JPH05179419A - Surface hydrophilic treatment of heat transfer tube - Google Patents

Surface hydrophilic treatment of heat transfer tube

Info

Publication number
JPH05179419A
JPH05179419A JP179592A JP179592A JPH05179419A JP H05179419 A JPH05179419 A JP H05179419A JP 179592 A JP179592 A JP 179592A JP 179592 A JP179592 A JP 179592A JP H05179419 A JPH05179419 A JP H05179419A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
electrode
tube
hydrophilicity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP179592A
Other languages
Japanese (ja)
Other versions
JP2878514B2 (en
Inventor
Masashi Ishida
政司 石田
Michihiko Niwa
充彦 丹羽
Tomio Higo
富夫 肥後
Tetsuo Uchida
哲夫 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP179592A priority Critical patent/JP2878514B2/en
Publication of JPH05179419A publication Critical patent/JPH05179419A/en
Application granted granted Critical
Publication of JP2878514B2 publication Critical patent/JP2878514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To improve the hydrophilicity of a metallic heat transfer tube surface by generating a corona discharge between the surface of the heat transfer tube and the cylindrical electrode on the outer periphery thereof and bringing accelerated free electrons into collision against the heat transfer tube surface. CONSTITUTION:While the heat transfer tube 1 made of a metal is transported by pinch rolls 2a, 2b, the heat transfer tube 1 is passed in the cylindrical electrode 4 made of Al. The high-frequency voltage generated from a high-frequency generator 7 with an AC power source 9 as a power source is boosted by a voltage transformer 6 and is impressed to the electrode 4, by which the free electrons existing between the electrode 4 and the heat transfer tube 1 are accelerated and many high-energy electrons are brought into collision against the surface of the heat transfer tube 1 to break down the hydrophobic org. matter on the surface of the heat transfer tube 1 and to convert the gaseous O2 in the air to ozone. A stable and porous oxide film is thus formed on the surface of the heat transfer tube 1 and the hydrophilicity of the surface of the heat transfer tube 1 is greatly improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は所定の管形状に加工され
た熱交換器用金属伝熱管の表面親水性を向上させる伝熱
管の表面親水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating the surface of a metal heat transfer tube for a heat exchanger, which is processed into a predetermined tube shape, so as to have a hydrophilic surface.

【0002】[0002]

【従来の技術】従来、熱交換器用として所定の管形状に
加工された伝熱管の表面親水性を向上させる表面親水処
理方法としては、以下に示す方法がある。
2. Description of the Related Art Conventionally, as a surface hydrophilic treatment method for improving the surface hydrophilicity of a heat transfer tube processed into a predetermined tube shape for a heat exchanger, there are the following methods.

【0003】(1)機械的研磨法 金属伝熱管の表面をワイヤーブラシ又はサンドペーパ等
で研磨し、管表面に付着しているカーボン等を除去する
ことにより、表面親水性を向上させる。
(1) Mechanical Polishing Method The surface of the metal heat transfer tube is polished with a wire brush or sandpaper to remove carbon and the like adhering to the surface of the tube to improve the surface hydrophilicity.

【0004】(2)表面化学処理法 硫酸及び界面活性剤等により伝熱管表面を洗浄して活性
化させることにより、表面親水性を向上させる。
(2) Surface chemical treatment method The surface hydrophilicity is improved by cleaning and activating the surface of the heat transfer tube with sulfuric acid and a surfactant.

【0005】(3)熱処理法 金属伝熱管に熱処理を施し、管表面に付着している油分
及びカーボンを変質させて酸化皮膜処理を施すことによ
り、表面親水性を向上させる。
(3) Heat treatment method A metal heat transfer tube is heat-treated to change the oil content and carbon adhering to the tube surface and to be subjected to an oxide film treatment to improve the surface hydrophilicity.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た従来の伝熱管の表面親水処理方法においては、いずれ
もある程度の親水性を得ることはできるものの、十分で
なく、以下に示す問題点がある。
However, all of the above-mentioned conventional methods for treating the surface hydrophilicity of the heat transfer tube can obtain a certain degree of hydrophilicity, but are not sufficient, and have the following problems.

【0007】機械式研磨法においては、研磨で除去した
カーボン及び油分を含む微粉が伝熱管表面に再付着し
て、表面親水性を阻害する。また、処理直後においては
良好な親水性を得ることができるものの、研磨により露
出した金属伝熱管の表面は周囲の雰囲気の影響を受けや
すい状態であるため、汚れ等が付着して親水性が経時的
に劣化してしまう。
In the mechanical polishing method, fine powder containing carbon and oil removed by polishing is redeposited on the surface of the heat transfer tube to hinder surface hydrophilicity. Also, although good hydrophilicity can be obtained immediately after the treatment, since the surface of the metal heat transfer tube exposed by polishing is easily affected by the surrounding atmosphere, stains and the like adhere to the surface to make it hydrophilic. Will be deteriorated.

【0008】表面化学処理法においては、酸洗及び水処
理等の設備が必要であり、これらの設備に対するメンテ
ナンスコストが高い。また、一般的に、処理に長時間か
かるため、生産性が悪い。更に、機械式研磨法と同様
に、処理直後においては良好な表面親水性を得ることが
できるものの、親水性が経時的に劣化してしまうという
欠点もある。
The surface chemical treatment method requires facilities such as pickling and water treatment, and the maintenance cost for these facilities is high. Further, in general, the processing takes a long time, so that the productivity is low. Further, similar to the mechanical polishing method, although good surface hydrophilicity can be obtained immediately after the treatment, there is a drawback that the hydrophilicity deteriorates with time.

【0009】熱処理法においては、金属管表面を加工油
の分解温度(通常、300 ℃以上)まで昇温する必要があ
るが、伝熱管として一般的に用いられている銅管の場合
は、処理温度が銅の軟化温度(約 250℃)を超えてしま
うため、機械的強度が低下する。なお、昇温による軟化
を回避するために、金属管表面のみを局部的に火炎にて
加熱するフレーム処理法もあるが、火炎を管周全体に均
一にあてると共に、管を軟化させないように処理するこ
とは困難であり、処理むらが発生しやすい。
In the heat treatment method, it is necessary to raise the temperature of the metal tube surface to the decomposition temperature of the processing oil (usually 300 ° C. or higher). However, in the case of a copper tube generally used as a heat transfer tube, Since the temperature exceeds the softening temperature of copper (about 250 ° C), the mechanical strength decreases. In addition, in order to avoid softening due to temperature rise, there is also a flame treatment method in which only the surface of the metal pipe is locally heated with a flame, but the flame is uniformly applied to the entire circumference of the pipe, and treatment is performed so as not to soften the pipe. It is difficult to do so and uneven processing is likely to occur.

【0010】本発明はかかる問題点に鑑みてなされたも
のであって、表面親水性が優れていると共に表面の親水
性の経時的劣化が少なく、生産性が良好の伝熱管の表面
親水処理方法を提供することを目的とする。
The present invention has been made in view of the above problems, and is a method for treating the surface hydrophilicity of a heat transfer tube, which has excellent surface hydrophilicity, little deterioration of surface hydrophilicity over time, and good productivity. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】本発明に係る伝熱管の表
面親水処理方法は、金属伝熱管表面から所定の距離だけ
離隔させて電極を配置し、この電極と前記金属伝熱管と
の間に電圧を印加して、コロナ放電を発生させると共に
自由電子を加速し前記金属伝熱管表面に衝突させること
を特徴とする。
According to the method for hydrophilically treating a surface of a heat transfer tube according to the present invention, an electrode is arranged at a predetermined distance from the surface of the metal heat transfer tube, and the electrode is placed between the electrode and the metal heat transfer tube. A voltage is applied to generate corona discharge and accelerate free electrons to collide with the surface of the metal heat transfer tube.

【0012】[0012]

【作用】本発明においては、金属伝熱管の表面から所定
の距離だけ離隔させて電極を配置し、この電極と前記金
属伝熱管との間に電圧を印加してコロナ放電を発生させ
る。そうすると、電圧の印加により、空気中に存在する
自由電子が加速され、この自由電子が空気中の分子との
衝突を繰り返して、電子なだれ現象が発生する。そし
て、多数の高エネルギー電子が伝熱管表面に衝突する。
この電子の衝突により、金属管表面に付着した抽伸油及
び転造油等の有機物の分子結合が破壊され、分子の鎖が
切断された状態になる。
In the present invention, the electrodes are arranged at a predetermined distance from the surface of the metal heat transfer tube, and a voltage is applied between the electrode and the metal heat transfer tube to generate corona discharge. Then, the application of the voltage accelerates the free electrons existing in the air, and the free electrons repeatedly collide with the molecules in the air to cause an electron avalanche phenomenon. Then, a large number of high-energy electrons collide with the surface of the heat transfer tube.
Due to the collision of electrons, the molecular bonds of organic substances such as drawn oil and rolling oil attached to the surface of the metal tube are broken, and the molecular chains are broken.

【0013】また、コロナ放電に伴って、紫外線及びオ
ゾン(O3 )が発生する。オゾンは、フッ素についで酸
化性が強い物質である。このオゾンにより、前述の分子
の鎖が切断された有機物分子が酸化されて、CO及びC
2 等に分解され、伝熱管表面上の有機物が除去される
(即ち、伝熱管表面が洗浄される)。
Further, ultraviolet rays and ozone (O 3 ) are generated along with the corona discharge. Ozone is a substance that is highly oxidative after fluorine. The ozone oxidizes the organic molecules whose chains have been cleaved to produce CO and C.
It is decomposed into O 2 and the like, and organic substances on the surface of the heat transfer tube are removed (that is, the surface of the heat transfer tube is cleaned).

【0014】更に、有機物が除去された金属地肌がオゾ
ンと反応して、伝熱管表面に金属酸化物の皮膜が形成さ
れる。この金属酸化物は、金属単体のような活性がな
く、安定した状態で存在するため、周囲の雰囲気の影響
を受けにくい。また、この金属酸化物は、金属単体に比
べて密度が低く、ポーラスな状態となっている。これに
より、良好な親水性が得られると共に、長時間に亘って
親水性を維持できる。
Further, the metal surface from which the organic substances have been removed reacts with ozone to form a metal oxide film on the surface of the heat transfer tube. This metal oxide is not active like a simple metal and is present in a stable state, so that it is not easily affected by the surrounding atmosphere. In addition, this metal oxide has a lower density than that of the metal alone and is in a porous state. Thereby, good hydrophilicity can be obtained and the hydrophilicity can be maintained for a long time.

【0015】ところで、オゾン発生の熱化学式は、下記
化学式1により示すように、吸熱反応となり、温度が高
いほどオゾンの発生が促進され、温度が低いほどオゾン
の分解(酸化)が促進される。
By the way, the thermochemical formula for ozone generation is an endothermic reaction as shown by the following chemical formula 1. The higher the temperature, the higher the generation of ozone, and the lower the temperature, the higher the decomposition (oxidation) of ozone.

【0016】[0016]

【化1】3O2 →2O3 −68kcal[Chemical 1] 3O 2 → 2O 3 −68 kcal

【0017】従って、有機物の分解及び酸化膜の形成を
効率よく行なうために、冷却手段により電極と金属伝熱
管との間(以下、処理部ともいう)を冷却しつつ、電極
と金属伝熱管との間に電圧を印加してコロナ放電を発生
させる工程と、加熱手段により電極と金属伝熱管との間
を加熱しつつ、電極と金属伝熱管との間に電圧を印加し
て、コロナ放電を発生させる工程とを設けることが好ま
しい。前者の工程においては、オゾンが効率的に発生
し、伝熱管表面の有機物の分解が促進される。また、後
者の工程においては、オゾンの分解が促進され、酸化皮
膜が効率的に形成される。
Therefore, in order to efficiently decompose the organic matter and form the oxide film, the electrode and the metal heat transfer tube are cooled while cooling the space between the electrode and the metal heat transfer tube (hereinafter also referred to as a processing section) by the cooling means. A step of applying a voltage between the electrodes to generate a corona discharge, and applying a voltage between the electrode and the metal heat transfer tube while heating between the electrode and the metal heat transfer tube by the heating means to generate a corona discharge. It is preferable to provide the process of generating. In the former process, ozone is efficiently generated, and decomposition of organic substances on the surface of the heat transfer tube is promoted. Further, in the latter step, the decomposition of ozone is promoted and the oxide film is efficiently formed.

【0018】[0018]

【実施例】次に、本発明の実施例について添付の図面を
参照して説明する。
Embodiments of the present invention will now be described with reference to the accompanying drawings.

【0019】図1は本発明の第1の実施例に係る伝熱管
の表面親水処理方法において使用する処理装置を示す模
式図、図2は図1のA−A線による断面図である。
FIG. 1 is a schematic view showing a processing apparatus used in the surface hydrophilic treatment method for heat transfer tubes according to the first embodiment of the present invention, and FIG. 2 is a sectional view taken along the line AA of FIG.

【0020】この処理装置は、伝熱管1を搬送するため
のピンチロール2a,2bと、例えばアルミニウム製の
円筒状電極4と、この電極4の両側に配置されたガイド
3a,3bと、電極4を冷却するためのエアーブローノ
ズル5と、表面処理部を冷却するための冷却用ノズル8
と、電極4に高周波の高電圧を供給する電源部とにより
構成されている。また、電源部は、交流電源9と、この
交流電源9から電力を供給されて高周波信号を発生する
ジェネレータ7と、このジェネレータ7から出力された
信号を昇圧するトランス6とにより構成されている。な
お、電極4の内側には絶縁体10が被着されている。
This processing apparatus includes pinch rolls 2a and 2b for conveying the heat transfer tube 1, a cylindrical electrode 4 made of, for example, aluminum, guides 3a and 3b arranged on both sides of the electrode 4, and an electrode 4 Air blow nozzle 5 for cooling the surface of the air, and cooling nozzle 8 for cooling the surface treatment part
And a power supply unit that supplies a high frequency high voltage to the electrode 4. The power supply unit is composed of an AC power supply 9, a generator 7 which is supplied with power from the AC power supply 9 to generate a high frequency signal, and a transformer 6 which boosts the signal output from the generator 7. An insulator 10 is attached to the inside of the electrode 4.

【0021】次に、この装置を使用した本実施例に係る
伝熱管の表面親水処理方法について説明する。
Next, the surface hydrophilic treatment method for the heat transfer tube according to this embodiment using this apparatus will be described.

【0022】伝熱管1はピンチロール2a,2bにより
搬送され、電極4内を通過する。この場合に、伝熱管1
は、ガイド3a,3bにより電極4の両側で支持される
ため、振動等が防止されて、電極4の内面と伝熱管1の
外周面との間の距離が一定に維持される。一方、電極4
と伝熱管1との間には、トランス6から高周波の高電圧
が印加される。
The heat transfer tube 1 is conveyed by pinch rolls 2a and 2b and passes through the inside of the electrode 4. In this case, the heat transfer tube 1
Is supported on both sides of the electrode 4 by the guides 3a and 3b, so that vibrations and the like are prevented and the distance between the inner surface of the electrode 4 and the outer peripheral surface of the heat transfer tube 1 is maintained constant. On the other hand, electrode 4
A high frequency high voltage is applied from the transformer 6 between the heat transfer tube 1 and the heat transfer tube 1.

【0023】この高電圧によりコロナ放電が発生し、電
極4と伝熱管1との間に存在する自由電子が加速され、
ガス中の分子を電離して、電子なだれ現象が発生する。
そして、多数の高エネルギーの電子が伝熱管1の表面に
衝突する。この電子の衝突により、伝熱管1の表面に付
着している疎水性の有機物の分子鎖が切断される。ま
た、放電により空気中の酸素が反応してオゾンが発生す
る。このオゾンにより前記分子鎖が切断された有機物が
酸化され、CO及びCO2 等のガス体に分解する。これ
により、伝熱管表面が清浄化される。更に、前記オゾン
により管表面が酸化され、管表面に安定で且つポーラス
な状態の酸化皮膜が形成される。
Corona discharge is generated by this high voltage, and free electrons existing between the electrode 4 and the heat transfer tube 1 are accelerated,
The avalanche phenomenon occurs by ionizing the molecules in the gas.
Then, a large number of high-energy electrons collide with the surface of the heat transfer tube 1. Due to the collision of the electrons, the molecular chain of the hydrophobic organic substance attached to the surface of the heat transfer tube 1 is cut. In addition, the discharge causes the oxygen in the air to react and generate ozone. The ozone oxidizes the organic substances whose molecular chains are cut, and decomposes them into gas such as CO and CO 2 . As a result, the surface of the heat transfer tube is cleaned. Further, the surface of the tube is oxidized by the ozone, and a stable and porous oxide film is formed on the surface of the tube.

【0024】なお、この表面親水処理において、伝熱管
の軟化及び機械的強度の低下を防止するために、電極4
の温度を 150℃以下にすることが好ましい。このため、
エアーブローノズル5からエアーを吐出して電極4を冷
却する。また、冷却用ノズル8からもエアーを吐出し
て、処理部を冷却する。
In this surface hydrophilic treatment, in order to prevent softening of the heat transfer tube and deterioration of mechanical strength, the electrode 4
It is preferable that the temperature is 150 ° C or lower. For this reason,
Air is discharged from the air blow nozzle 5 to cool the electrode 4. Air is also discharged from the cooling nozzle 8 to cool the processing unit.

【0025】本実施例においては、電子の衝突及びオゾ
ンによる有機物の酸化により清浄化された伝熱管の表面
に安定でポーラスな状態の酸化皮膜が形成される。この
酸化皮膜により、良好な表面親水性を得ることができ
る。
In the present embodiment, a stable and porous oxide film is formed on the surface of the heat transfer tube cleaned by the collision of electrons and the oxidation of organic substances by ozone. With this oxide film, good surface hydrophilicity can be obtained.

【0026】本実施例においては、伝熱管を連続的に表
面処理することができる。また、本実施例により処理し
た伝熱管は、その表面の親水性が優れており、且つ、長
時間に亘って親水性を良好な状態で維持することができ
る。更に、本実施例は、従来の化学的方法等による表面
処理方法に比して、処理工程が簡単であり、他の設備と
容易にオンライン化できるため、工程数の削減及び省人
化が可能である。更にまた、従来必要であったフロン及
び有機溶剤による洗浄工程を省略できるという効果を奏
する。
In this embodiment, the heat transfer tube can be continuously surface-treated. In addition, the heat transfer tube treated according to this example has excellent surface hydrophilicity and can maintain the hydrophilicity in a good state for a long time. Furthermore, in this embodiment, compared with the conventional surface treatment method using a chemical method or the like, the treatment process is simple and can be easily put online with other equipment, so that the number of processes can be reduced and labor can be saved. Is. Furthermore, it is possible to eliminate the conventionally required cleaning step using CFCs and organic solvents.

【0027】次に、本実施例方法により実際に銅管に表
面親水処理を施し、その表面親水性を調べた結果につい
て、比較例と比較して説明する。
Next, the results obtained by actually subjecting the copper pipe to the surface hydrophilic treatment by the method of this embodiment and examining the surface hydrophilicity thereof will be described in comparison with the comparative example.

【0028】図1に示す構成の装置を用いて、外径が19
mm、肉厚が 0.5mmのリン脱酸銅管(伝熱管)に表面処理
を施した。
Using the device having the configuration shown in FIG.
Surface treatment was applied to a phosphorus deoxidized copper tube (heat transfer tube) with a thickness of 0.5 mm and a thickness of 0.5 mm.

【0029】即ち、銅管を 5m/分の一定速度で電極内
を通過させつつ、 600Wの出力で連続的に放電処理を実
施した。このとき、電極と銅管との間隔は約 2mmに設定
した。
That is, while the copper tube was passed through the electrode at a constant speed of 5 m / min, discharge treatment was continuously carried out at an output of 600 W. At this time, the distance between the electrode and the copper tube was set to about 2 mm.

【0030】その後、銅管の表面にインキにて着色した
水を滴下し、濡れ広がり性を調べた。図3は、本実施例
により表面処理を施した直後に銅管表面の濡れ広がり性
を調べた結果を示す写真をトレースしたもの、図4は処
理後2週間に亘って大気中に放置した後、銅管表面の濡
れ広がり性を調べた結果を示す写真をトレースしたもの
である。この図3,4から明らかなように、本実施例方
法により処理した銅管は、管の上部から下部にかけて良
好な濡れ広がり性を示しており、2週間に亘って大気中
に放置した後も、管の上部から下部にかけて良好な濡れ
広がり性を示した。
After that, water colored with ink was dripped on the surface of the copper tube to examine the wettability and spreadability. FIG. 3 is a trace of a photograph showing a result of examining the wettability and spreadability of the surface of the copper pipe immediately after the surface treatment according to the present example, and FIG. 4 shows the result after left in the atmosphere for 2 weeks after the treatment. 3 is a trace of a photograph showing the result of examining the wettability and spreadability of the copper tube surface. As is clear from FIGS. 3 and 4, the copper tube treated by the method of this example shows good wettability and spreadability from the upper part to the lower part of the tube, and even after being left in the atmosphere for 2 weeks. The tube showed good wettability and spreadability from the top to the bottom.

【0031】一方、比較例として、ブラシ研磨法により
銅管に表面親水処理を施した。即ち、銅管を有機溶剤で
1時間洗浄した後、円筒状のワイヤブラシで管表面を研
磨した。図5は、このブラシ研磨法により表面処理した
直後に銅管表面の濡れ広がり性を調べた結果を示す写真
をトレースしたもの、図6は処理後2週間に亘って大気
中に放置した後、銅管表面の濡れ広がり性を調べた結果
を示す写真をトレースしたものである。この図5,6か
ら明らかなように、ブラシ研磨法により表面処理した銅
管は、処理直後においても管下部に液が偏りがちになっ
ており、銅管表面の濡れ広がり性が十分でない。また、
処理後2週間経過した銅管においては、銅管表面で液の
広がりが見られず滴状に付着した。
On the other hand, as a comparative example, a copper pipe was subjected to surface hydrophilic treatment by a brush polishing method. That is, the copper pipe was washed with an organic solvent for 1 hour, and then the pipe surface was polished with a cylindrical wire brush. FIG. 5 is a trace of a photograph showing the results of examining the wettability and spreadability of the surface of the copper tube immediately after the surface treatment by this brush polishing method. FIG. 6 shows the result after left in the atmosphere for 2 weeks after the treatment. It is a trace of a photograph showing the result of examining the wettability and spreadability of the copper tube surface. As is clear from FIGS. 5 and 6, in the copper tube surface-treated by the brush polishing method, the liquid tends to be biased to the lower portion of the tube immediately after the treatment, and the wettability and spreadability of the copper tube surface is not sufficient. Also,
In the copper tube that had been treated for 2 weeks, no spread of the liquid was observed on the surface of the copper tube and the solution adhered in a drop shape.

【0032】次に、表面処理を施していない銅管並びに
本実施例方法及びブラシ研磨法により表面処理した銅管
について、ホルムアミドとエチルセロソルブとを混合し
た試験液を使用して、濡れ指数を測定した。その結果を
下記表1に示す。但し、この表1において、濡れ指数の
単位はdyne/cmである。
Next, the wetting index of copper pipes not surface-treated and copper pipes surface-treated by the method of this embodiment and the brush polishing method were measured using a test solution in which formamide and ethyl cellosolve were mixed. did. The results are shown in Table 1 below. However, in Table 1, the unit of the wetting index is dyne / cm.

【0033】[0033]

【表1】 [Table 1]

【0034】この表1から明らかなように、ブラシ研磨
法により表面処理した銅管は、処理直後においては濡れ
指数が大きく、水濡れ性が良好であるが、経時的に濡れ
指数が低下してしまう。一方、本実施例方法により表面
処理した銅管は、濡れ指数の経時的変化が抑制され、長
期間に亘って良好な水濡れ性を維持することができる。
As is clear from Table 1, the copper pipe surface-treated by the brush polishing method has a large wetting index immediately after the treatment and good water wettability, but the wetting index decreases with time. I will end up. On the other hand, the copper pipe surface-treated by the method of the present example is capable of suppressing the change in the wetting index with time and maintaining good water wettability for a long period of time.

【0035】図7は、本発明の第2の実施例に係る伝熱
管の表面親水処理方法において使用する処理装置を示す
模式図である。
FIG. 7 is a schematic view showing a processing apparatus used in the surface hydrophilic treatment method for heat transfer tubes according to the second embodiment of the present invention.

【0036】本装置が図1に示す装置と異なる点は、電
極が第1の電極4aと第2の電極4bとに分割されてい
ることにあり、その他の構成は基本的には図1に示す装
置と同様であるので、図7において図1と同一物には同
一符号を付してその詳しい説明は省略する。
The present device is different from the device shown in FIG. 1 in that the electrode is divided into a first electrode 4a and a second electrode 4b, and other structures are basically shown in FIG. Since it is the same as the device shown in FIG. 7, the same parts as those in FIG. 1 are designated by the same reference numerals in FIG. 7 and their detailed description is omitted.

【0037】本装置においては、電極が第1の電極4a
と、第2の電極4bとに分割されており、この電極4
a,4b間には連結管10が配設されている。そして、
第1及び第2の電極4a,4bには、いずれもトランス
6から高周波の高電圧が印加される。また、冷却エアー
吹き込みノズル11からは冷風が送風され、この冷風に
より電極4aが冷却されるようになっている。更に、温
風吹き込みノズル12を介して連結管10から電極4b
内に温風が送風されるようになっている。
In this device, the electrode is the first electrode 4a.
And a second electrode 4b.
A connecting pipe 10 is arranged between a and 4b. And
A high frequency high voltage is applied from the transformer 6 to both the first and second electrodes 4a and 4b. Further, cool air is blown from the cooling air blowing nozzle 11, and the cold air cools the electrode 4a. Further, the connecting pipe 10 is connected to the electrode 4b via the hot air blowing nozzle 12.
Hot air is blown inside.

【0038】次に、この装置を使用した本実施例に係る
伝熱管の表面親水処理方法について説明する。
Next, the surface hydrophilic treatment method for the heat transfer tube according to this embodiment using this apparatus will be described.

【0039】伝熱管1はピンチロール2a,2bにより
搬送され、電極4a,4b内を通過する。本実施例にお
いては、伝熱管1と電極4a,4bとの間の距離は 2mm
以下とすることが好ましい。
The heat transfer tube 1 is conveyed by the pinch rolls 2a and 2b and passes through the electrodes 4a and 4b. In this embodiment, the distance between the heat transfer tube 1 and the electrodes 4a and 4b is 2 mm.
The following is preferable.

【0040】電極4a内において、トランス6から印加
される高周波高電圧により電極4aと伝熱管1との間で
電子なだれ現象が発生し、多数の高エネルギー電子が伝
熱管の表面に衝突する。また、コロナ放電に伴って、オ
ゾンが発生する。この場合に、冷却エアー吹き込みノズ
ル11から吐出された冷風により電極4aが冷却されて
いるため、処理部の温度が低く、オゾンの発生効率が高
い。従って、第1の実施例に比して、伝熱管1の表面の
洗浄が効率的に行なわれる。
In the electrode 4a, a high-frequency high voltage applied from the transformer 6 causes an avalanche phenomenon between the electrode 4a and the heat transfer tube 1, and a large number of high-energy electrons collide with the surface of the heat transfer tube. Further, ozone is generated along with the corona discharge. In this case, since the electrode 4a is cooled by the cold air discharged from the cooling air blowing nozzle 11, the temperature of the processing section is low and the ozone generation efficiency is high. Therefore, the surface of the heat transfer tube 1 is cleaned more efficiently than in the first embodiment.

【0041】第1の電極4a内で洗浄された伝熱管1の
処理面は、次に、電極4b内に入る。この電極4b内に
おいては、温風吹き込みノズル12から吐出された温風
により処理部が加熱されているため、オゾンの分解が促
進され、伝熱管1の表面に安定でポーラスな状態の酸化
皮膜が効率的に形成される。
The treated surface of the heat transfer tube 1 that has been cleaned in the first electrode 4a then enters the electrode 4b. In the electrode 4b, since the treatment part is heated by the hot air discharged from the hot air blowing nozzle 12, the decomposition of ozone is promoted, and a stable and porous oxide film is formed on the surface of the heat transfer tube 1. Efficiently formed.

【0042】本実施例においては、第1の実施例と同様
の効果を得ることができるのに加えて、伝熱管表面の清
浄化及び酸化膜の形成が第1の実施例に比して短時間で
完了するため、処理時間を短縮できるという効果を奏す
る。
In this embodiment, the same effects as those in the first embodiment can be obtained, and in addition, the cleaning of the heat transfer tube surface and the formation of the oxide film are shorter than those in the first embodiment. Since the process is completed in time, the processing time can be shortened.

【0043】次に、本実施例方法により実際に銅管に表
面親水処理を施した結果について説明する。
Next, the result of actual surface hydrophilic treatment of the copper pipe by the method of this embodiment will be described.

【0044】図7に示す構成の装置を用いて、外径が16
mm、肉厚が 0.6mmのリン脱酸銅管(伝熱管)に表面処理
を施した。
Using the device having the structure shown in FIG.
A surface treatment was applied to a phosphorus deoxidized copper tube (heat transfer tube) with a thickness of 0.6 mm and a wall thickness of 0.6 mm.

【0045】即ち、電極4a,4bに夫々 300Wの出力
で高周波の高電圧を印加して、コロナ放電を発生させ
た。また、冷却エアー吹き込みノズル11から温度が 8
乃至12℃の冷風を吐出させて、処理部の温度を約20℃ま
で冷却した。更に、温風吹き込みノズル12から温度が
100乃至110 ℃の加熱空気を供給し、処理部の温度を約
100℃に加熱した。そして、前述の銅管を、 5m/分の
一定速度で電極4a,4b内を通過させた。これによ
り、伝熱管の表面に安定でポーラスな状態の酸化皮膜が
形成され、表面親水性が優れた伝熱管を得ることができ
た。
That is, a high-frequency high voltage was applied to the electrodes 4a and 4b at an output of 300 W to generate corona discharge. In addition, the temperature from the cooling air blowing nozzle 11 is 8
The temperature of the processing part was cooled to about 20 ° C. by discharging cold air of up to 12 ° C. Furthermore, the temperature from the hot air blowing nozzle 12
Supply heated air of 100 to 110 ° C to keep the temperature of the processing unit at about
Heated to 100 ° C. Then, the above-mentioned copper tube was passed through the electrodes 4a and 4b at a constant speed of 5 m / min. As a result, a stable and porous oxide film was formed on the surface of the heat transfer tube, and a heat transfer tube having excellent surface hydrophilicity could be obtained.

【0046】なお、本実施例においては、ノズル11及
び12から夫々冷風及び温風を吐出することにより処理
部を冷却及び加熱した場合について説明したが、処理部
の冷却及び加熱方法は上述の実施例により限定されるも
のでなく、例えば電極4a,4bの周囲にガラステープ
を介して夫々チューブを巻き付け、各チューブ内に夫々
冷水及び温水を通すことにより、処理部を冷却及び加熱
してもよい。
In this embodiment, the case where the processing section is cooled and heated by ejecting cold air and warm air from the nozzles 11 and 12 respectively has been described. The present invention is not limited to the example, and for example, a tube may be wound around each of the electrodes 4a and 4b via a glass tape, and cold water and hot water may be passed through each tube to cool and heat the treatment section. ..

【0047】[0047]

【発明の効果】以上説明したように本発明によれば、電
極と金属伝熱管との間に電圧を印加してコロナ放電を発
生させると共に自由電子を加速して前記金属伝熱管表面
に衝突させるから、金属伝熱管表面が清浄化され、この
伝熱管表面にポーラスな状態の酸化皮膜が形成される。
従って、本発明方法により表面処理した金属伝熱管は、
その表面の親水性が優れていると共に、親水性の経時的
劣化が極めて少ない。
As described above, according to the present invention, a voltage is applied between an electrode and a metal heat transfer tube to generate a corona discharge, and free electrons are accelerated to collide with the surface of the metal heat transfer tube. Thus, the surface of the metal heat transfer tube is cleaned, and a porous oxide film is formed on the surface of the heat transfer tube.
Therefore, the metal heat transfer tube surface-treated by the method of the present invention,
The hydrophilicity of the surface is excellent, and the deterioration of the hydrophilicity with time is extremely small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係る伝熱管の表面親水
処理方法において使用する処理装置を示す模式図であ
る。
FIG. 1 is a schematic diagram showing a processing apparatus used in a surface hydrophilic treatment method for a heat transfer tube according to a first embodiment of the present invention.

【図2】図1のA−A線による断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】本発明の実施例方法により表面処理した直後に
銅管表面の濡れ広がり性を調べた結果を示す写真をトレ
ースしたものである。
FIG. 3 is a trace of a photograph showing the result of examining the wettability and spreadability of the surface of a copper tube immediately after the surface treatment by the method of the example of the present invention.

【図4】本発明の実施例方法により処理した後、2週間
に亘って大気中に放置した銅管表面の濡れ広がり性を調
べた結果を示す写真をトレースしたものである。
FIG. 4 is a trace of a photograph showing the results of examining the wet spreadability of the surface of a copper tube that has been left in the air for 2 weeks after being treated by the method of the example of the present invention.

【図5】ブラシ研磨法により表面処理した直後に銅管表
面の濡れ広がり性を調べた結果を示す写真をトレースし
たものである。
FIG. 5 is a trace of a photograph showing the result of examining the wettability and spreadability of the copper pipe surface immediately after the surface treatment by the brush polishing method.

【図6】ブラシ研磨法により処理した後、2週間に亘っ
て大気中に放置した銅管表面の濡れ広がり性を調べた結
果を示す写真をトレースしたものである。
FIG. 6 is a trace of a photograph showing the results of examining the wettability and spreadability of the surface of a copper tube that has been left in the air for 2 weeks after being treated by the brush polishing method.

【図7】本発明の第2の実施例に係る伝熱管の表面親水
処理方法において使用する処理装置を示す模式図であ
る。
FIG. 7 is a schematic view showing a processing apparatus used in the surface hydrophilic treatment method for heat transfer tubes according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1;伝熱管 2a,2b;ピンチロール 3a,3b;ガイド 4,4a,4b;電極 5;エアーブローノズル 6;トランス 7;ジェネレータ 8;冷却用ノズル 10;連結管 11;冷却エアー吹き込みノズル 12;温風吹き込みノズル 1; heat transfer tubes 2a, 2b; pinch rolls 3a, 3b; guides 4, 4a, 4b; electrodes 5; air blow nozzles 6; transformers 7; generators 8; cooling nozzles 10; connecting pipes 11; cooling air blowing nozzles 12; Hot air blowing nozzle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属伝熱管表面から所定の距離だけ離隔
させて電極を配置し、この電極と前記金属伝熱管との間
に電圧を印加して、コロナ放電を発生させると共に自由
電子を加速し前記金属伝熱管表面に衝突させることを特
徴とする伝熱管の表面親水処理方法。
1. An electrode is arranged at a predetermined distance from the surface of a metal heat transfer tube, and a voltage is applied between the electrode and the metal heat transfer tube to generate corona discharge and accelerate free electrons. A method for hydrophilically treating the surface of a heat transfer tube, which comprises causing the surface of the metal heat transfer tube to collide.
【請求項2】 冷却手段により前記電極と前記金属伝熱
管との間を冷却しつつ、前記電極と前記金属伝熱管との
間に電圧を印加して、コロナ放電を発生させると共に自
由電子を加速し前記金属伝熱管表面に衝突させる工程
と、加熱手段により前記電極と前記金属伝熱管との間を
加熱しつつ、前記電極と前記金属伝熱管との間に電圧を
印加して、コロナ放電を発生させると共に自由電子を加
速し前記金属伝熱管表面に衝突させる工程と、を有する
ことを特徴とする請求項1に記載の伝熱管の表面親水処
理方法。
2. A voltage is applied between the electrode and the metal heat transfer tube while cooling between the electrode and the metal heat transfer tube by a cooling means to generate corona discharge and accelerate free electrons. Then, the step of colliding with the metal heat transfer tube surface, while applying a voltage between the electrode and the metal heat transfer tube while heating between the electrode and the metal heat transfer tube by the heating means, corona discharge The method of generating hydrophilic particles and accelerating free electrons to collide with the surface of the metal heat transfer tube, the method of claim 1, wherein the surface of the heat transfer tube is hydrophilic.
JP179592A 1992-01-08 1992-01-08 Surface transfer treatment method for heat transfer tubes Expired - Lifetime JP2878514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP179592A JP2878514B2 (en) 1992-01-08 1992-01-08 Surface transfer treatment method for heat transfer tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP179592A JP2878514B2 (en) 1992-01-08 1992-01-08 Surface transfer treatment method for heat transfer tubes

Publications (2)

Publication Number Publication Date
JPH05179419A true JPH05179419A (en) 1993-07-20
JP2878514B2 JP2878514B2 (en) 1999-04-05

Family

ID=11511507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP179592A Expired - Lifetime JP2878514B2 (en) 1992-01-08 1992-01-08 Surface transfer treatment method for heat transfer tubes

Country Status (1)

Country Link
JP (1) JP2878514B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302962A (en) * 2006-05-12 2007-11-22 Honda Motor Co Ltd Film formation method
WO2013125657A1 (en) 2012-02-24 2013-08-29 Jfeスチール株式会社 Metal material surface treatment method, and metal material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302962A (en) * 2006-05-12 2007-11-22 Honda Motor Co Ltd Film formation method
WO2013125657A1 (en) 2012-02-24 2013-08-29 Jfeスチール株式会社 Metal material surface treatment method, and metal material
KR20140117579A (en) 2012-02-24 2014-10-07 제이에프이 스틸 가부시키가이샤 Metal material surface treatment method, and metal material

Also Published As

Publication number Publication date
JP2878514B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
US8591660B2 (en) Method for the plasma cleaning of the surface of a material coated with an organic substance
JP3959906B2 (en) Plasma processing apparatus and plasma processing method
JP2002158219A (en) Discharge plasma processor and processing method using the same
JP4407252B2 (en) Processing equipment
JP2002151478A (en) Method and apparatus for dry etching
JPH07303869A (en) Method of cleaning long length body
JP2878514B2 (en) Surface transfer treatment method for heat transfer tubes
JP2004527071A (en) Material processing in atmospheric pressure radio frequency non-thermal plasma discharge
JP2006520088A (en) Method and apparatus for pretreatment of substrates to be bonded
KR0141927B1 (en) Method of applying surface hydrophilic treatment to heat-transfer tube
JP2012256501A (en) Plasma generation gas, method for generating plasma, and atmospheric pressure plasma generated by the method
JP2002151480A (en) Processing method for semiconductor element and device therefor
JP2004241726A (en) Method and device for treating resist
JP4809973B2 (en) Method and apparatus for manufacturing semiconductor device
JPH06212466A (en) Device for hydrophilization treatment of metallic pipe
JP2002176050A (en) Method of forming silicon oxide film and system thereof
JPH05339747A (en) Hydrophilic treatment device for metallic pipe
JP2002151476A (en) Method and apparatus for removing resist
JP3068379B2 (en) Surface transfer treatment method for heat transfer tubes
JP2001336063A (en) Method for producing metal-carbon fiber composite material
JPH07132316A (en) Continuous descaling method for metallic strip
JP3852627B2 (en) UV treatment equipment
JP2920605B2 (en) Surface treatment method
JPH0897206A (en) Forming method of thermal oxidation film
JP3421457B2 (en) Method and apparatus for dry treatment of metal surfaces

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100122

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110122

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110122

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120122

Year of fee payment: 13

EXPY Cancellation because of completion of term