JPH08283963A - Heat-resistant silver-coated composite and its production - Google Patents

Heat-resistant silver-coated composite and its production

Info

Publication number
JPH08283963A
JPH08283963A JP8535395A JP8535395A JPH08283963A JP H08283963 A JPH08283963 A JP H08283963A JP 8535395 A JP8535395 A JP 8535395A JP 8535395 A JP8535395 A JP 8535395A JP H08283963 A JPH08283963 A JP H08283963A
Authority
JP
Japan
Prior art keywords
silver
layer
heat
coating layer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8535395A
Other languages
Japanese (ja)
Other versions
JP3303594B2 (en
Inventor
Satoshi Suzuki
智 鈴木
Akira Matsuda
晃 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP08535395A priority Critical patent/JP3303594B2/en
Publication of JPH08283963A publication Critical patent/JPH08283963A/en
Application granted granted Critical
Publication of JP3303594B2 publication Critical patent/JP3303594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE: To provide a heat-resistant silver-coated composite excellent in solderability, corrosion resistance and adhesion of a silver coating layer. CONSTITUTION: A silver or silver alloy layer is formed on a substrate with at least the surface having conductivity directly or through a substrate layer consisting of nickel, cobalt or their alloy to constitute a heat-resistant silver- coated composite. The average crystal grain diameter on the inside of the silver or silver alloy layer is controlled to >=3μm and that on the outside to <=2μm. Consequently, the infiltration of oxygen is suppressed at the inside of the silver coating layer, and the corrosion resistance and adhesion are maintained. The solderability of a silicon chip is improved at the outside of the silver coating layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半田付性、耐食性、及
び銀被覆層の密着性に優れ、例えば、樹脂モールド等の
高温工程を伴う電子機器部品の製造に適した耐熱銀被覆
複合体及びその製造方法に関する。
FIELD OF THE INVENTION The present invention has excellent solderability, corrosion resistance, and adhesion of a silver coating layer. For example, the heat-resistant silver-coated composite body is suitable for the production of electronic equipment parts involving high temperature processes such as resin molding. And a manufacturing method thereof.

【0002】[0002]

【従来の技術】銀被覆銅線は、銅又は銅合金線に銀又は
銀合金層を被覆したもので、銅の機械的強度と導電性、
銀の耐食性と半田付性とを兼備しており、電子部品のリ
ード線や電子機器内の導体等として広く使用されてい
る。前記銀又は銀合金被覆層の厚さは、半田付性、耐食
性、経済性等を勘案して1〜10μm程度である。ところ
で、銀被覆銅線をリード線に用いたダイオードは、銀被
覆銅線を所定長さに切断し、その一端をヘッダー加工
し、ヘッダー加工部にシリコンチップを半田付けし、そ
の上に樹脂をモールドして組立てられる。前記の樹脂モ
ールド時には、銀被覆銅線は 200℃前後の大気中に約20
時間放置される。又前記シリコンチップの半田付けに
は、後の電子部品等との半田付工程で前記半田が溶融し
ないように、高Pb−Sn系の融点の高い高温半田が使
用される。この高温半田はSn量が少ないため共晶半田
に比べて銀層との反応速度が遅い。
2. Description of the Related Art Silver-coated copper wire is a copper or copper alloy wire coated with a silver or silver alloy layer.
It has both corrosion resistance and solderability of silver, and is widely used as a lead wire of electronic parts and a conductor in electronic equipment. The thickness of the silver or silver alloy coating layer is about 1 to 10 μm in consideration of solderability, corrosion resistance, economy and the like. By the way, in a diode using a silver-coated copper wire as a lead wire, a silver-coated copper wire is cut into a predetermined length, one end thereof is header-processed, a silicon chip is soldered to a header-processed portion, and a resin is applied on it. It is molded and assembled. At the time of resin molding described above, the silver-coated copper wire is exposed to about 20 ° C in the atmosphere at about 20
Left for hours. Further, for the soldering of the silicon chip, a high Pb-Sn high temperature solder having a high melting point is used so that the solder is not melted in the subsequent soldering step with an electronic component or the like. Since this high-temperature solder has a small amount of Sn, the reaction rate with the silver layer is slower than that of the eutectic solder.

【0003】前記の銀被覆銅線は、シリコンチップ半田
付け時の加熱により、銅線から銅が拡散して外観が変色
し、又後の半田付け工程における半田付け性が著しく低
下する。このため銅線と銀又は銀合金被覆層の間にニッ
ケル等の下地層を拡散バリヤーとして介在させて、銅線
からの銅の拡散を抑制した銀被覆銅線が実用されてい
る。この下地層により銀又は銀合金被覆層の厚さを薄く
できる。しかし、このように下地層を設けても、半田付
け時の加熱で大気中の酸素が銀又は銀合金被覆層内に活
発に浸透して下地層が酸化する。その結果、銀又は銀合
金被覆層が剥離し易くなり、リード線としての信頼性が
低下し、又半田付け強度が低下するという問題が生じ
た。
[0003] The silver-coated copper wire is heated at the time of soldering a silicon chip, copper is diffused from the copper wire and the appearance is discolored, and the solderability in the subsequent soldering step is significantly deteriorated. Therefore, a silver-coated copper wire in which an underlayer such as nickel is interposed as a diffusion barrier between the copper wire and the silver or silver alloy coating layer to suppress the diffusion of copper from the copper wire has been put into practical use. This underlayer can reduce the thickness of the silver or silver alloy coating layer. However, even if the underlayer is provided in this manner, oxygen in the atmosphere is actively permeated into the silver or silver alloy coating layer by heating during soldering, and the underlayer is oxidized. As a result, the silver or silver alloy coating layer is easily peeled off, the reliability of the lead wire is lowered, and the soldering strength is lowered.

【0004】[0004]

【発明が解決しようとする課題】このようなことから、
銀被覆層を厚く形成して下地層を設けない方法、及び銀
又は銀合金被覆層の平均結晶粒径を5μm以上に大きく
して、結晶粒界を通路とする酸素の浸透を抑制する方法
(特公平5-8276号公報)が提案された。しかし、前者は
銀の使用量が増えてコスト的に不利であり、後者はシリ
コンチップの半田付性が悪化するという問題があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
A method of forming a thick silver coating layer without providing an underlayer, and a method of increasing the average crystal grain size of the silver or silver alloy coating layer to 5 μm or more to suppress the permeation of oxygen through the crystal grain boundaries ( Japanese Patent Publication No. 5-8276) was proposed. However, the former is disadvantageous in terms of cost due to an increase in the amount of silver used, and the latter has a problem that the solderability of the silicon chip deteriorates.

【0005】そこで、本発明者らは、後者の半田付性の
悪化について検討を行い、その原因は、結晶粒が大きく
なると銀被覆層と半田との反応速度が遅くなって、銀被
覆層の僅かな汚れや形状不良が半田付性に悪影響を及ぼ
す為であることを突き止め、更に研究を進めて本発明を
完成するに到った。本発明の目的は、半田付性、耐食
性、及び銀又は銀合金被覆層の密着性に優れた耐熱銀被
覆複合体とその製造方法を提供することにある。
Therefore, the present inventors examined the latter deterioration of solderability, and the reason for this is that the reaction rate between the silver coating layer and the solder becomes slower as the crystal grains become larger, and the reason for this is that The inventors have found that slight stains or defective shapes have an adverse effect on the solderability, and have further researched to complete the present invention. An object of the present invention is to provide a heat-resistant silver-coated composite having excellent solderability, corrosion resistance, and adhesion of a silver or silver alloy coating layer, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は、
少なくとも表面が導電性を有する基材上に、直接、又は
ニッケル、コバルト、若しくはそれらの合金からなる下
地層を介して、銀又は銀合金層が形成された耐熱銀被覆
複合体において、前記銀又は銀合金層の内側の平均結晶
粒径が3μm以上、外側の平均結晶粒径が2μm以下で
あることを特徴とする耐熱銀被覆複合体である。
According to the first aspect of the present invention,
In a heat-resistant silver-coated composite in which a silver or silver alloy layer is formed on a base material having at least a surface of conductivity, directly or via an underlayer made of nickel, cobalt, or an alloy thereof, the silver or The heat-resistant silver-coated composite is characterized in that the average crystal grain size on the inside of the silver alloy layer is 3 μm or more and the average crystal grain size on the outside is 2 μm or less.

【0007】この発明において、少なくとも表面が導電
性を有する基材には、タフピッチ銅(TPC) 、Cu−0.1
wt%Ag合金、Cu−0.15wt%Sn合金、Al、Al合
金等の導電性を有する金属材料、又は、鉄系、ニッケル
系等の金属材や、セラミックス、プラスチック上に銅等
の導電性金属をクラッド或いはめっきした複合材等が適
用される。基材の形状は、例えば、リード線等用の丸
線、角線、回路導体(印刷回路等)等用の板材、条材、
箔材等である。前記基材上に銀又は銀合金層(以下、銀
被覆層と略記する)を形成するには、通常、電気めっき
法が適用される。又その厚さは 0.5〜5.0 μm程度であ
る。銀合金被覆層にはAg-0.1〜5wt%Sn合金、Ag
-0.1〜5wt%Sb合金、Ag-0.1〜10wt%In合金等が
適用される。基材と銀被覆層の間には、必要に応じて、
ニッケル、コバルト又はそれらの合金からなる下地層を
介在させる。この下地層は基材からの銅の拡散を抑制す
るので、銀被覆層の厚さを薄くできる。
In the present invention, tough pitch copper (TPC), Cu-0.1 and
wt% Ag alloy, Cu-0.15 wt% Sn alloy, Al, Al alloy or other conductive metal material, or iron-based or nickel-based metal material, or conductive metal such as copper on ceramics or plastic A clad or plated composite material or the like is applied. The shape of the base material is, for example, a round wire for a lead wire, a square wire, a plate material for a circuit conductor (printed circuit, etc.), a strip material,
It is a foil material or the like. An electroplating method is usually applied to form a silver or silver alloy layer (hereinafter abbreviated as a silver coating layer) on the substrate. The thickness is about 0.5 to 5.0 μm. Ag-0.1 to 5 wt% Sn alloy, Ag
-0.1 to 5 wt% Sb alloy, Ag-0.1 to 10 wt% In alloy, etc. are applied. Between the base material and the silver coating layer, if necessary,
An underlayer made of nickel, cobalt or an alloy thereof is interposed. Since this underlayer suppresses the diffusion of copper from the base material, the thickness of the silver coating layer can be reduced.

【0008】この発明において、銀被覆層の内側の平均
結晶粒径を3μm以上に限定した理由は、3μm未満で
は、銀被覆層の結晶粒界が多くなり、粒界を伝わって酸
素が銀被覆層内に多量に浸透して、基材又は下地層を酸
化させる為である。銀被覆層内側の平均結晶粒径は7μ
m以上が好ましい。又銀被覆層の外側の平均結晶粒径を
2μm以下に限定した理由は、平均結晶粒径が2μmを
超えると、銀被覆層と半田との反応速度が遅くなり、銀
被覆層表面の汚れや形状不良が半田付性に影響する為で
ある。つまり、この発明では、銀被覆層の外側の平均結
晶粒径を2μm以下に細かくして半田との反応速度を速
めることにより、その表面の汚れ等の影響が半田付け性
に及ばないようにしたのである。銀被覆層の外側の平均
結晶粒径は 0.5μm以下が好ましい。
In the present invention, the reason why the average crystal grain size inside the silver coating layer is limited to 3 μm or more is that if the average grain size is less than 3 μm, the number of crystal grain boundaries in the silver coating layer increases, and oxygen propagates through the grain boundaries and silver is coated with silver. This is because it penetrates into the layer in a large amount and oxidizes the base material or the underlayer. The average grain size inside the silver coating is 7μ
m or more is preferable. The reason for limiting the average crystal grain size on the outside of the silver coating layer to 2 μm or less is that when the average crystal grain size exceeds 2 μm, the reaction rate between the silver coating layer and the solder becomes slow, and the surface of the silver coating layer becomes dirty. This is because the defective shape affects the solderability. That is, in the present invention, the average crystal grain size on the outside of the silver coating layer is made finer to 2 μm or less to accelerate the reaction rate with the solder, so that the influence of dirt on the surface does not affect the solderability. Of. The average grain size on the outside of the silver coating layer is preferably 0.5 μm or less.

【0009】請求項2記載の発明は、少なくとも表面が
導電性を有する基材上に、直接、又はニッケル、コバル
ト、若しくはそれらの合金からなる下地層を介して、銀
又は銀合金層aを形成する工程、非酸化性ガス雰囲気中
にて 300℃以上の温度で加熱処理する工程、前記加熱処
理後の銀又は銀合金層上に、再度銀又は銀合金層bを形
成する工程をこの順序で施すことを特徴とする請求項1
記載の耐熱銀被覆複合体の製造方法である。
According to a second aspect of the present invention, the silver or silver alloy layer a is formed on a substrate having at least a surface of conductivity, directly or through an underlayer made of nickel, cobalt, or an alloy thereof. In that order, the step of performing heat treatment at a temperature of 300 ° C. or higher in a non-oxidizing gas atmosphere, and the step of forming a silver or silver alloy layer b again on the silver or silver alloy layer after the heat treatment in this order. The method according to claim 1, wherein
It is a method for producing the heat-resistant silver-coated composite described.

【0010】この発明では、例えば、銅線、又は表面に
下地層を形成した銅線に、銀層aめっき→加熱処理→銀
層bめっきの工程を施す。ここで、銀層aは、銀被覆層
の内側を指し、銀層bは外側を指す。銀層aは加熱処理
工程で再結晶して結晶粒が3μm以上に大きくなる。前
記加熱処理は、窒素、アルゴン等の非酸化性ガス雰囲気
中で行う。前記加熱処理温度を 300℃以上に限定した理
由は、 300℃未満では銀層aは再結晶するものの、平均
結晶粒径が3μm未満と小さく、酸素の浸透を十分に抑
制できない為である。加熱処理温度は、 800℃を超える
と銅線等の成分が銀被覆層へ激しく拡散して銀被覆層の
外観が変色する場合があるので、 800℃以下にするのが
好ましい。又加熱処理時間は、5秒未満では3μm以上
の平均結晶粒径が得られない場合があるので、5秒以上
にするのが好ましい。前記加熱処理後の銀層a上にめっ
きする銀層bの平均結晶粒径を2μm以下に限定した理
由は、2μmを超えると半田との反応速度が遅くなり、
銀層表面の汚れ等の影響がでて半田付け性が低下する為
である。2μm以下の平均結晶粒径は、通常の銀めっき
により得られる。ストライクめっき浴を用いることによ
り、平均結晶粒径を1μm以下にできる。
In the present invention, for example, the steps of silver layer a plating → heat treatment → silver layer b plating are performed on a copper wire or a copper wire having an underlayer formed on the surface thereof. Here, the silver layer a refers to the inside of the silver coating layer, and the silver layer b refers to the outside. The silver layer a is recrystallized in the heat treatment step, and the crystal grains become larger than 3 μm. The heat treatment is performed in a non-oxidizing gas atmosphere such as nitrogen or argon. The reason why the heat treatment temperature is limited to 300 ° C. or higher is that the silver layer a is recrystallized below 300 ° C., but the average crystal grain size is small below 3 μm and oxygen permeation cannot be sufficiently suppressed. When the heat treatment temperature is higher than 800 ° C, components such as copper wires may diffuse into the silver coating layer violently and the appearance of the silver coating layer may be discolored. Therefore, the heat treatment temperature is preferably 800 ° C or lower. If the heat treatment time is less than 5 seconds, an average crystal grain size of 3 μm or more may not be obtained, so that the heat treatment time is preferably 5 seconds or more. The reason for limiting the average crystal grain size of the silver layer b plated on the silver layer a after the heat treatment to 2 μm or less is that the reaction rate with the solder becomes slow when the average grain size exceeds 2 μm.
This is because the silver layer surface is affected by dirt and the like and solderability is reduced. An average crystal grain size of 2 μm or less can be obtained by ordinary silver plating. By using the strike plating bath, the average crystal grain size can be 1 μm or less.

【0011】この発明において、銀又は銀合金層a形成
後に、加工を施し、次いで加熱処理と銀層bの形成を
順次施すことも可能である。ここでは、銀層aに加工
により適量の歪みを付与しておき、次の加熱処理で前記
銀層aの結晶粒をより粗大化して、銀層aの酸素の透過
抑制効果を向上させる。加工の減面加工率は、5%未
満では歪みが不足して結晶粒の粗大化効果が十分に得ら
れず、98%を超えると歪みが大きすぎて加熱処理で結晶
粒が逆に微細化するようになる。従って加工での減面
加工率は5〜98%が好ましい。
In the present invention, after the silver or silver alloy layer a is formed, it is possible to carry out processing, and then heat treatment and formation of the silver layer b are carried out successively. Here, an appropriate amount of strain is applied to the silver layer a by processing, and the crystal grains of the silver layer a are further coarsened by the next heat treatment to improve the oxygen permeation suppression effect of the silver layer a. If the reduction rate of processing is less than 5%, the strain will be insufficient and the effect of coarsening the crystal grains will not be sufficient, and if it exceeds 98%, the strain will be too large and the crystal grains will become finer by heat treatment. Come to do. Therefore, it is preferable that the surface-reduction processing rate in processing is 5 to 98%.

【0012】請求項3記載の発明は、少なくとも表面が
導電性を有する基材上に、直接、又はニッケル、コバル
ト、若しくはそれらの合金からなる下地層を介して、銀
又は銀合金層aを形成する工程、非酸化性ガス雰囲気中
にて 300℃以上の温度で加熱処理する工程、30%以下の
減面加工率で加工する工程、前記加工後の銀又は銀合金
層上に、再度銀又は銀合金層bを形成する工程をこの順
序で施すことを特徴とする請求項1記載の耐熱銀被覆複
合体の製造方法である。
According to the third aspect of the present invention, the silver or silver alloy layer a is formed directly on the substrate having at least the surface of conductivity or through the underlayer made of nickel, cobalt or an alloy thereof. Step, heat treatment in a non-oxidizing gas atmosphere at a temperature of 300 ° C. or higher, processing at a surface-reduction processing rate of 30% or lower, and silver or silver alloy layer on the processed silver or silver alloy layer again. The method for producing a heat-resistant silver-coated composite body according to claim 1, wherein the steps of forming the silver alloy layer b are performed in this order.

【0013】この発明の工程は、銀層a形成→加熱処理
→加工→銀層b形成の順で行われる。即ち、加熱処理
後に加工が入る以外は請求項2記載の方法と同じであ
る。銀層aは加熱処理で再結晶して平均結晶粒径が3μ
m以上に大きくなり、次の加工で組織が緻密化し、強
度アップが図られる。前記加工の減面加工率を30%以
下に限定した理由は、減面加工率が30%を超すと、銀層
aの平均結晶粒径が3μm未満になり酸素の浸透抑制効
果が十分に得られなくなる為である。
The steps of the present invention are carried out in the order of silver layer a formation → heat treatment → processing → silver layer b formation. That is, it is the same as the method according to claim 2, except that processing is performed after the heat treatment. The silver layer a was recrystallized by heat treatment and had an average crystal grain size of 3 μm.
It becomes larger than m, the structure is densified in the next processing, and the strength is increased. The reason why the surface-reduction processing rate of the processing is limited to 30% or less is that when the surface-reduction processing rate exceeds 30%, the average crystal grain size of the silver layer a becomes less than 3 μm and the oxygen permeation suppression effect is sufficiently obtained. This is because it will not be possible.

【0014】この発明において、銀層a形成後に、加工
を施し、次いで加熱処理を施すことも可能である。こ
の方法によれば、銀層aは、結晶粒径が粗大で、緻密且
つ高強度なものとなる。前述と同じ理由で、加工の減
面加工率は5〜98%が好ましく、加工の減面加工率は
30%以下とする。
In the present invention, after forming the silver layer a, it is possible to carry out processing and then heat treatment. According to this method, the silver layer a has a coarse crystal grain size, a fine grain size, and a high strength. For the same reason as above, the reduction rate of processing is preferably 5 to 98%, and the reduction rate of processing is
30% or less.

【0015】請求項2又は請求項3に記載した発明によ
り製造される耐熱銀被覆複合体に減面加工率が30%以下
の加工(加工)を施すことも可能である。この加工に
より、銀層aと銀層bは緻密で高強度なものになる。こ
こで減面加工率を30%以下とするのは、前述と同じ理由
である。
It is also possible to subject the heat-resistant silver-coated composite produced by the invention described in claim 2 or 3 to processing (processing) with a surface-reduction processing rate of 30% or less. By this processing, the silver layer a and the silver layer b become dense and have high strength. The reason why the surface-reduction processing rate is 30% or less is the same as that described above.

【0016】[0016]

【実施例】表1に示す8通りの製造工程により本発明の
耐熱銀被覆複合体を製造した。基材には 0.8〜1.0 mmφ
のタフピッチ銅線を用いた。銀被覆層にはAg又はAg
−Sb合金を用いた。尚、銀被覆層の電気めっきは下記
の条件で行った。 〔Ni下地層〕浴組成:スルファミン酸ニッケル 400g
/リットル 、塩化ニッケル30g/リットル 、ホウ酸30g/リットル 。
浴温:50℃。電流密度:10A/dm2。 〔Ag層〕浴組成:シアン化銀50g/リットル 、シアン化カ
リウム60g/リットル 、炭酸カリウム30g/リットル 。浴温:30
℃。電流密度:2A/dm2。 〔Ag合金層〕浴組成:シアン化銀50g/リットル 、シアン
化カリウム60g/リットル 、酒石酸アンチモニルカリ 2.5g
/リットル 、炭酸カリウム30g/リットル 。浴温:30℃。電流密
度:2A/dm2
EXAMPLE The heat-resistant silver-coated composite of the present invention was produced by the eight production steps shown in Table 1. 0.8 to 1.0 mmφ for base material
The tough pitch copper wire of was used. Ag or Ag for the silver coating layer
-Sb alloy was used. The electroplating of the silver coating layer was performed under the following conditions. [Ni base layer] Bath composition: 400 g of nickel sulfamate
/ Liter, nickel chloride 30g / liter, boric acid 30g / liter.
Bath temperature: 50 ° C. Current density: 10 A / dm 2 . [Ag layer] Bath composition: silver cyanide 50 g / liter, potassium cyanide 60 g / liter, potassium carbonate 30 g / liter. Bath temperature: 30
° C. Current density: 2 A / dm 2 . [Ag alloy layer] Bath composition: Silver cyanide 50 g / liter, potassium cyanide 60 g / liter, antimony potassium tartrate 2.5 g
/ Liter, potassium carbonate 30 g / liter. Bath temperature: 30 ° C. Current density: 2 A / dm 2 .

【0017】得られた各々の銀被覆銅線について、半田
濡れ時間、半田濡れ性、銀被覆層の密着性を下記条件に
より調べた。結果を、製造条件を併記して表2及び表3
に示す。 〔半田濡れ時間〕 350℃に加熱した95%Pb−Sn半田
浴に、2mm/sec.の速度で深さ2mm浸漬し、10sec.間保持
した。結果はゼロクロスタイムで評価した。 〔半田濡れ性〕銀被覆銅線を 230℃の大気中で10時間加
熱したのち、 270℃に保持された共晶半田浴に5秒間デ
ィップしたのちの半田付着面積を計測し、この面積の全
面積に対する比率(%)で表した。 〔銀被覆層の密着性〕ゲージ長さ50mmで、正方向に35
回、次に逆方向に30回捻回した後の銀被覆層の剥離程度
を観察した。
With respect to each of the obtained silver-coated copper wires, the solder wetting time, the solder wettability, and the adhesion of the silver coating layer were examined under the following conditions. The results are shown in Tables 2 and 3 together with the production conditions.
Shown in [Solder wetting time] A 95% Pb-Sn solder bath heated to 350 ° C was dipped at a speed of 2 mm / sec. To a depth of 2 mm and kept for 10 sec. The results were evaluated at zero cross time. [Solder wettability] After heating the silver-coated copper wire in the atmosphere at 230 ℃ for 10 hours, dip it in the eutectic solder bath kept at 270 ℃ for 5 seconds and measure the solder adhesion area. It was expressed as a ratio (%) to the area. [Adhesion of silver coating layer] With a gauge length of 50 mm, 35 in the positive direction
The degree of peeling of the silver coating layer was observed after twisting 30 times and then 30 times in the opposite direction.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】表2及び表3より明らかなように、本発明
例品(実施例 1〜13) は銀(銀又は銀合金)被覆層の内
側の平均結晶粒径が3μm以上と大きい為酸素の浸透が
抑制され、その結果、半田濡れ面積が広がり半田付性が
向上した。又銀被覆層の剥離も無かった。 又銀被覆層
外側の平均結晶粒径が2μm以下と小さい為半田濡れ時
間が短かくなり、銀被覆層表面の汚れ等の影響が低減さ
れた。これに対し、比較例品の比較例 14,15は、半田濡
れ面積が減少し、又捻回試験で銀被覆層が剥離した。こ
れは、銀被覆層の平均結晶粒径が小さく、酸素が多量に
浸透して銅線表面が酸化した為である。又比較例16は、
銀層の平均結晶粒径が大きかった為、半田濡れ性及び銀
被覆層の密着性は良好だったが、半田の濡れ時間が長く
なり、表面の汚れ等により半田付性が悪影響を受けるこ
とが判明した。
As is clear from Tables 2 and 3, the products of Examples of the present invention (Examples 1 to 13) have a large average crystal grain size of 3 μm or more on the inside of the silver (silver or silver alloy) coating layer. Penetration was suppressed, and as a result, the solder wetted area was expanded and solderability was improved. There was also no peeling of the silver coating layer. Further, since the average crystal grain size on the outside of the silver coating layer is as small as 2 μm or less, the solder wetting time is shortened, and the influence of dirt on the surface of the silver coating layer is reduced. On the other hand, in Comparative Examples 14 and 15, which are Comparative Example products, the solder wetting area was reduced and the silver coating layer was peeled off in the twist test. This is because the silver coating layer has a small average crystal grain size and a large amount of oxygen permeates to oxidize the surface of the copper wire. Comparative Example 16 is
Since the average crystal grain size of the silver layer was large, the solder wettability and the adhesion of the silver coating layer were good, but the solder wetting time became longer and the solderability could be adversely affected by surface stains, etc. found.

【0022】前記各々の銀被覆銅線を用いて樹脂モール
ドを行うダイオードを組立て、シリコンチップの半田付
性等を調べた。その結果、本発明例品は、いずれも良好
な半田付性を示し、又外観変色等も起きず耐食性に優れ
ることが確認された。他方、比較例品は、シリコンチッ
プの半田付け強度が低く、変色も発生した。
A diode for resin molding was assembled using each of the silver-coated copper wires, and the solderability of the silicon chip was examined. As a result, it was confirmed that the products of the present invention all exhibited good solderability and had excellent corrosion resistance without discoloration in appearance. On the other hand, in the comparative example product, the soldering strength of the silicon chip was low and discoloration occurred.

【0023】[0023]

【発明の効果】以上に述べたように、本発明の銀被覆複
合体は、半田付性、耐食性、及び銀被覆層の密着性に優
れ、樹脂モールド等の高温工程を伴う電子機器部品の製
造等に用いて極めて有用である。
As described above, the silver-coated composite of the present invention is excellent in solderability, corrosion resistance, and adhesion of the silver coating layer, and is used for manufacturing electronic equipment parts involving high temperature steps such as resin molding. It is extremely useful for

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 5/02 H01B 5/02 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location H01B 5/02 H01B 5/02 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも表面が導電性を有する基材上
に、直接、又はニッケル、コバルト、若しくはそれらの
合金からなる下地層を介して、銀又は銀合金層が形成さ
れた耐熱銀被覆複合体において、前記銀又は銀合金層の
内側の平均結晶粒径が3μm以上、外側の平均結晶粒径
が2μm以下であることを特徴とする耐熱銀被覆複合
体。
1. A heat-resistant silver-coated composite in which a silver or silver alloy layer is formed on a substrate having at least a surface of conductivity, directly or through an underlayer made of nickel, cobalt, or an alloy thereof. 2. The heat-resistant silver-coated composite according to, wherein the average crystal grain size inside the silver or silver alloy layer is 3 μm or more and the average crystal grain size outside is 2 μm or less.
【請求項2】 少なくとも表面が導電性を有する基材上
に、直接、又はニッケル、コバルト、若しくはそれらの
合金からなる下地層を介して、銀又は銀合金層aを形成
する工程、非酸化性ガス雰囲気中にて 300℃以上の温度
で加熱処理する工程、前記加熱処理後の銀又は銀合金層
上に、再度銀又は銀合金層bを形成する工程をこの順序
で施すことを特徴とする請求項1記載の耐熱銀被覆複合
体の製造方法。
2. A step of forming silver or a silver alloy layer a directly or at least through an underlayer made of nickel, cobalt, or an alloy thereof on a substrate having at least a surface of conductivity, a non-oxidizing property. The method is characterized in that a step of performing heat treatment at a temperature of 300 ° C. or higher in a gas atmosphere, and a step of forming a silver or silver alloy layer b again on the silver or silver alloy layer after the heat treatment are performed in this order. The method for producing a heat-resistant silver-coated composite according to claim 1.
【請求項3】 少なくとも表面が導電性を有する基材上
に、直接、又はニッケル、コバルト、若しくはそれらの
合金からなる下地層を介して、銀又は銀合金層aを形成
する工程、非酸化性ガス雰囲気中にて 300℃以上の温度
で加熱処理する工程、30%以下の減面加工率で加工する
工程、前記加工後の銀又は銀合金層上に、再度銀又は銀
合金層bを形成する工程をこの順序で施すことを特徴と
する請求項1記載の耐熱銀被覆複合体の製造方法。
3. A step of forming a silver or silver alloy layer a directly or at least through an underlayer made of nickel, cobalt, or an alloy thereof on a base material having at least a surface of conductivity, a non-oxidizing property. A step of heat-treating at a temperature of 300 ° C. or higher in a gas atmosphere, a step of processing at a surface-reduction rate of 30% or less, and a silver or silver alloy layer b is formed again on the silver or silver alloy layer after the processing. The method for producing a heat-resistant silver-coated composite according to claim 1, wherein the steps are performed in this order.
JP08535395A 1995-04-11 1995-04-11 Heat-resistant silver-coated composite and method for producing the same Expired - Fee Related JP3303594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08535395A JP3303594B2 (en) 1995-04-11 1995-04-11 Heat-resistant silver-coated composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08535395A JP3303594B2 (en) 1995-04-11 1995-04-11 Heat-resistant silver-coated composite and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08283963A true JPH08283963A (en) 1996-10-29
JP3303594B2 JP3303594B2 (en) 2002-07-22

Family

ID=13856332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08535395A Expired - Fee Related JP3303594B2 (en) 1995-04-11 1995-04-11 Heat-resistant silver-coated composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP3303594B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227266A (en) * 2006-02-24 2007-09-06 Mitsubishi Cable Ind Ltd Assembled conductor
JP2009079250A (en) * 2007-09-26 2009-04-16 Dowa Metaltech Kk Copper or copper alloy member having silver alloy layer formed as outermost surface layer, and manufacturing method therefor
KR100963735B1 (en) * 2006-07-06 2010-06-14 파나소닉 전공 주식회사 Silver layer formed by electrosilvering substrate material
JP2013531729A (en) * 2010-03-12 2013-08-08 エクスタリック コーポレイション Coatings and methods
US8637164B2 (en) * 2010-02-12 2014-01-28 Furukawa Electric Co., Ltd. Silver-coated composite material for a movable contact part, method of producing the same, and movable contact part
US8936857B2 (en) 2010-03-12 2015-01-20 Xtalic Corporation Coated articles and methods
JP2015137421A (en) * 2014-01-24 2015-07-30 古河電気工業株式会社 Metal coating material for electric contact and production method thereof
JP2018009203A (en) * 2016-07-12 2018-01-18 古河電気工業株式会社 Surface treatment material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227266A (en) * 2006-02-24 2007-09-06 Mitsubishi Cable Ind Ltd Assembled conductor
KR100963735B1 (en) * 2006-07-06 2010-06-14 파나소닉 전공 주식회사 Silver layer formed by electrosilvering substrate material
US8062765B2 (en) 2006-07-06 2011-11-22 Panasonic Electric Works, Ltd. Silver layer formed by electrosilvering substrate material
JP2009079250A (en) * 2007-09-26 2009-04-16 Dowa Metaltech Kk Copper or copper alloy member having silver alloy layer formed as outermost surface layer, and manufacturing method therefor
US8637164B2 (en) * 2010-02-12 2014-01-28 Furukawa Electric Co., Ltd. Silver-coated composite material for a movable contact part, method of producing the same, and movable contact part
JP2013531729A (en) * 2010-03-12 2013-08-08 エクスタリック コーポレイション Coatings and methods
US8936857B2 (en) 2010-03-12 2015-01-20 Xtalic Corporation Coated articles and methods
JP2015137421A (en) * 2014-01-24 2015-07-30 古河電気工業株式会社 Metal coating material for electric contact and production method thereof
JP2018009203A (en) * 2016-07-12 2018-01-18 古河電気工業株式会社 Surface treatment material

Also Published As

Publication number Publication date
JP3303594B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
JP2003293187A (en) Copper or copper alloy subjected to plating and method for manufacturing the same
JP3481392B2 (en) Electronic component lead member and method of manufacturing the same
JPH11350188A (en) Material for electric and electronic parts, its production, and electric and electronic parts lising the same
KR19990045402A (en) Metal Composite Band Manufacturing Method
JP2915623B2 (en) Electrical contact material and its manufacturing method
JP3303594B2 (en) Heat-resistant silver-coated composite and method for producing the same
JP2000077593A (en) Lead frame for semiconductor
JP3667926B2 (en) Gold / nickel / nickel three-layer plated copper alloy electronic component and method for manufacturing the same
JPH058276B2 (en)
JP3116332B2 (en) Nickel-plated copper alloy lead frame for solder die bonding
JP2000030558A (en) Electric contact material and its manufacture
JP2942476B2 (en) Multi-layer plating lead wire and lead frame
JP4014739B2 (en) Reflow Sn plating material and terminal, connector, or lead member using the reflow Sn plating material
EP0084161B1 (en) Lead frames for electronic and electric devices
JPS6047344B2 (en) Hot-dipped ultrafine copper alloy conductor
JPH046296A (en) Nickel-plated copper wire and its production
JPH1084065A (en) Conductive material for electronic component
JPS5882406A (en) Silver or silver alloy coated wire and method of producing same
JP2537301B2 (en) Electronic component manufacturing method
JPH0344454A (en) Production of lead wire for electronic parts and equipment
JP2005085590A (en) Composite coated copper wire, composite coated enamel copper wire, and composite coated fusion enamel copper wire
JPH11260993A (en) Copper alloy lead material for semiconductor device with excellent solder heat-resistant peeling property
JPH0674463B2 (en) Copper alloy for lead frame
JPH0122685B2 (en)
JP2516102B2 (en) Small diameter composite metal coating

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140510

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees