JP3168695B2 - Method for lowering substitution degree of sucrose fatty acid ester - Google Patents

Method for lowering substitution degree of sucrose fatty acid ester

Info

Publication number
JP3168695B2
JP3168695B2 JP14776892A JP14776892A JP3168695B2 JP 3168695 B2 JP3168695 B2 JP 3168695B2 JP 14776892 A JP14776892 A JP 14776892A JP 14776892 A JP14776892 A JP 14776892A JP 3168695 B2 JP3168695 B2 JP 3168695B2
Authority
JP
Japan
Prior art keywords
sucrose
substitution
soap
fatty acid
acid ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14776892A
Other languages
Japanese (ja)
Other versions
JPH05178878A (en
Inventor
行雄 加曽利
徹郎 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP14776892A priority Critical patent/JP3168695B2/en
Publication of JPH05178878A publication Critical patent/JPH05178878A/en
Application granted granted Critical
Publication of JP3168695B2 publication Critical patent/JP3168695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Saccharide Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は実質上無溶媒条件下で、
ショ糖脂肪酸エステルを原料の一部としたショ糖脂肪酸
エステルの置換度の低下方法を提供するものである。よ
り詳しくはショ糖の反応率が高く着色がなく、精製が容
易なショ糖脂肪酸エステルの置換度の低下方法を提供す
るものである。
BACKGROUND OF THE INVENTION
An object of the present invention is to provide a method for reducing the degree of substitution of sucrose fatty acid ester using sucrose fatty acid ester as a part of the raw material. More specifically, the present invention provides a method for reducing the degree of substitution of a sucrose fatty acid ester, which has a high reaction rate of sucrose, has no coloring, and is easily purified.

【0002】[0002]

【従来の技術】ショ糖脂肪酸エステル(以下、SEと略
記する)はショ糖と脂肪酸がエステル結合してなるもの
であり、ショ糖分子中の水酸基の置換度や脂肪酸の炭素
数等により、様々なHLB値や特性を持つSEを製造す
ることが可能である。その主な用途としては、食品用乳
化剤、起泡剤、静菌剤等が挙げられる。SEの製造方法
としては大きく分けて、溶媒法及び無溶媒法に分類する
ことが出来る。溶媒法の特徴としては、比較的温和な条
件でSEを製造することが可能であり、ショ糖の分解に
よる副生成物が少ないことが挙げられる。一方無溶媒法
は溶媒を使用しない簡便さはあるものの、ショ糖の多い
反応初期から高温(130〜160℃)で反応してお
り、ショ糖等の原料の分解物も多く、ショ糖当りのSE
収率が悪く、製品の着色も激しい。特に低置換度SEの
製造においては、大過剰のショ糖を用いる必要があり、
ショ糖の分解による着色は一層著しくなる。
2. Description of the Related Art Sucrose fatty acid esters (hereinafter abbreviated as SE) are obtained by esterifying sucrose and a fatty acid, and vary depending on the degree of substitution of hydroxyl groups in the sucrose molecule and the number of carbon atoms of the fatty acid. It is possible to manufacture SE having various HLB values and characteristics. Its main uses include food emulsifiers, foaming agents, bacteriostats and the like. SE production methods can be broadly classified into a solvent method and a solventless method. As a feature of the solvent method, it is possible to produce SE under relatively mild conditions, and there are few by-products due to decomposition of sucrose. On the other hand, although the solventless method has the convenience of using no solvent, it reacts at a high temperature (130 to 160 ° C.) from the beginning of the reaction with a large amount of sucrose, and there are also many decomposition products of raw materials such as sucrose. SE
The yield is poor and the product is severely colored. In particular, in the production of SE with a low degree of substitution, it is necessary to use a large excess of sucrose,
Coloring due to the decomposition of sucrose is even more pronounced.

【0003】従来から、無溶媒法でSEを原料の一部と
して使用し、原料SEと異なった特性を持つSEを製造
する方法は知られており、例えば、特開昭59−782
00が挙げられる。該明細書においては、SEと石ケン
とショ糖とを加熱溶融し、原料SEより高いHLB値
(即ち低置換度)のSEを製造する方法が開示されてい
る。該方法においては、原料SEはHLB値3以上、好
ましくはHLB値5〜12のものを用いるのが良いとさ
れており、具体的には、HLB値10.5又は7.0の
SEを原料として、HLB値がそれぞれ14.0又は1
0.5のSEを製造している。HLB値が3未満である
ようなショ糖脂肪酸エステル(平均置換度はほぼ3〜8
に相当)からのSEの製造方法については全く知られて
いなかった。
Conventionally, there has been known a method for producing SE having characteristics different from that of the raw material SE by using SE as a part of the raw material by a solventless method.
00. The specification discloses a method of heating and melting SE, soap, and sucrose to produce SE having a higher HLB value (that is, low substitution degree) than the raw material SE. In this method, it is said that the raw material SE should have an HLB value of 3 or more, preferably an HLB value of 5 to 12. Specifically, SE having an HLB value of 10.5 or 7.0 is used as a raw material. The HLB value is 14.0 or 1 respectively.
We produce 0.5 SE. Sucrose fatty acid ester having an HLB value of less than 3 (average degree of substitution is approximately 3 to 8)
) Was not known at all.

