻における雨水流入量の時間
変化を表示する流入予測表示手段とを備えたことを特徴
とする雨水流入量予測装置。
Claim: What is claimed is: 1. A device for assisting prediction of rainwater inflow by a rainwater runoff analysis method that takes into account rainfall distribution in a basin by a radar rain gauge for operation of a sewer pump for rainwater drainage. A radar transmission / reception means for emitting radio waves from a radar antenna and receiving the radio waves reflected by raindrops as electric power, a mesh rainfall data conversion means for converting the electric power received by the radar transmission / reception means into a mesh-shaped rainfall amount distribution, and observation The flow velocity calculation means for calculating the flow velocity of rainwater on the sewer trunk line or the branch pipe based on the measured water level or flow rate, and the arrival time to the flow rate calculation point in the target basin based on the flow velocity calculated by this flow velocity calculation means Equal arrival time curve creating means for creating an equal arrival time curve such that it becomes a quantity calculation cycle, and equal arrival time obtained by this equal arrival time curve creating means The area rainfall calculation means for calculating the area rainfall within the equal arrival time area by allocating the area of the mesh rainfall data obtained by the mesh rainfall data conversion means to the area, and the area rainfall calculation means Of runoff analysis that calculates the inflow at each time corresponding to the inflow calculation cycle by overlapping the past rainfall history using the area rainfall and the rainwater inflow at each time calculated by this outflow analysis. A rainwater inflow prediction device, comprising: an inflow prediction display means for displaying a change over time.
JP17545191A 1991-07-16 1991-07-16 Rainwater inflow amount estimating device Pending JPH0517975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17545191A JPH0517975A (en) 1991-07-16 1991-07-16 Rainwater inflow amount estimating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17545191A JPH0517975A (en) 1991-07-16 1991-07-16 Rainwater inflow amount estimating device

Publications (1)

Publication Number Publication Date
JPH0517975A true JPH0517975A (en) 1993-01-26

Family

ID=15996306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17545191A Pending JPH0517975A (en) 1991-07-16 1991-07-16 Rainwater inflow amount estimating device

Country Status (1)

Country Link
JP (1) JPH0517975A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651484A (en) * 2015-12-29 2016-06-08 北京无线电计量测试研究所 Adaptive rainwater pipe network monitoring method and adaptive rainwater pipe network monitoring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651484A (en) * 2015-12-29 2016-06-08 北京无线电计量测试研究所 Adaptive rainwater pipe network monitoring method and adaptive rainwater pipe network monitoring system

Similar Documents

Publication Publication Date Title
JPH0833157B2 (en) Operation control device for rainwater pump
Larrarte Velocity fields within sewers: An experimental study
JP2003014868A (en) System for providing predictive information of flood
US20110239781A1 (en) Open Channel Meter for Measuring Velocity
Velázquez et al. An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting
Papadakis et al. University of Cincinnati urban runoff model
JPS5559508A (en) Rainwater draining equipment
JPH10177076A (en) Amount-of-rainfall predicting device
CN207556601U (en) A kind of urban discharging pipeline flow monitoring device
JP2965790B2 (en) Radar rainfall short-term movement prediction device
JPH0517975A (en) Rainwater inflow amount estimating device
JPH09189773A (en) Rainfall prediction system
Chauhan et al. Comparison of discharge data using ADCP and current meter
JPH05134715A (en) Neural network applicated device for predicting rail flow-in quantity
JPH05134056A (en) Estimating apparatus for inflow of rain water
JP3279703B2 (en) Inflow water prediction method and inflow water prediction device
JP2000276235A (en) Wide area rainwater drainage system supporting device
JP3437700B2 (en) Pump station inflow prediction support device
JPH0476637B2 (en)
JP3176174B2 (en) Pump station rainwater inflow prediction device
JP2002001381A (en) Sewage treatment system and waste water control system
JP2006047035A (en) Intra-trunk line flowing state measuring instrument and method
Metcalf Figure Measuring Sacramento River Diversions with ADFM Technology in the Glenn-Colusa Irrigation District
Pant et al. Wind profiler and radio acoustic sounding system at IMD, Pune: Some preliminary results
JP2002107462A (en) Rainfall food forecasting system