JPH05179455A - Method for plating cu and cu alloy with ni - Google Patents

Method for plating cu and cu alloy with ni

Info

Publication number
JPH05179455A
JPH05179455A JP35876891A JP35876891A JPH05179455A JP H05179455 A JPH05179455 A JP H05179455A JP 35876891 A JP35876891 A JP 35876891A JP 35876891 A JP35876891 A JP 35876891A JP H05179455 A JPH05179455 A JP H05179455A
Authority
JP
Japan
Prior art keywords
plating
alloy
plated
stock
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35876891A
Other languages
Japanese (ja)
Inventor
Toshihito Kobayashi
俊仁 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP35876891A priority Critical patent/JPH05179455A/en
Publication of JPH05179455A publication Critical patent/JPH05179455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

PURPOSE:To subject Cu or Cu alloy stock to Ni-P alloy plating and to improve corrosion resistance at a low cost when a connector made of the stock is plated. CONSTITUTION:Cu or Cu alloy stock is plated with an Ni-P alloy in a 1st process and the plated stock is heated at 700 deg.C to a temp. below the m.p. of the Ni-P alloy in a 2nd process to increase the P content of the surface part by diffusion. By this method, the corrosion resistance of an Ni plating film as the underplating of a connector is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CuおよびCu合金へのNi
めっき方法に関し、安価にNiめっき膜の耐食性を向上さ
せるものである。
FIELD OF THE INVENTION The present invention is applicable to Cu and Cu alloys with Ni.
Regarding the plating method, the corrosion resistance of the Ni plating film is improved at low cost.

【0002】[0002]

【従来の技術】CuおよびCu合金 (以下、単にCuという)
は、電気伝導性、熱伝導性に優れることから、電子材料
・部品として広範囲に使用されている。CuへのNiめっき
方法は比較的容易であり、Cu表面を脱脂した後、酸で活
性化し、電気めっきや無電解めっきを施している。そし
て、本発明はCuを素材としたコネクタのめっき方法に関
連するものである。
2. Description of the Related Art Cu and Cu alloys (hereinafter simply referred to as Cu)
Since is excellent in electrical conductivity and thermal conductivity, is widely used as an electronic material / part. The method of Ni plating on Cu is relatively easy. After degreasing the Cu surface, it is activated with an acid to perform electroplating or electroless plating. The present invention also relates to a connector plating method using Cu as a raw material.

【0003】Niめっきは、コネクタ材料のSnやAuの下地
めっきとしてよく用いられてる。コネクタの表面機能は
低接触抵抗であることであり、下地のNiめっきは低接触
抵抗となるように選定されたSnやAuの最表面めっきの初
期性能を維持することを役割とする。下地のNiめっきの
耐食性が不十分であれば、ピンホ−ルを基点とした腐食
進行のため、最表層めっきであるSnやAuの表面機能が低
下する。従って、耐食性を向上させる単純な手段として
は、腐食基点となるピンホ−ルを極力抑える意味から、
めっき層を厚く設計することである。
Ni plating is often used as a base plating for Sn or Au as a connector material. The surface function of the connector is low contact resistance, and the underlying Ni plating plays a role in maintaining the initial performance of the top surface plating of Sn or Au selected to have low contact resistance. If the corrosion resistance of the underlying Ni plating is insufficient, the surface function of the outermost surface plating of Sn or Au deteriorates due to the progress of corrosion from the pinhole. Therefore, as a simple means of improving the corrosion resistance, from the meaning of suppressing the pinhole, which is the corrosion base point, as much as possible,
It is to design the plating layer thick.

【0004】最近、コネクタの下地めっきとして、Ni−
P合金めっきが注目されている。Ni−P合金めっきは無
電解めっきの代表的なものであり、還元材として次亜リ
ン酸ナトリウムを用い、その還元力によって外部電源を
用いずにNiを析出させている。このとき、還元材からP
がNiめっき膜中に共析する。
Recently, Ni-
Attention has been paid to P alloy plating. Ni-P alloy plating is a typical example of electroless plating, in which sodium hypophosphite is used as a reducing material and Ni is deposited by its reducing power without using an external power source. At this time, from the reducing material to P
Eutectoid in the Ni plating film.

【0005】Niめっき膜中にPが含有されると、Pが5
Wt% (以下、単に%として表示する)程度まではNiの過
飽和固溶体であるが、5%からさらにP含有量が増加す
るとアモルファスライクの構造に次第に移り変わる。そ
してP含有量が10%以上となる高PのNiめっき膜では、
耐食性が著しく向上することが示されている。これはP
の3s,3p バンドの電子がNiのdバンドの空孔を埋
め、Ni−P合金の表面活性を低下させるためと説明され
ている。
When P is contained in the Ni plating film, P is 5
It is a supersaturated solid solution of Ni up to about Wt% (hereinafter, simply expressed as%), but when the P content further increases from 5%, the structure gradually changes to an amorphous-like structure. And in the high P Ni plating film with a P content of 10% or more,
It has been shown that the corrosion resistance is significantly improved. This is P
It is explained that the electrons of the 3s and 3p bands fill the vacancies of the d band of Ni and reduce the surface activity of the Ni-P alloy.

【0006】[0006]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、コネクタ下地めっきであるNiめっき膜の耐
食性の向上である。単純にめっき膜を厚くするにはコス
ト高をまねき、特に表面めっきにAuを用いる場合には、
めっき厚は重大なコスト支配要素となってしまう。ま
た、15%程度の高Pのめっき膜を作製する場合、めっき
液の価格が高くさらにこのめっきの析出速度が遅いため
にこれまたコスト高をまねいてしまう。
The problem to be solved by the present invention is to improve the corrosion resistance of the Ni plating film which is the undercoat of the connector. To simply increase the thickness of the plating film leads to high cost, especially when Au is used for surface plating,
Plating thickness becomes a significant cost control factor. Further, when a high-P plating film of about 15% is produced, the cost of the plating solution is high and the deposition rate of this plating is slow, which also leads to high cost.

【0007】[0007]

【課題を解決するための手段】そこで本発明では、コス
トが安定しているNi−P合金めっきののち、熱処理によ
ってNiと素材のCuを相互拡散させ、結果としてめっき表
面部のP含有量を高めることを試みた。すなわち、本発
明の要旨とするところは、CuおよびCu合金にNi−P合金
めっきを施す第1工程と、前記Ni−P合金めっきを施し
た素材を 700℃以上で、かつNi−P合金の融点未満の温
度で加熱する第2工程とからなるCuおよびCu合金へのNi
めっき方法である。
Therefore, in the present invention, after Ni-P alloy plating which is stable in cost, Ni and Cu of the raw material are mutually diffused by heat treatment, and as a result, the P content of the plating surface portion is reduced. Tried to increase. That is, the gist of the present invention is that the first step of plating Cu and Cu alloy with Ni-P alloy and the material plated with Ni-P alloy at 700 ° C. or higher and of Ni-P alloy Ni to Cu and Cu alloys consisting of a second step of heating at a temperature below the melting point
It is a plating method.

【0008】第1工程のNi−P合金めっきはアモルファ
スライクの結晶構造をとるP含有量5%以上であり、基
本的に市販実績が豊富でコストも安定している8〜12%
のものが選ばれる。また、電気めっきによるNi−P合金
を包含する。第2工程の加熱工程は、Ni−P合金めっき
の表面清浄性を保持するため、窒素、アルゴン、真空等
の無酸化雰囲気、水素もしくは水素・窒素混合気流中の
還元雰囲気で行われ、生産性を考慮して 700℃以上とす
る。また、Ni−P合金は、P含有量よって融点が異なる
(高Pになるほど融点が低下)ため、加熱温度上限を融
点未満とした。
The Ni-P alloy plating in the first step has a P content of 5% or more, which has an amorphous-like crystal structure, and is basically abundant in the market and has a stable cost of 8 to 12%.
Is selected. It also includes electroplated Ni-P alloys. In order to maintain the surface cleanliness of the Ni-P alloy plating, the second heating step is performed in a non-oxidizing atmosphere such as nitrogen, argon, or vacuum, or in a reducing atmosphere in hydrogen or a hydrogen / nitrogen mixed gas stream to improve productivity. Considering the above, the temperature shall be 700 ℃ or higher. In addition, the melting point of Ni-P alloy differs depending on the P content.
(The higher the P, the lower the melting point). Therefore, the upper limit of the heating temperature was set below the melting point.

【0009】[0009]

【作用および効果】本発明によって得られたNi−P合金
めっき膜は、素材とめっき界面から表面にむかってP濃
度が徐々に増加したものとなり、めっき表面が高Pのめ
っき膜となる。従って、比較的安価にNi−P合金めっき
膜の耐食性を向上させ、結果としこの上にSnやAuめっき
を厚く施す必要がない。
FUNCTION AND EFFECT The Ni—P alloy plating film obtained by the present invention has a P concentration gradually increasing from the material / plating interface to the surface, and the plating surface becomes a high P plating film. Therefore, it is not necessary to improve the corrosion resistance of the Ni-P alloy plated film at a relatively low cost, and as a result, it is not necessary to apply Sn or Au plating thickly thereon.

【0010】[0010]

【実施例】2mm×20mm×50mmのCuに一般的なめっき前処
理を施し、市販の無電解Niめっき液 (日本カニゼン製S
−753)に20分間浸漬した。こうして得られたCu上の無電
解めっき膜をケイ光X線式膜厚計 (セイコ- 電子工業S
FT-8000)で測定したところ、めっき厚さ 5mm、P含有
量 8%の結果が得られた。さらに、無電解Niめっきした
Cuを 750℃で10分間、真空熱処理を行い同様に無電解Ni
めっき膜をケイ光X線式膜厚計で測定したところ、表層
のP含有量は12%に増加しているとが確認された。
[Example] A commercially available electroless Ni plating solution (Nihon Kanigen S
It was immersed in −753) for 20 minutes. The thus obtained electroless plated film on Cu is subjected to a fluorescent X-ray film thickness meter (Seiko-Electronic Industries S
FT-8000), a plating thickness of 5 mm and a P content of 8% were obtained. Furthermore, electroless Ni plating
Cu was vacuum heat-treated at 750 ° C for 10 minutes and electroless Ni was similarly applied.
When the plating film was measured by a fluorescent X-ray film thickness meter, it was confirmed that the P content in the surface layer increased to 12%.

【0011】また、熱処理後の無電解NiめっきされたCu
の断面を斜めにカットし、断面をEPMAで分析したと
ころ、NiとCuが相互に拡散し、表層のP含有量が増加し
ているのが認められた。図1に本実施例で測定したEP
MAの分析結果を示す。さらに、同様にして作製した 7
50℃熱処理のあるものと熱処理を施さずに無電解めっき
を施こしたままのものを1NのHNO3 に浸漬し腐食減
量を測定した。その結果、熱処理のあるものは単位面積
当たりの腐食減量が40mg/( m2min)であるのに対して、
熱処理を施さないものは60mg/( m2min)と多かった。
Also, electroless Ni-plated Cu after heat treatment
When the cross section was cut obliquely and the cross section was analyzed by EPMA, it was found that Ni and Cu diffused into each other and the P content in the surface layer increased. Figure 1 shows the EP measured in this example.
The analysis result of MA is shown. Furthermore, it produced in the same way.
A sample with heat treatment at 50 ° C. and a sample with no heat treatment but without electroless plating were immersed in 1N HNO 3 to measure the corrosion weight loss. As a result, while those with heat treatment have a corrosion weight loss per unit area of 40 mg / (m 2 min),
The number of non-heat-treated products was 60 mg / (m 2 min).

【0012】[0012]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明における無電解めっきされたCuの断面
のEPMA分析結果である。
FIG. 1 is an EPMA analysis result of a cross section of electroless plated Cu according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 CuおよびCu合金からなる素材にNi−P合
金めっきを施す第1工程と、前記Ni−P合金めっきを施
した素材を 700℃以上で、かつNi−P合金の融点未満の
温度で加熱する第2工程とからなることを特徴とするCu
およびCu合金金へのNiめっき方法。
1. A first step of subjecting a material made of Cu and a Cu alloy to Ni—P alloy plating, and the material subjected to the Ni—P alloy plating at 700 ° C. or higher and below the melting point of the Ni—P alloy. Cu characterized by comprising a second step of heating at a temperature
And Ni plating method on Cu alloy gold.
JP35876891A 1991-12-27 1991-12-27 Method for plating cu and cu alloy with ni Pending JPH05179455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35876891A JPH05179455A (en) 1991-12-27 1991-12-27 Method for plating cu and cu alloy with ni

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35876891A JPH05179455A (en) 1991-12-27 1991-12-27 Method for plating cu and cu alloy with ni

Publications (1)

Publication Number Publication Date
JPH05179455A true JPH05179455A (en) 1993-07-20

Family

ID=18461012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35876891A Pending JPH05179455A (en) 1991-12-27 1991-12-27 Method for plating cu and cu alloy with ni

Country Status (1)

Country Link
JP (1) JPH05179455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010092944A1 (en) * 2009-02-10 2012-08-16 セイコーインスツル株式会社 Electrochemical cell, portable electronic device, and method of manufacturing electrochemical cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010092944A1 (en) * 2009-02-10 2012-08-16 セイコーインスツル株式会社 Electrochemical cell, portable electronic device, and method of manufacturing electrochemical cell
JP5550571B2 (en) * 2009-02-10 2014-07-16 セイコーインスツル株式会社 Electrochemical cell, portable electronic device, and method of manufacturing electrochemical cell

Similar Documents

Publication Publication Date Title
US5916695A (en) Tin coated electrical connector
US5780172A (en) Tin coated electrical connector
US6495001B2 (en) Method for manufacturing a metallic composite strip
JP3481392B2 (en) Electronic component lead member and method of manufacturing the same
JP2526320B2 (en) Method for producing high-strength galvannealed steel sheet
JP2915623B2 (en) Electrical contact material and its manufacturing method
JP4427487B2 (en) Tin-coated electrical connector
JPH07157893A (en) Sn plated wire for electrical contact point and production thereof
JPH05179455A (en) Method for plating cu and cu alloy with ni
JPH058276B2 (en)
JPH08283963A (en) Heat-resistant silver-coated composite and its production
JP3009527B2 (en) Aluminum material excellent in wear resistance and method for producing the same
JPH05179457A (en) Method for plating cu and cu alloy with ni
JP2769350B2 (en) Manufacturing method of hot-dip coated steel sheet
JP5155139B2 (en) Tin-coated electrical connector
JP4009424B2 (en) Cover for machining
JP2020117770A (en) Terminal material for connector, and terminal for connector
JPH05311298A (en) Copper base alloy for connector and its manufacture
JP3700924B2 (en) Electrolytic capacitor lead wire and manufacturing method thereof
JPH05179456A (en) Method for plating cu and cu alloy with ni
JP4014739B2 (en) Reflow Sn plating material and terminal, connector, or lead member using the reflow Sn plating material
JPH0480103B2 (en)
JPS63254685A (en) Electric contact device with nickel base
JPH05320790A (en) Copper base alloy for connector and its production
WO2019172010A1 (en) Plating film and plated member