【0004】また、一般に無溶媒法においては、反応助
剤として使用する石ケンの炭素数は大きく、その使用量
も多い。例えば、上記の特開昭59−78200では、
実施例において炭素数16及び18の石ケンを使ってい
るが、炭素数が大きい程、水への溶解度が低く、液液抽
出等の簡便な方法での除去が困難となる。また、石ケン
の量については、上記明細書では、使用量は比較的多い
方がよく、原料SEに対して100〜150重量%がよ
いと記載されている。しかしながら、炭素数の大きい石
ケンの除去が困難であるから、工業化規模においてコス
ト及び操作上不利とある。
In general, in the solventless method, soap used as a reaction aid has a large carbon number and a large amount of soap. For example, in the above-mentioned JP-A-59-78200,
Although soaps having 16 and 18 carbon atoms are used in the examples, the larger the carbon number, the lower the solubility in water, and the more difficult it is to remove by a simple method such as liquid-liquid extraction. In addition, as for the amount of soap, the above specification describes that it is better that the amount used is relatively large, and that the amount is 100 to 150% by weight based on the raw material SE. However, it is difficult to remove soap having a large carbon number, which is disadvantageous in cost and operation on an industrial scale.

【0005】最近の技術としてこれらの問題を解決する
ために様々な精製方法が考案されているが、未だ満足で
きるものではない。例えばアルカリ金属イオンレベルを
1ppm未満に低下させるために、強アルカリ性水溶液
で処理し、遠心分離器で石ケンを除去する方法が提案さ
れている(特開平1−207296、1−21159
4)。しかし、脂肪酸エステル、特にショ糖脂肪酸エス
テルは、中性付近では安定であるが、アルカリ性及び酸
性側ではエステルの加水分解が起こり易い。また、ショ
糖の分子内では、水酸基の離脱反応等によりカラメル化
反応等が起こり、着色物質の一つであるフラン系化合物
(フルフラール、フルフリルアルコール等)が生成しや
すい。また、そのために、別工程として脱色工程等が必
要となり、コスト的にも操作的にも工業化規模において
は非常に不利となる。
As a recent technique, various purification methods have been devised to solve these problems, but they have not been satisfactory yet. For example, in order to reduce the alkali metal ion level to less than 1 ppm, there has been proposed a method of treating with a strongly alkaline aqueous solution and removing soap with a centrifugal separator (Japanese Patent Laid-Open Nos. 1-2207296 and 1-2159).
4). However, fatty acid esters, particularly sucrose fatty acid esters, are stable near neutrality, but are liable to undergo ester hydrolysis on the alkaline and acidic sides. Further, in the molecule of sucrose, a caramelization reaction or the like occurs due to a hydroxyl group elimination reaction or the like, and a furan-based compound (furfural, furfuryl alcohol, or the like), which is one of coloring substances, is easily generated. In addition, a decoloring step or the like is required as a separate step, which is very disadvantageous in cost and operation on an industrial scale.

【0006】[0006]

【発明が解決しようとする課題】本発明は、無溶媒法に
よるSEの製造を平均置換度3〜8のSEを原料として
可能とすると共に、石ケンの除去を容易とし、また着色
等の弊害を伴うことなく、SEの置換度を原料SEより
低下させる方法を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention makes it possible to produce SE by a solvent-free method using SE having an average degree of substitution of 3 to 8 as a raw material, facilitates the removal of soap, and causes problems such as coloring. It is an object of the present invention to provide a method for lowering the degree of substitution of SE than that of the raw material SE without causing the above.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記実情に
鑑み鋭意検討を行った結果、平均置換度3〜8のSEを
原料としてSEの置換度を低下させることができること
を見い出し、また石ケンの除去の困難性も克服されるこ
とを見い出して本発明に到達した。即ち、本発明の要旨
は、アルカリ触媒及び石ケンの存在下、平均置換度3〜
8のショ糖脂肪酸エステルAと、ショ糖またはショ糖脂
肪酸エステルAよりも低置換度のショ糖脂肪酸エステル
Bとを、加熱溶融することを特徴とするショ糖脂肪酸エ
ステルの置換度の低下方法に存する。
Means for Solving the Problems The present inventors have made intensive studies in view of the above-mentioned circumstances, and as a result, have found that it is possible to reduce the degree of substitution of SE using SE having an average degree of substitution of 3 to 8 as a raw material. The inventors have found that the difficulty of removing soap can be overcome and arrived at the present invention. That is, the gist of the present invention is that, in the presence of an alkali catalyst and soap, the average degree of substitution is 3 to 3.
8. A method for reducing the degree of substitution of sucrose fatty acid ester, which comprises melting sucrose fatty acid ester A and sucrose or sucrose fatty acid ester B having a lower degree of substitution than sucrose fatty acid ester A by heating. Exist.

【0008】以下、本発明を詳細に説明する。本発明に
用いる原料SE、即ち、ショ糖脂肪酸エステルA(以下
「SE−A]と略記する。B及びCについても同様)及
びSE−Bの種類はいずれのものでもよく、構成脂肪酸
やその製造方法に制限はない。構成脂肪酸はその炭素数
が、通常6〜24、好ましくは12〜22の飽和及び/
または不飽和脂肪酸の1種または2種以上であり、例え
ば、ラウリン酸、ミリスチン酸、パルミチン酸、ステア
リン酸、オレイン酸、エルカ酸等が挙げられる。
Hereinafter, the present invention will be described in detail. The raw material SE used in the present invention, that is, sucrose fatty acid ester A (hereinafter abbreviated as “SE-A”; the same applies to B and C) and SE-B may be of any type, and the constituent fatty acids and the production thereof The constituent fatty acid has a saturated and / or saturated carbon number of usually 6 to 24, preferably 12 to 22.
Or one or more unsaturated fatty acids, such as lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, and erucic acid.

【0009】SE−Aの平均置換度は、通常3〜8、好
ましくは4〜8(HLB値で表示すると、通常0〜3、
好ましくは0〜2に相当)である。具体的なSE−Aの
例としては、S−170(構成脂肪酸がステアリン酸7
0重量%、パルミチン酸30重量%;平均置換度5.
2)やP−170(構成脂肪酸がパルミチン酸70重量
%、ステアリン酸30重量%;平均置換度5.3)等が
挙げられる(いずれも三菱化成(現三菱化学)株式会社
製)。
The average degree of substitution of SE-A is usually 3 to 8, preferably 4 to 8 (typically 0 to 3 when represented by HLB value).
Preferably it is equivalent to 0-2). Specific examples of SE-A include S-170 (where the constituent fatty acid is stearic acid 7).
0% by weight, palmitic acid 30% by weight; average degree of substitution5.
2) and P-170 (constituent fatty acid is 70% by weight of palmitic acid, 30% by weight of stearic acid; average degree of substitution 5.3) and the like (all are manufactured by Mitsubishi Chemical Corporation (currently Mitsubishi Chemical Corporation)).

【0010】SE−Bの平均置換度は、SE−Aよりも
低置換度である限りにおいて、特に制限はないが、通常
0.1〜2、好ましくは1〜1.7(HLB値が通常5
〜20、好ましくは8〜17に相当)のものが用いられ
る。具体的なSE−Bの例としては、P−1670(構
成脂肪酸がパルミチン酸70重量%、ステアリン酸30
重量%;平均置換度1.3)やS−1170(構成脂肪
酸がステアリン酸70重量%、パルミチン酸30重量
%;平均置換度1.6)等が挙げられる(いずれも三菱
化成(現三菱化学)株式会社製)。
The average degree of substitution of SE-B is not particularly limited as long as it is lower than SE-A, but it is usually 0.1 to 2, preferably 1 to 1.7 (the HLB value is usually 5
To 20, preferably 8 to 17). Specific examples of SE-B include P-1670 (constituent fatty acid is 70% by weight of palmitic acid, stearic acid is 30% by weight).
Weight percent; average degree of substitution 1.3) and S-1170 (constituent fatty acids 70% by weight of stearic acid, palmitic acid 30% by weight; average degree of substitution 1.6). ) Co., Ltd.).

【0011】SE−Aと、ショ糖またはSE−Bとの使
用量は特には制限はなく、目的とするSE−Cの平均置
換度により、それぞれの仕込み量を変化させればよい。
例えばSE−Aの使用量は、総仕込み量(SE−A、S
E−B、ショ糖、石ケン、触媒の合計量)の10〜90
重量%、好ましくは30〜85重量%更に好ましくは5
0〜80重量%であり、ショ糖またはSE−Bの使用量
は1〜90重量%、好ましくは10〜60の重量%であ
る。また、加熱溶融反応を低温(110℃以下)で行う
場合には、反応液の粘性が上昇しやすいので、SE−A
の使用量はショ糖またはSE−Bの使用量よりも多くす
るのが好ましい。また、ショ糖を使用するよりもSE−
Bを使用する方が反応液の粘度を低く保持できる。
The amounts of SE-A and sucrose or SE-B to be used are not particularly limited, and may be varied depending on the desired average substitution degree of SE-C.
For example, the used amount of SE-A is determined by the total charged amount (SE-A, S
EB, sucrose, soap, total amount of catalyst)
% By weight, preferably 30 to 85% by weight, more preferably 5% by weight.
The amount of sucrose or SE-B is 1 to 90% by weight, preferably 10 to 60% by weight. When the heat-melting reaction is performed at a low temperature (110 ° C. or lower), the viscosity of the reaction solution tends to increase.
Is preferably larger than the amount of sucrose or SE-B used. Also, rather than using sucrose,
The use of B can keep the viscosity of the reaction solution low.

【0012】触媒としてのアルカリは、水酸化カリウ
ム、水酸化ナトリウム、水酸化リチウム、炭酸カリウ
ム、炭酸ナトリウム、炭酸リチウム等のアルカリ金属の
水酸化物、炭酸塩、あるいはナトリウムメトキサイド、
ナトリウムエトキサイド、カリウムメトキサイドのよう
なアルカリ金属のアルコキサイド等から適宜選択され
る。触媒とショ糖またはSE−Bの仕込みモル比は、シ
ョ糖又はSE−Bに対して0.01〜1、好ましくは
0.1〜0.5が良い。また、触媒の仕込み形態も特に
制限はなく、粉体もしくは水やアルコールに溶解させて
供給してもかまわない。例えば、触媒、ショ糖又はSE
−B、石ケン等を、水及び/または低級アルコール均一
に溶解させた後に、減圧下で乾燥して活性化物としてか
ら、加熱溶融に用いることが好ましく行われる。
The alkali as a catalyst includes a hydroxide, a carbonate, or a sodium methoxide of an alkali metal such as potassium hydroxide, sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, and lithium carbonate.
It is appropriately selected from alkali metal alkoxides such as sodium ethoxide and potassium methoxide. The charged molar ratio of the catalyst to sucrose or SE-B is 0.01 to 1, preferably 0.1 to 0.5, based on sucrose or SE-B. The form of charging the catalyst is not particularly limited, and the catalyst may be supplied after being dissolved in powder or water or alcohol. For example, catalyst, sucrose or SE
-B, soap and the like are preferably dissolved uniformly in water and / or lower alcohol, and then dried under reduced pressure to form an activated product, which is then preferably used for heating and melting.

【0013】活性化のための仕込み条件として、水及び
/または低級アルコール及び触媒、ショ糖又はSE−
B、石ケンの仕込み量に特には制限はなく、その仕込み
方法も特に限定されない。低級アルコールとしては、水
と任意に混合できる溶媒が好ましく、例えば、メチルア
ルコール、エチルアルコール、ブチルアルコール等の短
鎖アルコールが好適である。水及び/または低級アルコ
ールの量は、上記混合物が完全に均一に溶解するように
調整するのが好ましい。また水及び/または低級アルコ
ールを留去して乾燥する条件としては、内温が、通常2
0〜100℃、好ましくは40〜80℃が適しており、
大気圧もしくは減圧下で行ってもよい。更に好ましく
は、完全に水を留去するためには、真空乾燥(1Tor
r以下、内温40〜80℃)を行うことができる。使用
する装置としては特に限定はなく、一般的に粉体の乾燥
に使われるスプレードライヤー等も適している。
The charging conditions for activation include water and / or lower alcohol and a catalyst, sucrose or SE-
B and the amount of soap added are not particularly limited, and the method of charging is not particularly limited. As the lower alcohol, a solvent that can be arbitrarily mixed with water is preferable, and for example, a short-chain alcohol such as methyl alcohol, ethyl alcohol, and butyl alcohol is preferable. The amount of water and / or lower alcohol is preferably adjusted so that the mixture is completely and uniformly dissolved. The conditions for drying by distilling off water and / or lower alcohol are as follows.
0-100 ° C., preferably 40-80 ° C.,
It may be performed under atmospheric pressure or reduced pressure. More preferably, in order to completely remove water, vacuum drying (1 Torr)
r or less, an internal temperature of 40 to 80 ° C.). The apparatus to be used is not particularly limited, and a spray dryer or the like generally used for drying powder is also suitable.

【0014】石ケンは、特に限定はないが、好ましくは
炭素数2〜10のカルボン酸のアルカリ金属塩もしくは
アルカリ土類金属塩、更に好ましくは炭素数3〜8のカ
ルボン酸塩が好適である。反応系に添加する量として
は、SE−Aに対して0.1〜90重量%、好ましくは
1〜50重量%である。また、全反応物に対して、石ケ
ンの量は、通常1〜30重量%、好ましくは3〜15重
量%である。石ケンの添加する形態は粉体もしくは水及
び/または低級アルコールに溶解して供給してもよい。
好ましくは上記で述べたように、ショ糖またはSE−
B、触媒及び石ケンを、水及び/または低級アルコール
に均一に溶解した後、溶媒を留去し乾燥して活性化物質
としてから用いたほうがよい。また、用いる石ケンの種
類及びその量は、SE−AのHLB値とその量、ショ糖
またはSE−BのHLB値とその量とに大きく関係があ
る。例えば、SE−AとしてHLB値1のものとショ糖
とを用いて加熱溶融する場合、好ましい石ケン及びその
量は、カプロン酸カリウム(炭素数6)であり、対SE
−Aで10〜20重量%になる。またSE−AとしてH
LB値2のものとショ糖とを用いて加熱溶融する場合に
は、乳化に適した石ケンは酪酸カリウム(炭素数4)も
しくはプロピオン酸カリウム(炭素数3)であり、その
量は対SE−Aで5〜10重量%となる。これは反応系
全体のHLB値が高い(より親水性である)ほど、より
親水性である短鎖石ケンが好ましく、その量も短鎖にな
るほど少なくなる傾向にあるからである。
The soap is not particularly limited, but is preferably an alkali metal salt or an alkaline earth metal salt of a carboxylic acid having 2 to 10 carbon atoms, and more preferably a carboxylate having 3 to 8 carbon atoms. . The amount added to the reaction system is 0.1 to 90% by weight, preferably 1 to 50% by weight, based on SE-A. The amount of soap is usually 1 to 30% by weight, preferably 3 to 15% by weight, based on all the reactants. The form to which soap is added may be supplied by dissolving in powder or water and / or lower alcohol.
Preferably as described above, sucrose or SE-
After uniformly dissolving B, the catalyst and the soap in water and / or a lower alcohol, the solvent is preferably distilled off, dried and used as an activating substance. Further, the type and amount of soap used have a great relationship with the HLB value of SE-A and its amount, and the HLB value of sucrose or SE-B and its amount. For example, when heating and melting using SE-A having an HLB value of 1 and sucrose, the preferred soap and its amount are potassium caproate (C6), and
-A gives 10 to 20% by weight. Also, SE-A is H
In the case of heating and melting using an LB value of 2 and sucrose, the soap suitable for emulsification is potassium butyrate (carbon number 4) or potassium propionate (carbon number 3), the amount of which is relative to SE. -A gives 5 to 10% by weight. This is because the higher the HLB value (the more hydrophilic) of the whole reaction system, the more preferable the short-chain soap which is more hydrophilic, and the amount thereof tends to decrease as the chain becomes shorter.

【0015】加熱溶融温度としては、通常50〜140
℃、好ましくは80〜110℃がよい。また、圧力は、
通常0.01〜大気圧、好ましくは0.1〜500to
rr程度が適切である。装置としては特に限定はない
が、一般的に用いられる撹拌槽タイプのものや、粘性の
高いものに使用されるニーダー、エクストルーダー等が
適している。原料の添加順序についても特に限定はない
が、好ましくはSEーAを先に所定温度まで上げて加熱
溶融した後に、ショ糖またはSEーBを添加して撹拌し
たほうがよい。また、ショ糖またはSEーBの仕込時に
は、できるだけ粉砕した微粉状のものを使用したほうが
よく、SE−Aとの混合が均一でしかも速やかに加熱溶
融される。加熱溶融の時間は通常0.5〜8時間、好ま
しくは1〜4時間程度である。
The heating and melting temperature is usually 50 to 140.
C, preferably 80 to 110C. The pressure is
Usually 0.01 to atmospheric pressure, preferably 0.1 to 500 to
rr is appropriate. The apparatus is not particularly limited, but a commonly used stirring tank type apparatus, a kneader or an extruder used for highly viscous apparatuses are suitable. The order of adding the raw materials is not particularly limited, but preferably, SE-A is first heated to a predetermined temperature and melted by heating, and then sucrose or SE-B is added and stirred. In addition, when charging sucrose or SE-B, it is better to use a pulverized powder which is as pulverized as possible, so that the mixture with SE-A is uniform and quickly heated and melted. The heating and melting time is usually 0.5 to 8 hours, preferably about 1 to 4 hours.

【0016】生成されたSE−Cの後処理方法としては
特に制限はないが、一般的に用いられる液液抽出が適し
ている。反応終了後触媒を失活させるために、各種の有
機酸(例えば、乳酸、酢酸、コハク酸等)を入れた後
に、反応混合物に有機溶媒及び/または水を入れて、液
液抽出を行う。用いる有機溶媒としては特に限定はな
く、SEを溶解できる溶媒であれば特に制限はないが、
好ましくは、イソプロピルアルコール、イソブチルアル
コール等の低級アルコールが適している。この階段で、
反応で使われた短鎖石ケンは水層へ溶解し、除去される
ことになり、製品中に混入する石ケン濃度は極めて少な
くなる。また、回収された石ケンは、反応助剤として再
使用が可能でありコスト的にもメリットが大きい。
Although there is no particular limitation on the method of post-treatment of the produced SE-C, generally used liquid-liquid extraction is suitable. After the completion of the reaction, in order to deactivate the catalyst, after adding various organic acids (for example, lactic acid, acetic acid, succinic acid, etc.), an organic solvent and / or water are added to the reaction mixture, and liquid-liquid extraction is performed. The organic solvent used is not particularly limited, and is not particularly limited as long as the solvent can dissolve SE.
Preferably, lower alcohols such as isopropyl alcohol and isobutyl alcohol are suitable. On this stair,
The short-chain soap used in the reaction dissolves in the aqueous layer and is removed, so that the concentration of the soap mixed into the product is extremely low. Further, the recovered soap can be reused as a reaction aid, and has a great merit in terms of cost.

【0017】[0017]

【実施例】次に本発明を実施例によりさらに具体的に詳
細説明するが、本発明はその要旨を越えない限り、以下
の実施例によってその範囲を制約されるものではない。
なお、実施例において、反応物中の残存ショ糖について
は、反応物をサンプリングし、ジメチルホルムアミドに
溶解させ、ショ糖をトリメチルシリル化誘導体としてか
らガスクロマトグラフィーにより定量した。また、反応
物中のSEについては、反応物をサンプリングし、テト
ラヒドロフランを添加して不溶物をろ別した後、ゲルろ
過クロマトグラフィー及び逆相高速液体クロマトグラフ
ィーにより分析を行った。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the scope of the present invention is not limited by the following examples unless it exceeds the gist.
In the examples, as for the residual sucrose in the reaction product, the reaction product was sampled, dissolved in dimethylformamide, and sucrose was converted into a trimethylsilylated derivative, and then quantified by gas chromatography. For the SE in the reaction product, the reaction product was sampled, tetrahydrofuran was added, and the insoluble material was filtered off, and then analyzed by gel filtration chromatography and reversed-phase high-performance liquid chromatography.

【0018】実施例1 (前処理、活性化)撹拌機付きの1Lの丸底フラスコ
に、ショ糖47.4g、触媒として水酸化カリウム1.
83g、石ケンとしてカプロン酸カリウム(炭素数6)
19.7gを入れた後に水50g、メタノール300g
を添加し均一に溶解させた。フラスコ内温を55〜60
℃に保ちつつ、窒素ストリッピングによる溶媒留去した
後に、真空乾燥(0.1Torr以下)を4時間行って
微粉の付加物を得た。
Example 1 (Pretreatment, activation) In a 1 L round bottom flask equipped with a stirrer, 47.4 g of sucrose and potassium hydroxide as a catalyst were added.
83 g, potassium caproate (carbon number 6) as soap
After adding 19.7 g, 50 g of water and 300 g of methanol were added.
Was added and uniformly dissolved. The temperature inside the flask is 55-60
After the solvent was distilled off by nitrogen stripping while maintaining the temperature at 0 ° C., vacuum drying (0.1 Torr or less) was performed for 4 hours to obtain an adduct of fine powder.

【0019】(加熱溶融反応) 得られた微粉の付加物に、原料(SE−A)としてS−
170(ショ糖ステアリン酸エステル、平均置換度5.
2、三菱化成(現三菱化学)株式会社製)120gを投
入し、100℃−1Torrの条件で3時間反応させた
(石ケン使用量は全反応物の10.4%に相当する)。
(Heat-melting reaction) S- as a raw material (SE-A)
170 (sucrose stearate, average degree of substitution 5.
2. 120 g of Mitsubishi Kasei (currently Mitsubishi Chemical Co., Ltd.) was charged and reacted at 100 ° C.-1 Torr for 3 hours (the amount of soap used was 10.4% of the total reactants).

【0020】得られた高粘性の反応物を分析したとこ
ろ、残存ショ糖濃度から算出したショ糖反応率は、6
4.1%であり、SEの収率(全反応混合物に占めるS
E重量%)は76.9%、平均置換度は2.5であっ
た。結果を後記表1に示した。 (SEの精製)上記の反応終了後の反応物10部を乳酸
で中和し、イソブチルアルコール90部、水100部の
混合溶媒中に入れて溶解し、60℃で10分間撹拌し
た。15分間静置後、SEを含有するイソブチルアルコ
ール層を未反応ショ糖、石ケン等を含有する水層から分
離し、イソブチルアルコール層を減圧濃縮することによ
り、白色乾固物としての精製SEがほぼ定量的に回収さ
れた。
When the obtained highly viscous reactant was analyzed, the sucrose reaction rate calculated from the residual sucrose concentration was 6%.
4.1%, the yield of SE (S
E weight%) was 76.9% and the average degree of substitution was 2.5. The results are shown in Table 1 below. (Purification of SE) After completion of the above reaction, 10 parts of the reaction product was neutralized with lactic acid, dissolved in a mixed solvent of 90 parts of isobutyl alcohol and 100 parts of water, and stirred at 60 ° C for 10 minutes. After standing for 15 minutes, the isobutyl alcohol layer containing SE was separated from the aqueous layer containing unreacted sucrose, soap and the like, and the isobutyl alcohol layer was concentrated under reduced pressure, whereby purified SE as a white solid was obtained. It was recovered almost quantitatively.

【0021】また、この際、滴定法によりカリウムイオ
ン濃度を定量したところ、反応物中のカリウムイオン総
量は6.78mmol、精製SE中のカリウムイオン総
量は0.59mmolであり、カリウムイオンの除去率
は91.3%であった。
At this time, when the potassium ion concentration was determined by titration, the total amount of potassium ions in the reaction product was 6.78 mmol, the total amount of potassium ions in the purified SE was 0.59 mmol, and the potassium ion removal rate Was 91.3%.

【0022】実施例2〜7 後記表1に示すとおりに石ケンの種類を変えた以外は実
施例1と同様に行った。結果を実施例1と共に後記表1
に示した。 実施例8〜9 後記表2に示すとおりに石ケンの使用量を変化させた以
外は実施例2と同様に行った。結果を実施例2と共に後
記表2に示した。 実施例10〜12 ショ糖、アルカリ触媒及び石ケンの前処理方法を以下の
様に変化させた以外は実施例1と同様に行った。結果を
実施例1と共に後記表3に示した。
Examples 2 to 7 The same procedures as in Example 1 were carried out except that the type of soap was changed as shown in Table 1 below. Table 1 shows the results together with Example 1.
It was shown to. Examples 8 to 9 The same procedures as in Example 2 were carried out except that the amount of soap used was changed as shown in Table 2 below. The results are shown in Table 2 below together with Example 2. Examples 10 to 12 The same procedure as in Example 1 was carried out except that the pretreatment methods for sucrose, alkali catalyst and soap were changed as follows. The results are shown in Table 3 below together with Example 1.

【0023】(前処理、実施例10)ショ糖と石ケンの
みを均一に溶解させて真空乾燥し、触媒として炭酸カリ
ウム(K2CO3)を粉体で添加した。なお、触媒量は実
施例1で使用した水酸化カリウム(KOH)の1/2モ
ル。 (前処理、実施例11)ショ糖と石ケン及び炭酸カリウ
ム(K2CO3)をすべて粉体で供給した。活性化処理な
し。 (前処理、実施例12)ショ糖及び水酸化カリウム(K
OH)のみを均一に溶解させて真空乾燥し、石ケンを粉
体で添加した。
(Pretreatment, Example 10) Only sucrose and soap were uniformly dissolved and vacuum dried, and potassium carbonate (K 2 CO 3 ) was added as a catalyst as a powder. The amount of the catalyst was モ ル mole of the potassium hydroxide (KOH) used in Example 1. (Pretreatment, Example 11) was fed with all the sucrose and soap and potassium carbonate (K 2 CO 3) powder. No activation processing. (Pretreatment, Example 12) Sucrose and potassium hydroxide (K
OH) was uniformly dissolved and vacuum dried, and soap was added as a powder.

【0024】実施例13〜14 原料(SE−A)として置換度の異なるSEを用いた以
外は実施例7と同様に行った。結果を実施例8と共に後
記表4に示した。 実施例15 実施例1において、石ケンとしてカプロン酸カリウムの
代りに同モル量のステアリン酸カリウムを使用した以外
は、実施例1と同様に反応を行った(石ケン使用量は全
反応物の19.6%に相当する)。得られた反応液を分
析したところ、ショ糖反応率45.6%、SE収率6
8.1%、平均置換度3.0であった。また、実施例1
と同様に反応液を液−液抽出し、白色乾固物としての精
製SEをほぼ定量的に得た。この際、反応液中のカリウ
ムイオン総量は6.08mmol、精製SE中のカリウ
ムイオン総量は3.44mmolであり、カリウムイオ
ンの除去率は43.4%であった。
Examples 13 and 14 The same procedure as in Example 7 was carried out except that SEs having different degrees of substitution were used as raw materials (SE-A). The results are shown in Table 4 below together with Example 8. Example 15 A reaction was carried out in the same manner as in Example 1 except that potassium stearate in the same molar amount was used instead of potassium caproate as the soap (the amount of soap used was the total amount of the reactants). 19.6%). When the obtained reaction solution was analyzed, the sucrose reaction rate was 45.6% and the SE yield was 6
The degree of substitution was 8.1% and the average degree of substitution was 3.0. Example 1
The reaction solution was subjected to liquid-liquid extraction in the same manner as described above, and purified SE as a white solid was almost quantitatively obtained. At this time, the total amount of potassium ions in the reaction solution was 6.08 mmol, the total amount of potassium ions in the purified SE was 3.44 mmol, and the removal rate of potassium ions was 43.4%.

【0025】実施例16 原料のショ糖の代わりにSE−Bとしてショ糖と同重量
のS−1670(ショ糖モノステアリン酸エステル、平
均置換度1.3、三菱化成(現三菱化学)株式会社製)
を用いた以外は、実施例11と同様に行った。反応前の
SE−AとSE−Bの全量中において、置換度2〜4の
SEは全SEの39%であったが、反応物中のSEにお
いては、置換度2〜4のSEが全SEの72%に増加し
ていた。また、反応物中のSEの平均置換度は3.2で
ある。
Example 16 S-1670 (sucrose monostearate, average degree of substitution 1.3, average substitution degree 1.3 as sucrose as SE-B) in place of sucrose as a raw material, Mitsubishi Kasei (current Mitsubishi Chemical) Co., Ltd. Made)
Example 11 was performed except that was used. In the total amount of SE-A and SE-B before the reaction, the SE with a degree of substitution of 2 to 4 was 39% of the total SE, but the SE in the reactant contained all of the SE with a degree of substitution of 2 to 4. It increased to 72% of SE. The average degree of substitution of SE in the reaction product was 3.2.

【0026】比較例1 原料として平均置換度2.2(HLB値3に相当)のS
Eを用いた以外は、実施例8と同様に行った。反応混合
物を分析したところ、残存ショ糖濃度からショ糖反応率
は9.3%、SEの収率は65.6%、平均置換度2.
0であり、実施例8と比して大幅に効率の悪いものであ
った。また、反応初期から反応混合物が均一のもち状で
あり、粘性が高いため通常のの撹拌槽では、撹拌律速と
なり反応させることが困難であった。
Comparative Example 1 S having an average degree of substitution of 2.2 (corresponding to an HLB value of 3) as a raw material
Except using E, it carried out similarly to Example 8. When the reaction mixture was analyzed, the sucrose reaction rate was 9.3%, the yield of SE was 65.6%, and the average degree of substitution was 2. based on the residual sucrose concentration.
0, which was much less efficient than that of Example 8. In addition, since the reaction mixture is uniform and sticky from the beginning of the reaction and has a high viscosity, the stirring is rate-determined in a usual stirring tank, and it is difficult to carry out the reaction.

【0027】実施例1〜16と比較例1を併せみると、
本発明の方法においては、従来知られていなかった、平
均置換度3〜8のSEを原料にして、SEの置換度が低
下することが判明した。また、石ケンの使用量が少なく
ても反応は順調であり、石ケンの分離能の点からも好ま
しいといえる。本発明の方法に準じて従来公知となって
いた平均置換度の低いSEを原料としたが(比較例
1)、ショ糖反応率及びSEの収率は、実施例8と比し
て大幅に下回り、攪拌槽の操作にも困難をきたすもので
あった。
When Examples 1 to 16 and Comparative Example 1 are taken together,
In the method of the present invention, it has been found that the degree of substitution of SE is reduced by using an SE having an average degree of substitution of 3 to 8, which was not known before. In addition, even if the amount of soap used is small, the reaction is smooth and it can be said that it is preferable from the viewpoint of the ability to separate soap. According to the method of the present invention, a conventionally known SE having a low average degree of substitution was used as a raw material (Comparative Example 1), but the sucrose reaction rate and the yield of SE were significantly higher than those of Example 8. In this case, the operation of the stirring tank was difficult.

【0028】[0028]

【発明の効果】本発明によれば、無溶媒法によるSEの
製造を、平均置換度3〜8のSEを原料として可能とす
ると共に、石ケンの除去を容易とし、また着色等の弊害
を伴うことのないSEの置換度の低下方法が提供され
る。
According to the present invention, SE can be produced by a solvent-free method using SE having an average degree of substitution of 3 to 8 as a raw material, and at the same time, soap can be easily removed and adverse effects such as coloring can be prevented. A method of reducing the degree of substitution of SE without accompanying is provided.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルカリ触媒及び石ケンの存在下、平均
置換度が3〜8のショ糖脂肪酸エステルAと、ショ糖ま
たはショ糖脂肪酸エステルAよりも低置換度のショ糖脂
肪酸エステルBとを、加熱溶融することを特徴とするシ
ョ糖脂肪酸エステルの置換度の低下方法。
A sucrose fatty acid ester A having an average degree of substitution of 3 to 8 and sucrose or a sucrose fatty acid ester B having a lower degree of substitution than sucrose fatty acid ester A in the presence of an alkali catalyst and soap. And a method of reducing the degree of substitution of the sucrose fatty acid ester by heating and melting.
【請求項2】 ショ糖、アルカリ触媒及び石ケンを、水
または低級アルコールに溶解し、その後、乾燥してショ
糖活性化物質とし、これを平均置換度が3〜8のショ糖
脂肪酸エステルAと加熱溶融することを特徴とするショ
糖脂肪酸エステルの置換度の低下方法。
2. Sucrose, an alkali catalyst and soap are dissolved in water or a lower alcohol, and then dried to obtain a sucrose activating substance, which is a sucrose fatty acid ester A having an average degree of substitution of 3 to 8. And reducing the degree of substitution of the sucrose fatty acid ester by heating and melting.
JP14776892A 1991-06-14 1992-06-08 Method for lowering substitution degree of sucrose fatty acid ester Expired - Fee Related JP3168695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14776892A JP3168695B2 (en) 1991-06-14 1992-06-08 Method for lowering substitution degree of sucrose fatty acid ester

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-143542 1991-06-14
JP14354291 1991-06-14
JP14776892A JP3168695B2 (en) 1991-06-14 1992-06-08 Method for lowering substitution degree of sucrose fatty acid ester

Publications (2)

Publication Number Publication Date
JPH05178878A JPH05178878A (en) 1993-07-20
JP3168695B2 true JP3168695B2 (en) 2001-05-21

Family

ID=26475246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14776892A Expired - Fee Related JP3168695B2 (en) 1991-06-14 1992-06-08 Method for lowering substitution degree of sucrose fatty acid ester

Country Status (1)

Country Link
JP (1) JP3168695B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI256309B (en) * 1999-10-13 2006-06-11 Akzo Nobel Nv New formulation of mirtazapine
EP1813622B1 (en) * 2004-11-19 2015-04-22 Mitsubishi Chemical Corporation Sucrose fatty acid ester with low degree of substitution and process for producing the same
JP2013221021A (en) * 2012-04-18 2013-10-28 Dai Ichi Kogyo Seiyaku Co Ltd Sucrose aromatic monocarboxylic acid ester
JP5952980B1 (en) * 2016-02-17 2016-07-13 マイクロ波化学株式会社 Method for producing sucrose stearate

Also Published As

Publication number Publication date
JPH05178878A (en) 1993-07-20

Similar Documents

Publication Publication Date Title
KR100570861B1 (en) Synthesis of tertiary amine oxides
US5107016A (en) Process for the preparation of β-hydroxybutyric acid esters
JP3168695B2 (en) Method for lowering substitution degree of sucrose fatty acid ester
US5312947A (en) Siloxane purification
US5527903A (en) Process for preparing sucrose fatty acid esters
JP3825668B2 (en) Method for enzymatically preparing a hydroxy fatty acid ester of a polyhydric alcohol that is solid at room temperature
EP0043620A1 (en) Process for preparing beta-hydroxybutyric acid
JP2956504B2 (en) Method for producing sucrose fatty acid ester
IE59388B1 (en) Process for the production of n-formyl-alpha-l-aspartyl-l-phenylalanine methyl ester
JPH07118285A (en) Production of sucrose fatty acid ester
JP3168700B2 (en) Method for producing sucrose fatty acid ester
EP0346250B1 (en) Process for the hydroxylation of phenols and phenol ethers
EP0177393B1 (en) Process for the preparation of perfluoroalkanols
EP1103521A1 (en) Process for the preparation of water free, high-purity sodium sulfide
EP0459172B1 (en) Process for decolorizing sucrose fatty acid esters
KR100450007B1 (en) Aqueous Synthesis of Iodopropargyl Carbamate
JPH07145104A (en) Production of polyglycerol fatty acid esters
JPH11322669A (en) Production of potassium monoethyl malonate
JPS6210521B2 (en)
KR100486859B1 (en) Method for producing high purity sucrose fatty acid ester
JP3452329B2 (en) Method for producing 3-methyl-1-phenylphospholene oxide
JPH0920823A (en) Production of poly(tetramethylene ether)glycol
KR100346882B1 (en) Purification of sugar ester
JPH11515011A (en) Method for producing crystalline salt of amoxicillin
EP0856511B1 (en) Calcium salt of indomethacin pentahydrate and its preparation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees