JPH05178878A - Production of sucrose ester of fatty acid having low substitution degree - Google Patents

Production of sucrose ester of fatty acid having low substitution degree

Info

Publication number
JPH05178878A
JPH05178878A JP4147768A JP14776892A JPH05178878A JP H05178878 A JPH05178878 A JP H05178878A JP 4147768 A JP4147768 A JP 4147768A JP 14776892 A JP14776892 A JP 14776892A JP H05178878 A JPH05178878 A JP H05178878A
Authority
JP
Japan
Prior art keywords
sucrose
soap
fatty acid
substitution
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4147768A
Other languages
Japanese (ja)
Other versions
JP3168695B2 (en
Inventor
Yukio Kasori
行雄 加曽利
Tetsuo Yamazaki
徹郎 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP14776892A priority Critical patent/JP3168695B2/en
Publication of JPH05178878A publication Critical patent/JPH05178878A/en
Application granted granted Critical
Publication of JP3168695B2 publication Critical patent/JP3168695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Saccharide Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject ester, capable of being readily purified and having a high rate of reaction of sucrose without any coloring under substantially solventless conditions by thermally melting two kinds of sucrose esters of fatty acids in the presence of an alkaline catalyst and a soap. CONSTITUTION:For example, (A) a sucrose ester of a fatty acid having 3-8 (preferably 4-8) average substitution degree and (B) a sucrose ester having a lower substitution degree (preferably 1-1.7) than that of the component (A) are melted in the presence of an alkaline catalyst and a soap preferably at 80-110 deg.C under 0.1-500Torr to afford the objective ester.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は実質上無溶媒条件下で、
ショ糖脂肪酸エステルを原料の一部とした低置換度ショ
糖脂肪酸エステルの製造方法を提供するものである。よ
り詳しくはショ糖の反応率が高く着色がなく、精製が容
易な低置換度ショ糖脂肪酸エステルの製造方法を提供す
るものである。
FIELD OF THE INVENTION The present invention is
A method for producing a low-substituted sucrose fatty acid ester using sucrose fatty acid ester as a part of a raw material. More specifically, the present invention provides a method for producing a low-substituted sucrose fatty acid ester which has a high reaction rate of sucrose, is not colored, and is easily purified.

【0002】[0002]

【従来の技術】ショ糖脂肪酸エステル(以下、SEと略
記する)はショ糖と脂肪酸がエステル結合してなるもの
であり、ショ糖分子中の水酸基の置換度や脂肪酸の炭素
数等により、様々なHLB値や特性を持つSEを製造す
ることが可能である。その主な用途としては、食品用乳
化剤、起泡剤、静菌剤等が挙げられる。SEの製造方法
としては大きく分けて、溶媒法及び無溶媒法に分類する
ことが出来る。溶媒法の特徴としては、比較的温和な条
件でSEを製造することが可能であり、ショ糖の分解に
よる副生成物が少ないことが挙げられる。一方無溶媒法
は溶媒を使用しない簡便さはあるものの、ショ糖の多い
反応初期から高温(130〜160℃)で反応してお
り、ショ糖等の原料の分解物も多く、ショ糖当りのSE
収率が悪く、製品の着色も激しい。特に低置換度SEの
製造においては、大過剰のショ糖を用いる必要があり、
ショ糖の分解による着色は一層著しくなる。
BACKGROUND OF THE INVENTION Sucrose fatty acid ester (hereinafter abbreviated as SE) is formed by ester bond of sucrose and fatty acid, and varies depending on the substitution degree of hydroxyl group in the sucrose molecule and the carbon number of fatty acid. It is possible to manufacture SE having various HLB values and characteristics. Its main uses include food-grade emulsifiers, foaming agents, and bacteriostats. SE manufacturing methods can be broadly classified into a solvent method and a solventless method. A feature of the solvent method is that it is possible to produce SE under relatively mild conditions, and there are few by-products due to the decomposition of sucrose. On the other hand, although the solvent-free method has the advantage of not using a solvent, it reacts at a high temperature (130 to 160 ° C) from the beginning of the reaction with a large amount of sucrose, and there are also many decomposition products of raw materials such as sucrose, which are SE
The yield is poor and the product is highly colored. Especially in the production of low-substituted SE, it is necessary to use a large excess of sucrose,
Coloring due to the decomposition of sucrose becomes more remarkable.

【0003】従来から、無溶媒法でSEを原料の一部と
して使用し、原料SEと異なった特性を持つSEを製造
する方法は知られており、例えば、特開昭59−782
00が挙げられる。該明細書においては、SEと石ケン
とショ糖とを加熱溶融し、原料SEより高いHLB値
(即ち低置換度)のSEを製造する方法が開示されてい
る。該方法においては、原料SEはHLB値3以上、好
ましくはHLB値5〜12のものを用いるのが良いとさ
れており、具体的には、HLB値10.5又は7.0の
SEを原料として、HLB値がそれぞれ14.0又は1
0.5のSEを製造している。HLB値が3未満である
ような高置換度ショ糖脂肪酸エステル(平均置換度はほ
ぼ3〜8に相当)からの低置換度SEの製造方法につい
ては全く知られていなかった。
Conventionally, there has been known a method of producing SE having a characteristic different from that of the raw material SE by using SE as a part of the raw material by a solventless method. For example, JP-A-59-782.
00 is mentioned. The specification discloses a method for producing SE having a higher HLB value (that is, a lower degree of substitution) by heating and melting SE, soap, and sucrose. In this method, the raw material SE is said to have an HLB value of 3 or more, preferably an HLB value of 5 to 12, and specifically, an SE having an HLB value of 10.5 or 7.0 is used as the raw material. As the HLB value is 14.0 or 1 respectively
It produces 0.5 SE. No method has been known for producing a low-substitution SE from a high-substitution sucrose fatty acid ester having an HLB value of less than 3 (mean substitution is approximately 3 to 8).

【0004】また、一般に無溶媒法においては、反応助
剤として使用する石ケンの炭素数は大きく、その使用量
も多い。例えば、上記の特開昭59−78200では、
実施例において炭素数16及び18の石ケンを使ってい
るが、炭素数が大きい程、水への溶解度が低く、液液抽
出等の簡便な方法での除去が困難となる。また、石ケン
の量については、上記明細書では、使用量は比較的多い
方がよく、原料SEに対して100〜150重量%がよ
いと記載されている。しかしながら、炭素数の大きい石
ケンの除去が困難であるから、工業化規模においてコス
ト及び操作上不利とある。
In general, in the solventless method, soap used as a reaction aid has a large number of carbon atoms and a large amount thereof. For example, in the above-mentioned JP-A-59-78200,
Although soaps having 16 and 18 carbon atoms are used in the examples, the larger the carbon number, the lower the solubility in water and the more difficult it is to remove by a simple method such as liquid-liquid extraction. Moreover, regarding the amount of soap, it is described in the above specification that the amount used is preferably relatively large, and is preferably 100 to 150% by weight with respect to the raw material SE. However, it is difficult to remove soap with a large number of carbon atoms, which is disadvantageous in terms of cost and operation on an industrial scale.

【0005】最近の技術としてこれらの問題を解決する
ために様々な精製方法が考案されているが、未だ満足で
きるものではない。例えばアルカリ金属イオンレベルを
1ppm未満に低下させるために、強アルカリ性水溶液
で処理し、遠心分離器で石ケンを除去する方法が提案さ
れている(特開平1−207296、1−21159
4)。しかし、脂肪酸エステル、特にショ糖脂肪酸エス
テルは、中性付近では安定であるが、アルカリ性及び酸
性側ではエステルの加水分解が起こり易い。また、ショ
糖の分子内では、水酸基の離脱反応等によりカラメル化
反応等が起こり、着色物質の一つであるフラン系化合物
(フルフラール、フルフリルアルコール等)が生成しや
すい。また、そのために、別工程として脱色工程等が必
要となり、コスト的にも操作的にも工業化規模において
は非常に不利となる。
As a recent technique, various purification methods have been devised in order to solve these problems, but they are still unsatisfactory. For example, in order to reduce the level of alkali metal ions to less than 1 ppm, a method of treating with a strong alkaline aqueous solution and removing soap with a centrifuge has been proposed (JP-A-1-207296, 1-211159).
4). However, a fatty acid ester, particularly a sucrose fatty acid ester, is stable in the vicinity of neutrality, but hydrolysis of the ester is likely to occur on the alkaline and acidic sides. Further, in the molecule of sucrose, a caramelization reaction or the like occurs due to a hydroxyl group elimination reaction or the like, and a furan compound (furfural, furfuryl alcohol, etc.), which is one of the coloring substances, is easily generated. Therefore, a decoloring step or the like is required as a separate step, which is very disadvantageous in terms of cost and operation on an industrial scale.

【0006】[0006]

【発明が解決しようとする課題】本発明は、無溶媒法に
よる低置換度SEの製造を平均置換度3〜8のSEを原
料として可能とすると共に、石ケンの除去を容易とし、
また着色等の弊害を伴うことなく、原料SEと異なるS
Eを製造する方法を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention enables the production of low-substituted SE by a solventless method using SE having an average degree of substitution of 3 to 8 as a raw material, and facilitates the removal of soap.
In addition, S that is different from the raw material SE without any adverse effects such as coloring
It is intended to provide a method for producing E.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記実情に
鑑み鋭意検討を行った結果、平均置換度3〜8のSEを
原料として低置換度SEの製造を行うことができること
を見い出し、また石ケンの除去の困難性も克服されるこ
とを見い出して本発明に到達した。即ち、本発明の要旨
は、アルカリ触媒及び石ケンの存在下、平均置換度3〜
8のショ糖脂肪酸エステルAと、ショ糖またはショ糖脂
肪酸エステルAよりも低置換度のショ糖脂肪酸エステル
Bとを、加熱溶融することを特徴とする低置換度ショ糖
脂肪酸エステルCの製造方法に存する。
Means for Solving the Problems As a result of intensive studies in view of the above circumstances, the present inventors have found that SE having an average degree of substitution of 3 to 8 can be used as a raw material to produce a low degree of substitution SE, Further, they have found that the difficulty of removing soap is overcome, and thus reached the present invention. That is, the gist of the present invention is that in the presence of an alkali catalyst and soap, the average degree of substitution is 3 to
8. Sucrose fatty acid ester A of 8 and sucrose or sucrose fatty acid ester B having a degree of substitution lower than that of sucrose fatty acid A are heated and melted to produce a low degree of substitution sucrose fatty acid ester C. Exist in.

【0008】以下、本発明を詳細に説明する。本発明に
用いる原料SE、即ち、ショ糖脂肪酸エステルA(以下
「SE−A]と略記する。B及びCについても同様)及
びSE−Bの種類はいずれのものでもよく、構成脂肪酸
やその製造方法に制限はない。構成脂肪酸はその炭素数
が、通常6〜24、好ましくは12〜22の飽和及び/
または不飽和脂肪酸の1種または2種以上であり、例え
ば、ラウリン酸、ミリスチン酸、パルミチン酸、ステア
リン酸、オレイン酸、エルカ酸等が挙げられる。
The present invention will be described in detail below. The raw material SE used in the present invention, that is, sucrose fatty acid ester A (hereinafter abbreviated as “SE-A”. The same applies to B and C) and SE-B may be of any type, and the constituent fatty acids and their production. The method is not limited, and the constituent fatty acid has a carbon number of usually 6 to 24, preferably 12 to 22 and / or saturated.
Alternatively, it is one or more of unsaturated fatty acids, and examples thereof include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, and erucic acid.

【0009】SE−Aの平均置換度は、通常3〜8、好
ましくは4〜8(HLB値で表示すると、通常0〜3、
好ましくは0〜2に相当)である。具体的なSE−Aの
例としては、S−170(構成脂肪酸がステアリン酸7
0重量%、パルミチン酸30重量%;平均置換度5.
2)やP−170(構成脂肪酸がパルミチン酸70重量
%、ステアリン酸30重量%;平均置換度5.3)等が
挙げられる(いずれも三菱化成株式会社製)。
The average substitution degree of SE-A is usually 3 to 8, preferably 4 to 8 (when expressed by an HLB value, usually 0 to 3,
It is preferably equivalent to 0 to 2). As a specific example of SE-A, S-170 (the constituent fatty acid is stearic acid 7
0% by weight, palmitic acid 30% by weight; average degree of substitution 5.
2) and P-170 (constituent fatty acids: 70% by weight of palmitic acid, 30% by weight of stearic acid; average substitution degree: 5.3) and the like (all manufactured by Mitsubishi Kasei Co., Ltd.).

【0010】SE−Bの平均置換度は、SE−Aよりも
低置換度である限りにおいて、特に制限はないが、通常
0.1〜2、好ましくは1〜1.7(HLB値が通常5
〜20、好ましくは8〜17に相当)のものが用いられ
る。具体的なSE−Bの例としては、P−1670(構
成脂肪酸がパルミチン酸70重量%、ステアリン酸30
重量%;平均置換度1.3)やS−1170(構成脂肪
酸がステアリン酸70重量%、パルミチン酸30重量
%;平均置換度1.6)等が挙げられる(いずれも三菱
化成株式会社製)。
The average degree of substitution of SE-B is not particularly limited as long as it is lower than that of SE-A, but is usually 0.1 to 2, preferably 1 to 1.7 (the HLB value is usually 5
~ 20, preferably 8 to 17) are used. As a specific example of SE-B, P-1670 (constituent fatty acid: 70% by weight of palmitic acid, 30% of stearic acid)
% By weight; average degree of substitution 1.3), S-1170 (70% by weight of stearic acid as constituent fatty acid, 30% by weight of palmitic acid; average degree of substitution 1.6) and the like (all manufactured by Mitsubishi Kasei Co., Ltd.). ..

【0011】SE−Aと、ショ糖またはSE−Bとの使
用量は特には制限はなく、目的とするSE−Cの平均置
換度により、それぞれの仕込み量を変化させればよい。
例えばSE−Aの使用量は、総仕込み量(SE−A、S
E−B、ショ糖、石ケン、触媒の合計量)の10〜90
重量%、好ましくは30〜85重量%更に好ましくは5
0〜80重量%であり、ショ糖またはSE−Bの使用量
は1〜90重量%、好ましくは10〜60の重量%であ
る。また、加熱溶融反応を低温(110℃以下)で行う
場合には、反応液の粘性が上昇しやすいので、SE−A
の使用量はショ糖またはSE−Bの使用量よりも多くす
るのが好ましい。また、ショ糖を使用するよりもSE−
Bを使用する方が反応液の粘度を低く保持できる。
The amount of SE-A and sucrose or SE-B used is not particularly limited, and the amount of each charge may be changed depending on the target average degree of substitution of SE-C.
For example, the amount of SE-A used is the total amount (SE-A, S
EB, sucrose, soap, total amount of catalyst) 10-90
% By weight, preferably 30 to 85% by weight, more preferably 5
The amount of sucrose or SE-B used is 1 to 90% by weight, preferably 10 to 60% by weight. Further, when the heat-melting reaction is carried out at a low temperature (110 ° C. or lower), the viscosity of the reaction liquid tends to increase, so SE-A
It is preferable to use more than the amount of sucrose or SE-B. Also, rather than using sucrose, SE-
The use of B can keep the viscosity of the reaction liquid low.

【0012】触媒としてのアルカリは、水酸化カリウ
ム、水酸化ナトリウム、水酸化リチウム、炭酸カリウ
ム、炭酸ナトリウム、炭酸リチウム等のアルカリ金属の
水酸化物、炭酸塩、あるいはナトリウムメトキサイド、
ナトリウムエトキサイド、カリウムメトキサイドのよう
なアルカリ金属のアルコキサイド等から適宜選択され
る。触媒とショ糖またはSE−Bの仕込みモル比は、シ
ョ糖又はSE−Bに対して0.01〜1、好ましくは
0.1〜0.5が良い。また、触媒の仕込み形態も特に
制限はなく、粉体もしくは水やアルコールに溶解させて
供給してもかまわない。例えば、触媒、ショ糖又はSE
−B、石ケン等を、水及び/または低級アルコール均一
に溶解させた後に、減圧下で乾燥して活性化物としてか
ら、加熱溶融に用いることが好ましく行われる。
Alkali as a catalyst is a hydroxide, carbonate or sodium methoxide of an alkali metal such as potassium hydroxide, sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate or lithium carbonate.
It is appropriately selected from alkali metal alkoxides such as sodium ethoxide and potassium methoxide. The molar ratio of the catalyst and sucrose or SE-B charged is 0.01 to 1, preferably 0.1 to 0.5, relative to sucrose or SE-B. Further, the catalyst charging form is not particularly limited, and the catalyst may be supplied after being dissolved in powder or water or alcohol. For example, catalyst, sucrose or SE
It is preferable to dissolve -B, soap and the like in water and / or lower alcohol uniformly and then dry under reduced pressure to obtain an activated product, which is then used for heating and melting.

【0013】活性化のための仕込み条件として、水及び
/または低級アルコール及び触媒、ショ糖又はSE−
B、石ケンの仕込み量に特には制限はなく、その仕込み
方法も特に限定されない。低級アルコールとしては、水
と任意に混合できる溶媒が好ましく、例えば、メチルア
ルコール、エチルアルコール、ブチルアルコール等の短
鎖アルコールが好適である。水及び/または低級アルコ
ールの量は、上記混合物が完全に均一に溶解するように
調整するのが好ましい。また水及び/または低級アルコ
ールを留去して乾燥する条件としては、内温が、通常2
0〜100℃、好ましくは40〜80℃が適しており、
大気圧もしくは減圧下で行ってもよい。更に好ましく
は、完全に水を留去するためには、真空乾燥(1Tor
r以下、内温40〜80℃)を行うことができる。使用
する装置としては特に限定はなく、一般的に粉体の乾燥
に使われるスプレードライヤー等も適している。
As the charging conditions for activation, water and / or lower alcohol and catalyst, sucrose or SE-
There are no particular restrictions on the amount of B and soap added, and the method of preparation is also not particularly limited. As the lower alcohol, a solvent that can be arbitrarily mixed with water is preferable, and for example, a short chain alcohol such as methyl alcohol, ethyl alcohol and butyl alcohol is preferable. The amount of water and / or lower alcohol is preferably adjusted so that the above mixture is completely and uniformly dissolved. The conditions for distilling off water and / or lower alcohol and drying are usually at an internal temperature of 2
0 to 100 ° C, preferably 40 to 80 ° C is suitable,
It may be performed under atmospheric pressure or reduced pressure. More preferably, in order to completely distill off water, vacuum drying (1 Torr
r or less, internal temperature 40 to 80 ° C.). The device used is not particularly limited, and a spray dryer or the like generally used for drying powder is also suitable.

【0014】石ケンは、特に限定はないが、好ましくは
炭素数2〜10のカルボン酸のアルカリ金属塩もしくは
アルカリ土類金属塩、更に好ましくは炭素数3〜8のカ
ルボン酸塩が好適である。反応系に添加する量として
は、SE−Aに対して0.1〜90重量%、好ましくは
1〜50重量%である。また、全反応物に対して、石ケ
ンの量は、通常1〜30重量%、好ましくは3〜15重
量%である。石ケンの添加する形態は粉体もしくは水及
び/または低級アルコールに溶解して供給してもよい。
好ましくは上記で述べたように、ショ糖またはSE−
B、触媒及び石ケンを、水及び/または低級アルコール
に均一に溶解した後、溶媒を留去し乾燥して活性化物質
としてから用いたほうがよい。また、用いる石ケンの種
類及びその量は、SE−AのHLB値とその量、ショ糖
またはSE−BのHLB値とその量とに大きく関係があ
る。例えば、SE−AとしてHLB値1のものとショ糖
とを用いて加熱溶融する場合、好ましい石ケン及びその
量は、カプロン酸カリウム(炭素数6)であり、対SE
−Aで10〜20重量%になる。またSE−AとしてH
LB値2のものとショ糖とを用いて加熱溶融する場合に
は、乳化に適した石ケンは酪酸カリウム(炭素数4)も
しくはプロピオン酸カリウム(炭素数3)であり、その
量は対SE−Aで5〜10重量%となる。これは反応系
全体のHLB値が高い(より親水性である)ほど、より
親水性である短鎖石ケンが好ましく、その量も短鎖にな
るほど少なくなる傾向にあるからである。
The soap is not particularly limited, but is preferably an alkali metal salt or alkaline earth metal salt of a carboxylic acid having 2 to 10 carbon atoms, more preferably a carboxylic acid salt having 3 to 8 carbon atoms. .. The amount added to the reaction system is 0.1 to 90% by weight, preferably 1 to 50% by weight, based on SE-A. The amount of soap is usually 1 to 30% by weight, preferably 3 to 15% by weight, based on all the reactants. The soap may be added in the form of powder or dissolved in water and / or lower alcohol and supplied.
Preferably, as mentioned above, sucrose or SE-
It is preferable that B, the catalyst and soap are uniformly dissolved in water and / or lower alcohol, and then the solvent is distilled off and dried to be used as an activating substance. Further, the type and amount of soap used are greatly related to the HLB value of SE-A and its amount, and the HLB value of sucrose or SE-B and its amount. For example, in the case of heating and melting SE-A having an HLB value of 1 and sucrose, the preferred soap and its amount are potassium caproate (carbon number 6),
-A is 10 to 20% by weight. H as SE-A
When heat-melting with an LB value of 2 and sucrose, a suitable soap for emulsification is potassium butyrate (carbon number 4) or potassium propionate (carbon number 3), the amount of which is relative to SE. -A is 5 to 10% by weight. This is because the higher the HLB value of the entire reaction system (more hydrophilic), the more hydrophilic short chain soap is preferable, and the amount thereof tends to decrease as the chain becomes shorter.

【0015】加熱溶融温度としては、通常50〜140
℃、好ましくは80〜110℃がよい。また、圧力は、
通常0.01〜大気圧、好ましくは0.1〜500to
rr程度が適切である。装置としては特に限定はない
が、一般的に用いられる撹拌槽タイプのものや、粘性の
高いものに使用されるニーダー、エクストルーダー等が
適している。原料の添加順序についても特に限定はない
が、好ましくはSEーAを先に所定温度まで上げて加熱
溶融した後に、ショ糖またはSEーBを添加して撹拌し
たほうがよい。また、ショ糖またはSEーBの仕込時に
は、できるだけ粉砕した微粉状のものを使用したほうが
よく、SE−Aとの混合が均一でしかも速やかに加熱溶
融される。加熱溶融の時間は通常0.5〜8時間、好ま
しくは1〜4時間程度である。
The heating and melting temperature is usually 50 to 140.
℃, preferably 80-110 ℃ is good. Also, the pressure is
Usually 0.01 to atmospheric pressure, preferably 0.1 to 500 to
rr is suitable. The apparatus is not particularly limited, but a generally used stirring tank type, a kneader, an extruder or the like used for a highly viscous one is suitable. The order of addition of the raw materials is not particularly limited, but it is preferable that SE-A is first heated to a predetermined temperature and melted by heating, and then sucrose or SE-B is added and stirred. Further, when sucrose or SE-B is charged, it is better to use a finely pulverized product as crushed as possible, so that the mixture with SE-A is uniform and is quickly melted by heating. The heating and melting time is usually 0.5 to 8 hours, preferably about 1 to 4 hours.

【0016】生成されたSE−Cの後処理方法としては
特に制限はないが、一般的に用いられる液液抽出が適し
ている。反応終了後触媒を失活させるために、各種の有
機酸(例えば、乳酸、酢酸、コハク酸等)を入れた後
に、反応混合物に有機溶媒及び/または水を入れて、液
液抽出を行う。用いる有機溶媒としては特に限定はな
く、SEを溶解できる溶媒であれば特に制限はないが、
好ましくは、イソプロピルアルコール、イソブチルアル
コール等の低級アルコールが適している。この階段で、
反応で使われた短鎖石ケンは水層へ溶解し、除去される
ことになり、製品中に混入する石ケン濃度は極めて少な
くなる。また、回収された石ケンは、反応助剤として再
使用が可能でありコスト的にもメリットが大きい。
The method of post-treatment of the SE-C produced is not particularly limited, but liquid-liquid extraction generally used is suitable. After the completion of the reaction, various organic acids (eg, lactic acid, acetic acid, succinic acid, etc.) are added to deactivate the catalyst, and then an organic solvent and / or water is added to the reaction mixture to perform liquid-liquid extraction. The organic solvent used is not particularly limited and is not particularly limited as long as it can dissolve SE.
Lower alcohols such as isopropyl alcohol and isobutyl alcohol are preferably suitable. On this stairs,
The short chain soap used in the reaction dissolves in the aqueous layer and is removed, so that the concentration of soap in the product is extremely low. In addition, the recovered soap can be reused as a reaction aid and has a great cost advantage.

【0017】[0017]

【実施例】次に本発明を実施例によりさらに具体的に詳
細説明するが、本発明はその要旨を越えない限り、以下
の実施例によってその範囲を制約されるものではない。
なお、実施例において、反応物中の残存ショ糖について
は、反応物をサンプリングし、ジメチルホルムアミドに
溶解させ、ショ糖をトリメチルシリル化誘導体としてか
らガスクロマトグラフィーにより定量した。また、反応
物中のSEについては、反応物をサンプリングし、テト
ラヒドロフランを添加して不溶物をろ別した後、ゲルろ
過クロマトグラフィー及び逆相高速液体クロマトグラフ
ィーにより分析を行った。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the scope of the present invention is not limited by the following examples as long as the gist thereof is not exceeded.
In the examples, the residual sucrose in the reaction product was sampled, dissolved in dimethylformamide, sucrose was converted to a trimethylsilylated derivative, and then quantified by gas chromatography. In addition, regarding SE in the reaction product, the reaction product was sampled, tetrahydrofuran was added to separate insoluble matter by filtration, and then analysis was performed by gel filtration chromatography and reverse phase high performance liquid chromatography.

【0018】実施例1 (前処理、活性化)撹拌機付きの1Lの丸底フラスコ
に、ショ糖47.4g、触媒として水酸化カリウム1.
83g、石ケンとしてカプロン酸カリウム(炭素数6)
19.7gを入れた後に水50g、メタノール300g
を添加し均一に溶解させた。フラスコ内温を55〜60
℃に保ちつつ、窒素ストリッピングによる溶媒留去した
後に、真空乾燥(0.1Torr以下)を4時間行って
微粉の付加物を得た。
Example 1 (Pretreatment, Activation) In a 1 L round bottom flask equipped with a stirrer, 47.4 g of sucrose and potassium hydroxide 1.
83 g, potassium caproate as soap (6 carbon atoms)
After adding 19.7 g, 50 g of water and 300 g of methanol
Was added and dissolved uniformly. Flask internal temperature 55-60
After the solvent was distilled off by nitrogen stripping while maintaining the temperature at 0 ° C., vacuum drying (0.1 Torr or less) was performed for 4 hours to obtain a fine powder adduct.

【0019】(加熱溶融反応)原料(SE−A)として
S−170(高置換度ショ糖ステアリン酸エステル、平
均置換度5.2、三菱化成株式会社製)120gを投入
し、100℃−1Torrの条件で3時間反応させた、
(石ケン使用量は全反応物の10.4%に相当す
る、)。
(Heating / melting reaction) As a raw material (SE-A), 120 g of S-170 (highly substituted sucrose stearate, average substitution degree: 5.2, manufactured by Mitsubishi Kasei Co., Ltd.) was charged, and 100 ° C.-1 Torr. Reacted for 3 hours under the conditions of
(The amount of soap used corresponds to 10.4% of the total reaction).

【0020】得られた高粘性の反応物を分析したとこ
ろ、残存ショ糖濃度から算出したショ糖反応率は、6
4.1%であり、SEの収率(全反応混合物に占めるS
E重量%)は76.9%、平均置換度は2.5であっ
た。結果を後記表1に示した。 (SEの精製)上記の反応終了後の反応物10部を乳酸
で中和し、イソブチルアルコール90部、水100部の
混合溶媒中に入れて溶解し、60℃で10分間撹拌し
た。15分間静置後、SEを含有するイソブチルアルコ
ール層を未反応ショ糖、石ケン等を含有する水層から分
離し、イソブチルアルコール層を減圧濃縮することによ
り、白色乾固物としての精製SEがほぼ定量的に回収さ
れた。
When the obtained highly viscous reaction product was analyzed, the sucrose reaction rate calculated from the residual sucrose concentration was 6
4.1%, yield of SE (S in the total reaction mixture
E weight%) was 76.9%, and the average degree of substitution was 2.5. The results are shown in Table 1 below. (Purification of SE) 10 parts of the reaction product after completion of the above reaction was neutralized with lactic acid, dissolved in a mixed solvent of 90 parts of isobutyl alcohol and 100 parts of water, and stirred at 60 ° C. for 10 minutes. After standing for 15 minutes, the isobutyl alcohol layer containing SE was separated from the aqueous layer containing unreacted sucrose, soap, etc., and the isobutyl alcohol layer was concentrated under reduced pressure to obtain purified SE as a white dry solid. It was recovered almost quantitatively.

【0021】また、この際、滴定法によりカリウムイオ
ン濃度を定量したところ、反応物中のカリウムイオン総
量は6.78mmol、精製SE中のカリウムイオン総
量は0.59mmolであり、カリウムイオンの除去率
は91.3%であった。
At this time, when the potassium ion concentration was quantified by the titration method, the total amount of potassium ions in the reaction product was 6.78 mmol and the total amount of potassium ions in the purified SE was 0.59 mmol. Was 91.3%.

【0022】実施例2〜7 後記表1に示すとおりに石ケンの種類を変えた以外は実
施例1と同様に行った。結果を実施例1と共に後記表1
に示した。 実施例8〜9 後記表2に示すとおりに石ケンの使用量を変化させた以
外は実施例2と同様に行った。結果を実施例2と共に後
記表2に示した。 実施例10〜12 ショ糖、アルカリ触媒及び石ケンの前処理方法を以下の
様に変化させた以外は実施例1と同様に行った。結果を
実施例1と共に後記表3に示した。
Examples 2 to 7 The same procedure as in Example 1 was carried out except that the type of soap was changed as shown in Table 1 below. The results are shown in Table 1 below together with Example 1.
It was shown to. Examples 8 to 9 The same procedure as in Example 2 was repeated except that the amount of soap used was changed as shown in Table 2 below. The results are shown in Table 2 below together with Example 2. Examples 10 to 12 The same procedure as in Example 1 was carried out except that the pretreatment method for sucrose, alkali catalyst and soap was changed as follows. The results are shown in Table 3 below together with Example 1.

【0023】(前処理、実施例10)ショ糖と石ケンの
みを均一に溶解させて真空乾燥し、触媒として炭酸カリ
ウム(K2CO3)を粉体で添加した。なお、触媒量は実
施例1で使用した水酸化カリウム(KOH)の1/2モ
ル。 (前処理、実施例11)ショ糖と石ケン及び炭酸カリウ
ム(K2CO3)をすべて粉体で供給した。活性化処理な
し。 (前処理、実施例12)ショ糖及び水酸化カリウム(K
OH)のみを均一に溶解させて真空乾燥し、石ケンを粉
体で添加した。
(Pretreatment, Example 10) Only sucrose and soap were uniformly dissolved and vacuum dried, and potassium carbonate (K 2 CO 3 ) was added as a catalyst in powder form. The catalyst amount was 1/2 mol of the potassium hydroxide (KOH) used in Example 1. (Pretreatment, Example 11) Sucrose, soap and potassium carbonate (K 2 CO 3 ) were all supplied in powder form. No activation treatment. (Pretreatment, Example 12) Sucrose and potassium hydroxide (K
Only OH) was uniformly dissolved and vacuum dried, and soap was added as a powder.

【0024】実施例13〜14 原料(SE−A)として置換度の異なるSEを用いた以
外は実施例7と同様に行った。結果を実施例8と共に後
記表4に示した。 実施例15 実施例1において、石ケンとしてカプロン酸カリウムの
代りに同モル量のステアリン酸カリウムを使用した以外
は、実施例1と同様に反応を行った(石ケン使用量は全
反応物の19.6%に相当する)。得られた反応液を分
析したところ、ショ糖反応率45.6%、SE収率6
8.1%、平均置換度3.0であった。また、実施例1
と同様に反応液を液−液抽出し、白色乾固物としての精
製SEをほぼ定量的に得た。この際、反応液中のカリウ
ムイオン総量は6.08mmol、精製SE中のカリウ
ムイオン総量は3.44mmolであり、カリウムイオ
ンの除去率は43.4%であった。
Examples 13 to 14 The same procedure as in Example 7 was carried out except that SE having different substitution degree was used as the raw material (SE-A). The results are shown in Table 4 below together with Example 8. Example 15 A reaction was carried out in the same manner as in Example 1 except that the same molar amount of potassium stearate was used as the soap, instead of potassium caproate, as the soap. Corresponding to 19.6%). When the obtained reaction liquid was analyzed, the sucrose reaction rate was 45.6% and the SE yield was 6
The degree of substitution was 8.1% and the average degree of substitution was 3.0. In addition, Example 1
The reaction solution was subjected to liquid-liquid extraction in the same manner as in, to obtain purified SE as a white dry solid almost quantitatively. At this time, the total amount of potassium ions in the reaction solution was 6.08 mmol, the total amount of potassium ions in the purified SE was 3.44 mmol, and the removal rate of potassium ions was 43.4%.

【0025】実施例16 原料のショ糖の代わりにSE−Bとしてショ糖と同重量
のS−1670(ショ糖モノステアリン酸エステル、平
均置換度1.3、三菱化成株式会社製)を用いた以外
は、実施例11と同様に行った。反応前のSE−AとS
E−Bの全量中において、置換度2〜4のSEは全SE
の39%であったが、反応物中のSEにおいては、置換
度2〜4のSEが全SEの72%に増加していた。ま
た、反応物中のSEの平均置換度は3.2である。
Example 16 S-1670 (sucrose monostearate, average substitution degree 1.3, manufactured by Mitsubishi Kasei Co., Ltd.) having the same weight as sucrose was used as SE-B instead of sucrose as a raw material. Except for this, the same procedure as in Example 11 was performed. SE-A and S before reaction
In the total amount of EB, SE having a substitution degree of 2 to 4 is the whole SE
However, in the SE in the reaction product, the SE having a substitution degree of 2 to 4 increased to 72% of the total SE. The average degree of substitution of SE in the reaction product is 3.2.

【0026】比較例1 原料として平均置換度2.2(HLB値3に相当)のS
Eを用いた以外は、実施例8と同様に行った。反応混合
物を分析したところ、残存ショ糖濃度からショ糖反応率
は9.3%、SEの収率は65.6%、平均置換度2.
0であり、実施例8と比して大幅に効率の悪いものであ
った。また、反応初期から反応混合物が均一のもち状で
あり、粘性が高いため通常のの撹拌槽では、撹拌律速と
なり反応させることが困難であった。
Comparative Example 1 S having an average degree of substitution of 2.2 (corresponding to an HLB value of 3) as a raw material
Example 8 was repeated except that E was used. When the reaction mixture was analyzed, the sucrose reaction rate was 9.3% based on the residual sucrose concentration, the SE yield was 65.6%, and the average substitution degree was 2.
It was 0, which was much less efficient than that of Example 8. Further, since the reaction mixture has a uniform sticky form from the early stage of the reaction and has a high viscosity, it is difficult to carry out the reaction because the stirring is rate-controlled in an ordinary stirring tank.

【0027】実施例1〜16と比較例1を併せみると、
本発明の方法においては、従来知られていなかった高置
換度(平均置換度3〜8)のSEを原料に、低置換度S
Eが製造されることが判明した。また、石ケンの使用量
が少なくても反応は順調であり、石ケンの分離能の点か
らも好ましいといえる。本発明の方法に準じて従来公知
となっていた平均置換度の低いSEを原料としたが(比
較例1)、ショ糖反応率及びSEの収率は、実施例8と
比して大幅に下回り、撹拌槽の操作にも困難をきたすも
のであった。
Combining Examples 1 to 16 and Comparative Example 1,
In the method of the present invention, SE having a high degree of substitution (average degree of substitution 3 to 8), which has not been heretofore known, is used as a raw material, and a low degree of substitution S
It was found that E was produced. Further, the reaction is satisfactory even when the amount of soap used is small, and it can be said that it is also preferable from the viewpoint of the separation ability of soap. According to the method of the present invention, a conventionally known SE having a low average degree of substitution was used as a raw material (Comparative Example 1), but the sucrose reaction rate and SE yield were significantly higher than those in Example 8. It was also lower, and the operation of the stirring tank was difficult.

【0028】[0028]

【発明の効果】本発明によれば、無溶媒法によるSEの
製造を、平均置換度3〜8のSEを原料として可能とす
ると共に、石ケンの除去を容易とし、また着色等の弊害
を伴うことのない製造方法が提供される。
EFFECTS OF THE INVENTION According to the present invention, SE having an average substitution degree of 3 to 8 can be used as a raw material for the production of SE by a solventless method, removal of soap can be facilitated, and adverse effects such as coloring can be prevented. An uncomplicated manufacturing method is provided.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ触媒及び石ケンの存在下、平
均置換度が3〜8のショ糖脂肪酸エステルAと、ショ糖
またはショ糖脂肪酸エステルAよりも低置換度のショ糖
脂肪酸エステルBとを、加熱溶融することを特徴とする
低置換度ショ糖脂肪酸エステルCの製造方法。
1. A sucrose fatty acid ester A having an average degree of substitution of 3 to 8 and a sucrose fatty acid ester B having a degree of substitution lower than that of sucrose fatty acid ester A in the presence of an alkali catalyst and soap. A method for producing a low-substituted sucrose fatty acid ester C, which comprises heating and melting.
【請求項2】 ショ糖、アルカリ触媒及び石ケンを、
水または低級アルコールに溶解し、その後、乾燥してシ
ョ糖活性化物質とし、これを平均置換度が3〜8のショ
糖脂肪酸エステルAと加熱溶融することを特徴とする低
置換度ショ糖脂肪酸エステルCの製造方法。
2. A sucrose, an alkali catalyst and a soap,
A low-substituted sucrose fatty acid characterized by being dissolved in water or a lower alcohol and then dried to give a sucrose activator, which is heat-melted with sucrose fatty acid ester A having an average degree of substitution of 3-8. Method for producing ester C.
JP14776892A 1991-06-14 1992-06-08 Method for lowering substitution degree of sucrose fatty acid ester Expired - Fee Related JP3168695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14776892A JP3168695B2 (en) 1991-06-14 1992-06-08 Method for lowering substitution degree of sucrose fatty acid ester

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-143542 1991-06-14
JP14354291 1991-06-14
JP14776892A JP3168695B2 (en) 1991-06-14 1992-06-08 Method for lowering substitution degree of sucrose fatty acid ester

Publications (2)

Publication Number Publication Date
JPH05178878A true JPH05178878A (en) 1993-07-20
JP3168695B2 JP3168695B2 (en) 2001-05-21

Family

ID=26475246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14776892A Expired - Fee Related JP3168695B2 (en) 1991-06-14 1992-06-08 Method for lowering substitution degree of sucrose fatty acid ester

Country Status (1)

Country Link
JP (1) JP3168695B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054708A1 (en) * 2004-11-19 2006-05-26 Mitsubishi Chemical Corporation Sucrose fatty acid ester with low degree of substitution and process for producing the same
KR100708560B1 (en) * 1999-10-13 2007-04-19 엔.브이.오가논 Orally disintegrating composition comprising mirtazapine
JP2013221021A (en) * 2012-04-18 2013-10-28 Dai Ichi Kogyo Seiyaku Co Ltd Sucrose aromatic monocarboxylic acid ester
JP5952980B1 (en) * 2016-02-17 2016-07-13 マイクロ波化学株式会社 Method for producing sucrose stearate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100708560B1 (en) * 1999-10-13 2007-04-19 엔.브이.오가논 Orally disintegrating composition comprising mirtazapine
WO2006054708A1 (en) * 2004-11-19 2006-05-26 Mitsubishi Chemical Corporation Sucrose fatty acid ester with low degree of substitution and process for producing the same
JP2013221021A (en) * 2012-04-18 2013-10-28 Dai Ichi Kogyo Seiyaku Co Ltd Sucrose aromatic monocarboxylic acid ester
JP5952980B1 (en) * 2016-02-17 2016-07-13 マイクロ波化学株式会社 Method for producing sucrose stearate

Also Published As

Publication number Publication date
JP3168695B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
US4032702A (en) Production of surface active material
KR100570861B1 (en) Synthesis of tertiary amine oxides
KR890002267A (en) Process for preparing partial polyol fatty acid ester
US5107016A (en) Process for the preparation of β-hydroxybutyric acid esters
US5856538A (en) Preparation of N-acylamino carboxylic acids and N-acylamino sulfonic acids and their alkali metal salts
EP1813622B1 (en) Sucrose fatty acid ester with low degree of substitution and process for producing the same
JP3168695B2 (en) Method for lowering substitution degree of sucrose fatty acid ester
US4377685A (en) Process of preparing sucroglycerides
JP3825668B2 (en) Method for enzymatically preparing a hydroxy fatty acid ester of a polyhydric alcohol that is solid at room temperature
US5527903A (en) Process for preparing sucrose fatty acid esters
US2520255A (en) Glucuronic acid synthesis
DE19919203A1 (en) Process for the preparation of L-ascorbic acid
JP3168700B2 (en) Method for producing sucrose fatty acid ester
WO2002057282A1 (en) Preparation of aliphatic acid ester of carbohydrate
EP3560916B1 (en) Method for synthesising alkyl 5-dialkylacetal-2-furoate and use thereof in the preparation of biosourced surfactant agents
JPH11322669A (en) Production of potassium monoethyl malonate
JPH07145104A (en) Production of polyglycerol fatty acid esters
EP0346250A1 (en) Process for the hydroxylation of phenols and phenol ethers
JPH0665149A (en) Production of usable compound from michael reactional adduct of acrylic acid ester
CA2250321A1 (en) A process for the production of alkaline earth metal salts of aliphatic beta-keto compounds
JPH11515011A (en) Method for producing crystalline salt of amoxicillin
JPS6210521B2 (en)
KR100346882B1 (en) Purification of sugar ester
US20020066703A1 (en) TMP/Vapor pressure filtration
CA2194401A1 (en) Method for preparing polyhydroxy fatty acid amide solutions of good color quality and their use

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees