JPH05178636A - Releasable powder - Google Patents

Releasable powder

Info

Publication number
JPH05178636A
JPH05178636A JP2347792A JP2347792A JPH05178636A JP H05178636 A JPH05178636 A JP H05178636A JP 2347792 A JP2347792 A JP 2347792A JP 2347792 A JP2347792 A JP 2347792A JP H05178636 A JPH05178636 A JP H05178636A
Authority
JP
Japan
Prior art keywords
powder
glass
particle size
size distribution
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2347792A
Other languages
Japanese (ja)
Inventor
Moriji Komine
杜次 小峰
Takashi Shibuya
孝 渋谷
Ichiro Okajima
一郎 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikka KK
Original Assignee
Nikka KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikka KK filed Critical Nikka KK
Priority to JP2347792A priority Critical patent/JPH05178636A/en
Publication of JPH05178636A publication Critical patent/JPH05178636A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/02Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it by lubrication; Use of materials as release or lubricating compositions
    • C03B40/033Means for preventing adhesion between glass and glass

Abstract

PURPOSE:To provide the powder which is not aggregated or does not lose, its flowability, capable of being sprinkled soundlessly and oderlessly by an electronic spray, etc., at a low voltage, without distorting the glass surface when the powder is used on a glass sheet, etc., capable of being nicely released from the glass surface, etc., and without shifting the glass sheets from each other. CONSTITUTION:This globular inorg. powder is formed from an aluminosilicate, SiO2 alone or a material consisting essentially of the aluminosilicate and SiO2 and the balance K2O, Na2O or MgO, and has a sharp grain size distribution of 5 to 40mum or 5 to 20mum, and the refractive index is controlled to 1.40 to 1.60.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、剥離を可能とする粉体
に関し、より詳細には、積層したガラス板、セラミック
板及びプラスチックフィルム等の間に用いられて剥離を
可能とする粉体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a peelable powder, and more particularly to a peelable powder used between laminated glass plates, ceramic plates, plastic films and the like. ..

【0002】[0002]

【従来の技術】従来から、車両のフロントガラスは、複
数枚の平板ガラスを積層して加熱炉に入れ、700°C
前後で一定の曲率で曲げ加工することにより製造されて
いる。この加工法では、積層されたガラスがその軟化点
付近まで加熱されるため、上記熱間での融着を防ぐため
に耐熱性粉体をガラス間に予め付着させていた。本出願
人は、この種の熱間剥離剤として無機質粉体、例えば石
膏、マイカ粉体、タルク、ケイソウ土、炭酸カルシウム
粉末をシリコン樹脂で被覆することにより粉体の散布性
を向上しかつ流動性を増加しうるガラス用熱間剥離剤を
提供した(特公昭56ー21734号)。
2. Description of the Related Art Conventionally, a vehicle windshield is laminated at a temperature of 700 ° C. by laminating a plurality of flat glass sheets into a heating furnace.
It is manufactured by bending the front and back with a constant curvature. In this processing method, since the laminated glass is heated to the vicinity of its softening point, the heat resistant powder was previously adhered between the glasses in order to prevent the above-mentioned hot fusion. The applicant of the present invention has improved the dispersibility of powder by coating inorganic powders such as gypsum, mica powder, talc, diatomaceous earth, and calcium carbonate powder with a silicone resin as a hot release agent of this type to improve the powder dispersibility and flowability. Provided is a hot release agent for glass capable of increasing the property (Japanese Patent Publication No. 56-21734).

【0003】[0003]

【発明が解決しようとする課題】この熱間剥離剤は、シ
リコン樹脂で被覆することで完全とは言えないまでもそ
の散布性及び流動性の向上に成功し実用化されてきた
が、次のような課題が判明した。
This hot stripping agent has been successfully put to practical use by improving its sprayability and fluidity, if not completely covered by coating with a silicone resin. I found such a problem.

【0004】この熱間剥離剤では、粉体の散布性を向上
し得たといっても、電子スプレーを用いた場合にあって
は、約6000V以上の高電圧で放電音を発して不快な
オゾン臭を呈する状態に保たない限り、良好な散布がで
きなかった。
Although this hot release agent can improve the powder dispersibility, when an electrospray is used, a discharge sound is emitted at a high voltage of about 6000 V or more and unpleasant ozone is generated. Good spraying could not be done unless the odor was maintained.

【0005】粉体の流動性にあっても、シリコン樹脂で
被覆することにより大幅に向上し得たが、微粉割合に影
響され、この微粉割合が高くなるに伴って微粉が相互に
凝集してその流動性が阻害されることが判明した。加え
て、微粉は散布の際に粉塵となって周囲に飛散し、吸気
によって肺胞に侵入するものは、2μmが最高と言わ
れ、安全衛生上好ましいものではなかった。
The flowability of the powder could be greatly improved by coating with a silicone resin, but it was affected by the proportion of fine powder, and as the proportion of fine powder increased, the fine powder aggregated with each other. It has been found that its fluidity is impaired. In addition, it is said that 2 μm is the maximum amount of fine powder that becomes dust during spraying and scatters to the surroundings, and enters the alveoli by inhalation, which is not preferable in terms of safety and hygiene.

【0006】無機質粉体としてアメリカJohnーMa
ville社製セライト(商品名ハイフロースーパーセ
ル)を用いていたが、この粉体の粒径があまり大きすぎ
ると、ガラス表面に傷を付けたり、光学的歪みを生じる
ことが判明した。
As an inorganic powder, US John-Ma
Although Celite (trade name: High Flow Supercell) manufactured by Ville was used, it was found that if the particle size of this powder was too large, the glass surface was scratched or optical distortion occurred.

【0007】ガラス板は熱間で曲げ加工された後に、加
熱炉から取り出して剥離され、表面の熱間剥離剤を吸引
除去していたが、ガラス表面に若干の残留が認められる
こたがあり、これらがフロントガラス等の乱反射の一因
となっていた。ガラス表面に残留した剥離剤は、水洗浄
で完全に除去することも可能であるが、洗浄工程の他に
その後の乾燥工程も必要となり、工程が複雑化して非常
に面倒であった。
After the glass plate was hot-bent, it was taken out of the heating furnace and peeled off to remove the hot peeling agent on the surface by suction. However, some residue was observed on the glass surface. However, these have been a cause of diffused reflection of the windshield and the like. Although the stripping agent remaining on the glass surface can be completely removed by washing with water, a drying step after the washing step is required in addition to the washing step, which complicates the step and is very troublesome.

【0008】しかして、本発明は、これらの課題を解決
するために創案されたものであって、粒度分布が5から
40μmで、かつ屈折率が1.40から1.60の球形
状無機質粉体を用いることにより、オゾン臭及び放電音
を発生しない低電圧であっても均一な電子散布性が得ら
れ、また適度な流動性が保持されて、散布に際しても周
囲へ飛散することなく、更にガラス表面に傷付けたり、
光学的歪みが生ずることなく、また、曲げ加工後もガラ
ス表面から粉体を容易に吸引除去され、万一残留があっ
ても光学的障害がなく、加えて粒度分布が5から20μ
mとすることで、ガラス板の相互のズレを防止できガラ
ス曲げ加工後の泡残りが発生しない剥離を可能とする粉
体を提供することを目的とする。
Therefore, the present invention was devised to solve these problems, and the spherical inorganic powder has a particle size distribution of 5 to 40 μm and a refractive index of 1.40 to 1.60. By using the body, even with a low voltage that does not generate ozone odor and discharge noise, uniform electron spraying property is obtained, and moderate fluidity is maintained, and even when spraying, it does not scatter to the surroundings, Scratching the glass surface,
No optical distortion occurs, the powder is easily sucked and removed from the glass surface even after bending, and even if it remains, there is no optical obstacle, and the particle size distribution is 5 to 20μ.
When m is set, it is an object to provide a powder that can prevent mutual displacement of the glass plates and can be peeled off without leaving a bubble after glass bending.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
がケイソウ土などの天然産無機質材料が有する結晶形状
及び粒度分布に起因して生じたものとの結論に達し、鋭
意研究した結果、合成球形状硬質粉体であって粒度分布
が5から40μmで、かつ屈折率が1.40から1.6
0の無機質粉体が上記課題を解決をできることを見出
し、本発明に係る剥離を可能とする粉体を完成した。即
ち、本発明に係る剥離を可能とする粉体は、粒度分布が
5から40μmで、かつ屈折率が1.40から1.60
の球形状無機質粉体であることを、その解決手段として
いる。
Means for Solving the Problems The present inventors have reached the conclusion that the above problems were caused by the crystal shape and particle size distribution of naturally occurring inorganic materials such as diatomaceous earth, and as a result of diligent research, , A synthetic spherical hard powder with a particle size distribution of 5 to 40 μm and a refractive index of 1.40 to 1.6
It was found that the inorganic powder of No. 0 can solve the above-mentioned problems, and the powder capable of peeling according to the present invention was completed. That is, the powder capable of peeling according to the present invention has a particle size distribution of 5 to 40 μm and a refractive index of 1.40 to 1.60.
The spherical inorganic powder is used as a solution.

【0010】一方、上記課題を解決する研究過程で球形
状の粉体を用いることによって、積層されたガラスが搬
送中や加熱炉内で滑り、その結果ガラス板が相互にズ
レ、そのままの状態で曲げ加工を行い、更に樹脂ヒィル
ムを挟んで接着するとペアー性が悪いことに起因して泡
残りが発生することが判明した。そこで、本発明者ら
は、この課題を解決すべく鋭意研究した結果、上記発明
に係る無機質粉体の粒度分布を5から20μmとするこ
とにより、球形状の粉体であっても、ガラス板のズレを
防止できること見出し、本発明に係る剥離を可能とする
粉体を完成した。即ち、本発明に係る剥離を可能とする
粉体は、粒度分布が5から20μmで、かつ屈折率が
1.40から1.60の球形状無機質粉体であること
を、その解決手段としている。
On the other hand, by using spherical powder in the research process for solving the above-mentioned problems, the laminated glass slides during transportation or in the heating furnace, and as a result, the glass plates are displaced from each other and remain as they are. It was found that when bending is performed and further the resin film is sandwiched and adhered, residual bubbles occur due to poor pairing. Then, as a result of intensive studies to solve this problem, the present inventors set the particle size distribution of the inorganic powder according to the present invention to 5 to 20 μm, thereby making it possible to obtain a glass plate even if it is spherical powder. Based on the finding that it is possible to prevent the deviation, the powder according to the present invention, which enables peeling, was completed. That is, the peelable powder according to the present invention is a spherical inorganic powder having a particle size distribution of 5 to 20 μm and a refractive index of 1.40 to 1.60, which is a means for solving the problem. ..

【0011】以下、本発明に係る剥離を可能とする粉体
について更に詳細に説明する。
The powder capable of peeling according to the present invention will be described in more detail below.

【0012】本発明に係る剥離を可能とする粉体は、特
に理論にこだわる訳ではないが、従来の熱間剥離剤が、
ケイソウ土などの天然産無機質材料であり、その結晶は
針状、板状、蜂巣状などの変形であり、しかも粉体化の
過程で粉砕操作を受けるために、鋭い角を持った形状が
多く、更に微粉から粗粉へと約1から70μmの範囲で
バラツキが大きく、そのため粒度分布もロット毎にバラ
つくものであったことに着目したことに基づく。
The powder capable of peeling according to the present invention is not particularly limited to the theory, but the conventional hot peeling agent is
It is a naturally occurring inorganic material such as diatomaceous earth, and its crystals are deformed into needles, plates, honeycombs, etc., and because it undergoes a crushing operation during the powdering process, it often has sharp corners. Further, it is based on the fact that the variation from the fine powder to the coarse powder is large in the range of about 1 to 70 μm, and therefore the particle size distribution also varies from lot to lot.

【0013】まず、本発明に使用される剥離を可能とす
る粉体は、化学的に合成された球形粉体から構成され
る。これは、上述したように、従来の熱間剥離剤が、ケ
イソウ土などの天然産無機質材料であるため、その結晶
は針状、板状、蜂巣状などの変形や鋭い角を持った形状
であり、その結果、ガラス表面に傷を付け、電子スプレ
ーのロールからの離れが悪く、ガラス表面に対し付着性
が大きく曲げ加工後に容易に吸引除去されないという問
題点が生じたとの結論に達し、これらの課題を解決でき
るものを選定すると、球形粉体であるとの結論を得たこ
とにある。この球形粉体は、天然産の無機質原料を用い
て粉砕などの物理的処理工程から製造することは難し
く、化学的合成法によって好適に得られる。この化学的
合成法としては、水熱合成法が一般的方法であるが、そ
の他にも加水分解法、造粒焼結法、ゾルのスプレー乾燥
法等が挙げられ、これら合成法によって叙述の球形粉体
が得られる。
First, the exfoliatable powder used in the present invention is composed of chemically synthesized spherical powder. This is because, as described above, the conventional hot release agent is a naturally occurring inorganic material such as diatomaceous earth, so that the crystals have a shape with needle-shaped, plate-shaped, honeycomb-shaped or the like and sharp corners. Yes, as a result, it was concluded that the glass surface was scratched, the separation from the roll of the electrospray was poor, the adhesion to the glass surface was large, and there was a problem that it was not easily removed by suction after bending. It was concluded that it was a spherical powder when a material that could solve the above problem was selected. It is difficult to produce this spherical powder from a physical treatment step such as pulverization using a naturally occurring inorganic raw material, and it is suitably obtained by a chemical synthesis method. As this chemical synthesis method, a hydrothermal synthesis method is generally used, but in addition to this, a hydrolysis method, a granulation sintering method, a spray drying method of a sol, etc. can be mentioned. A powder is obtained.

【0014】次に、本発明に係る粉体は、5〜40μm
の間にシャープな粒度分布を有するものが用いられる。
ここで、粉体の粒度分布を「5〜40μm」に限定した
のは、この範囲内ではじめて均一な電子散布性が得られ
るからである。これは、天然産無機質原料を粉砕などの
物理的方法で得られる従来品では、微粉から粗粉へと約
1から70μmの範囲でバラツキが大きく、そのため電
子スプレーで均一な散布がでないことから導かれた結論
である。また、粒度分布を「5μm」以上としたのは、
5μm未満の微粉を20%以上含有すると、微粉が相互
に凝集して流動性を阻害する結果、良好な電子散布性が
得られないばかりか、この微粉が散布に際し粉塵となっ
て周囲に飛散するので、吸気によって肺胞に侵入し、安
全衛生上好ましくないからである。一方、粒度分布を
「40μm」以下としたのは、これを超えるとガラス表
面に傷を付けたり、光学的歪みを生じるが、その限界が
粒径40μmとの結論に基づく。因みに従来品であるア
メリカJohnーMaville社製セライト(商品名
ハイフロースーパーセル)は粒径40μm以上の硬い粗
粉を10〜20%も包含していた。
Next, the powder according to the present invention has a thickness of 5 to 40 μm.
Those having a sharp particle size distribution between them are used.
Here, the particle size distribution of the powder is limited to “5 to 40 μm” because the uniform electron scattering property can be obtained only within this range. This is because conventional products obtained by physical methods such as pulverization of naturally occurring inorganic raw materials have a large variation in the range of about 1 to 70 μm from fine powder to coarse powder, and therefore uniform spraying by electronic spray is not possible. This is the conclusion made. The reason why the particle size distribution is set to "5 μm" or more is that
When 20% or more of the fine powder of less than 5 μm is contained, the fine powders agglomerate with each other to impede the fluidity, so that not only good electron spraying property cannot be obtained, but also the fine powder is scattered as dust during spraying. Therefore, it invades the alveoli by inhalation, which is not preferable for safety and hygiene. On the other hand, the reason why the particle size distribution is set to "40 μm" or less is that the glass surface is scratched or optical distortion occurs if the particle size distribution exceeds this value, but the limit is based on the conclusion that the particle size is 40 μm. Incidentally, the conventional product Celite (trade name: High Flow Supercell) manufactured by John John Maville of the United States contained 10 to 20% of hard coarse powder having a particle size of 40 μm or more.

【0015】一方、本発明に係る粉体は、上記粒度分布
を「5〜40μm」から「5〜20μm」の範囲に限定
することで電子散布性がかわらず、ガラス板のズレを防
止できる。即ち積層されたガラスが搬送中や加熱炉内で
の滑りが防止でき、その結果ガラス板の相互のズレが防
止されることから、ガラス曲げ加工を行うに際してもペ
アー性が悪いことに起因して発生する泡残りの原因が除
去できる。なお、搬送中や加熱炉内でのガラスの滑りは
粉体の粒径が大きくなるに伴って増加するので、これを
防止するには粉体の粒径が小さい程よいことになるが、
上記した電子散布性や流動性などとの関係からその粒度
分布を「5〜20μm」に限定したものである。
On the other hand, in the powder according to the present invention, by restricting the particle size distribution in the range of "5 to 40 μm" to "5 to 20 μm", the electron dispersibility does not change and the deviation of the glass plate can be prevented. That is, the laminated glass can be prevented from slipping during transportation or in the heating furnace, and as a result, mutual deviation of the glass plates can be prevented, which is caused by poor pairability when performing glass bending. The cause of the remaining bubbles can be removed. Note that the glass slippage during transportation and in the heating furnace increases as the particle size of the powder increases, so to prevent this, the smaller the particle size of the powder, the better.
The particle size distribution is limited to “5 to 20 μm” in consideration of the above-mentioned electron dispersibility and fluidity.

【0016】また、本発明に係る粉体は、屈折率が1.
40〜1.60の範囲で構成される。これは、ガラスの
屈折率1.5に近似していれば、その後合わせガラス工
程での障害とならないことによる。即ち本発明に係る粉
体によれば、球形状に構成されるため、ガラス表面から
吸塵装置で吸引除去が容易になされるが、この除去が不
完全な場合であっても、残存粒子に基づく乱反射が防止
できる。ガラス表面に残留した剥離剤を、水浄工程の他
にその後の乾燥工程を経由することも不要となり、工程
が簡略化できる。ここで、屈折率が1.4〜1.6の範
囲から外れる例として、Al2 3 (酸化アルミニウ
ム)の1.76〜1.77及びTi02 (酸化チタン)
の2.52を挙げることができるが、その他の鉱石は多
くのシリカ系及び炭カル系を含めて殆ど1.4〜1.6
の範囲に収まる。
The powder according to the present invention has a refractive index of 1.
It is configured in the range of 40 to 1.60. This is because if the refractive index of the glass is close to 1.5, it does not hinder the subsequent laminated glass process. That is, according to the powder according to the present invention, since it is formed into a spherical shape, it is easy to remove the dust from the glass surface with the dust suction device. Diffuse reflection can be prevented. It is not necessary to pass the release agent remaining on the glass surface through the subsequent drying process in addition to the water purification process, and the process can be simplified. Here, from 1.76 to 1.77 and Ti0 2 (titanium oxide) as an example in which the refractive index is outside the range of 1.4~1.6, Al 2 0 3 (aluminum oxide)
2.52 can be mentioned, but other ores are mostly 1.4 to 1.6 including many silica-based and calcined carbon-based.
Fits in the range.

【0017】粉状の粒子の屈折率は液体のそれを利用し
て測定することができる。液体の屈折率は例えば標準試
料として1.33〜1.74のものが知られている。こ
れは、任意の屈折率の異なる液体を混合することで、そ
の中間の値のものを作ることができる。粉体をこのよう
な液の中に浸漬し、例えば光学顕微鏡の視野に置くと液
体と屈折率に相違がある程、粒子の像、即ち輪郭がクッ
キリと明瞭に識別できる。一方、屈折率が近似してくる
と粒子像は明瞭さを欠き、やがて殆ど識別出来なくな
る。この点を以て粒子の屈折率とする。
The refractive index of powder particles can be measured by using that of liquid. A liquid having a refractive index of 1.33 to 1.74 is known as a standard sample. This can be made by mixing liquids having different refractive indices and having an intermediate value. When the powder is dipped in such a liquid and placed in the visual field of an optical microscope, for example, the more the refractive index differs from that of the liquid, the clearer the image of the particle, that is, the contour, can be clearly identified. On the other hand, when the refractive indexes become close to each other, the particle image lacks clarity and eventually becomes almost indistinguishable. The refractive index of the particles is defined by this point.

【0018】本発明に使用される無機質粉体としては、
アルミノケイ酸塩及びSiO2 から選ばれる少なくとも
一種が好ましく用いられ、これらを単体もしくは混合で
用いても良く、或いはこれらを主体として残部にK
2 O、Na2 OまたはMgOを配合する構成にしても良
い。これらの無機質粉体はいずれも球形状であって、人
工的に合成して得られる点で共通し、その配合比は、S
iO2 が重量比40〜100%の範囲、Al2 3 が0
から40%の範囲、この残部にK2 0、Na2 0または
Mg0が0から20%の範囲であることが好ましい。
The inorganic powder used in the present invention includes:
At least one selected from aluminosilicate and SiO 2 is preferably used, and these may be used alone or as a mixture, or these are the main components and K is the balance.
2 O, Na 2 O or MgO may be added. All of these inorganic powders have a spherical shape and are common in that they are obtained by artificial synthesis, and their compounding ratio is S
iO 2 is in the range of 40 to 100% by weight, and Al 2 O 3 is 0.
Range of 40%, it is preferable K 2 0, Na 2 0 or Mg0 in the balance in the range of 0 to 20%.

【0019】本発明には、必要に応じて、シリコーン樹
脂をコーティグすることにより粉体に優れた電子散布性
を与えることができる。このシリコーン樹脂を粉体に対
し0.1〜30重量%、好ましくは0.5〜5重量%で
コーティングする。このシリコーン樹脂としては、架橋
構造の網目状ガラス質皮膜を形成するものが望ましく、
具体的には、ナトリウム・メチルシリコネート、メチル
フェニルポリシロキサン、アルキルポリシロキサンなど
が挙げられる。
In the present invention, if necessary, a silicone resin may be coated to give the powder excellent electron-dispersing properties. The silicone resin is coated on the powder in an amount of 0.1 to 30% by weight, preferably 0.5 to 5% by weight. As this silicone resin, one that forms a reticulated vitreous film having a crosslinked structure is desirable,
Specific examples include sodium methylsiliconate, methylphenyl polysiloxane, and alkyl polysiloxane.

【0020】[0020]

【実施例】以下、本発明に係る剥離を可能とする粉体の
詳細な説明を実施例に基づいて説明するが、これらの実
施例に限定されるものではない。
EXAMPLES The detailed description of the powder capable of peeling according to the present invention will be described below based on examples, but the present invention is not limited to these examples.

【0021】実施例 1 原料としてケイ酸ソーダ、アルミン酸ソーダを用い、各
成分の比率がSiO2 にあっては60%、Al2 3
あっては30%、Na2 0にあっては10%と成るよう
に希硫酸を用いて調製し、最終的に水溶液濃度20%に
作成した。こうして得られたアルミノケイ酸塩アルカリ
のゲルを熟成後、これを緩い攪拌の下、200°Cで加
圧下で5時間、結晶化させ、粒度分布10から20μm
の硬質球体を得、これを濾過して水洗いした後、乾燥し
た。
Example 1 Sodium silicate and sodium aluminate were used as raw materials, and the ratio of each component was 60% for SiO 2 , 30% for Al 2 O 3 , and 30% for Na 2 0. It was prepared by using dilute sulfuric acid so as to have a concentration of 10%, and finally prepared to have an aqueous solution concentration of 20%. After aging the aluminosilicate alkali gel thus obtained, it was crystallized under gentle stirring at 200 ° C. for 5 hours, with a particle size distribution of 10 to 20 μm.
Hard spheres were obtained, which were filtered, washed with water, and then dried.

【0022】次に、得られた球形粉体の表面にナトリウ
ム・メチルシリコネートを1重量%コーティングして改
質した。
Next, the surface of the obtained spherical powder was coated with 1% by weight of sodium methylsiliconate to modify it.

【0023】こうして製造された粉体を、電子スプレー
K型(ニッカ株式会社)で径55mm:長さ500mm
のロールを用い、1枚のガラス板の表面にm2 当たり
0.1から2.0gの範囲で散布した。これに無散布の
ものを重ねて2枚とし、加熱炉に入れて約700°Cで
加圧して曲げ加工させ、その後に冷却した。冷却後に剥
離し、ガラス表面の粉体を空気集塵機の如き装置で吸引
した。これらの結果を電子散布性、飛散性、安息角、剥
離効果、ガラス面の傷及び歪み、透視によるキラつき、
ガラス面のズレについて調べ、それぞれ表1に示す。
The powder produced in this manner is electrospray K type (Nikka Co., Ltd.) diameter 55 mm: length 500 mm.
Using a roll of No. 2, the surface of one glass plate was sprayed in the range of 0.1 to 2.0 g per m 2 . Two sheets of non-scattered material were stacked on top of this, put into a heating furnace, pressed at about 700 ° C. for bending, and then cooled. After cooling, it was peeled off, and the powder on the glass surface was sucked by a device such as an air dust collector. These results show that the electronic dispersibility, the scattering property, the angle of repose, the peeling effect, the scratches and distortions on the glass surface, and the brilliance caused by see-through,
The deviation of the glass surface was examined and shown in Table 1.

【0024】表1に示すようにガラス表面の粉体は、ほ
とんど残留することなく除去され、ガラス表面には傷や
光学的歪みなどが発生していないことがわかった。この
結果は、冷却後に剥離した後、残留する粉体を水洗いや
乾燥工程等を経なくとも良いことを示してしる。また得
られたガラス間にブチラール等の樹脂フィルムを挟み込
み、合わせ安全ガラスとした際も透視によるキラつきを
認めなかった。更に重ね合わされたガラス板の相互のズ
レが防止され、泡残りも見られなかった。
As shown in Table 1, it was found that the powder on the glass surface was removed with almost no residue, and that the glass surface had no scratches or optical distortions. This result indicates that after peeling after cooling, the remaining powder need not be washed with water or dried. Further, when a resin film of butyral or the like was sandwiched between the obtained glasses to form a laminated safety glass, no glaring was observed under fluoroscopy. Further, the mutual deviation of the laminated glass plates was prevented, and no bubble residue was observed.

【0025】実施例 2 晶析反応を5時間継続したことに代えて10時間継続し
た以外は、実施例1と同様な方法により、ゲルを調整
し、その結果、平均30〜40μmの球体を得た。これ
を水洗乾燥した後、その表面を実施例1と同様な方法で
シリコン樹脂で改質した。この粉体に実施例1と同様な
方法により電子スプレーで散布し、曲げ加工を行った
後、各効果について調べた。その結果は、表1に示すよ
うに実施例1とほぼ同様であったが、重ね合わされたガ
ラス板が相互に僅かにズレ、泡残りも極僅か見られた。
Example 2 A gel was prepared in the same manner as in Example 1 except that the crystallization reaction was continued for 10 hours instead of 5 hours, and as a result, spheres having an average of 30 to 40 μm were obtained. It was This was washed with water and dried, and then its surface was modified with a silicone resin in the same manner as in Example 1. This powder was sprayed by an electrospray in the same manner as in Example 1 and subjected to bending, and then each effect was examined. The results were almost the same as in Example 1 as shown in Table 1, but the laminated glass plates were slightly deviated from each other, and very little bubble residue was observed.

【0026】実施例 3 原料としてケイ酸ソーダを用い、SiO2 が100%と
成るようにすること以外は、実施例1と同様な方法によ
り、ゲルを調整した。その結果、平均10〜20μmの
球体を得、これを水洗乾燥した後、その表面を実施例1
と同様な方法でシリコン樹脂で改質した。この粉体に実
施例1と同様な方法により電子スプレーで散布し、曲げ
加工を行った後、各効果について調べた。その結果は、
表1に示すように実施例1とほぼ同様であった。
Example 3 A gel was prepared in the same manner as in Example 1 except that sodium silicate was used as a raw material and SiO 2 was 100%. As a result, spheres having an average diameter of 10 to 20 μm were obtained, washed with water and dried, and then the surface thereof was treated in Example 1.
It was modified with silicone resin in the same manner as in. This powder was sprayed by an electrospray in the same manner as in Example 1 and subjected to bending, and then each effect was examined. The result is
As shown in Table 1, it was almost the same as in Example 1.

【0027】比較例 1 晶析反応を5時間継続したことに代えて1時間継続した
以外は、実施例1と同様な方法により、ゲルを調製し、
その結果、平均1〜4μmの球体を得た。これを水洗乾
燥した後、その表面を実施例1と同様な方法でシリコン
樹脂で改質した。この粉体に実施例1と同様な方法によ
り電子スプレーで散布し、曲げ加工を行った後、各効果
について調べた。
Comparative Example 1 A gel was prepared in the same manner as in Example 1 except that the crystallization reaction was continued for 1 hour instead of 5 hours.
As a result, spheres having an average of 1 to 4 μm were obtained. This was washed with water and dried, and then its surface was modified with a silicone resin in the same manner as in Example 1. This powder was sprayed by an electrospray in the same manner as in Example 1 and subjected to bending, and then each effect was examined.

【0028】その結果は、表1に示すようにガラス表面
には傷や工学的歪みなどが発生せず、キラつきも認めな
かったが、流動性が低下した結果、均一な散布ができ
ず、また散布に際し粉体が飛散したが、重ね合わされた
ガラス板の相互のズレは全く生じなかった。
As a result, as shown in Table 1, no scratches or engineering strains were generated on the glass surface, and no glaring was observed, but the fluidity was lowered, and uniform dispersion was not possible. Further, powder was scattered during the spraying, but the mutual deviation of the laminated glass plates did not occur at all.

【0029】比較例 2 晶析反応を5時間継続したことに代えて20時間継続し
た以外は、実施例1と同様な方法により、ゲルを調製
し、その結果、平均40〜60μmの球体を得た。これ
を水洗乾燥した後、その表面を実施例1と同様な方法で
シリコン樹脂で改質した。この粉体に実施例1と同様な
方法により電子スプレーで散布し、曲げ加工を行った
後、各効果について調べた。その結果は、表1に示すよ
うにガラス表面に傷が付いたり、工学的歪みが生じ、さ
らにガラスのズレが明らかに見られた。
Comparative Example 2 A gel was prepared in the same manner as in Example 1 except that the crystallization reaction was continued for 20 hours instead of 5 hours, and as a result, spheres having an average of 40 to 60 μm were obtained. It was This was washed with water and dried, and then its surface was modified with a silicone resin in the same manner as in Example 1. This powder was sprayed by an electrospray in the same manner as in Example 1 and subjected to bending, and then each effect was examined. As a result, as shown in Table 1, the surface of the glass was scratched, an engineering strain was generated, and further, the deviation of the glass was clearly seen.

【0030】比較例 3 アルミン酸ソーダの20%水溶液を調製し、稀硫酸を用
いて中和し、アルミナのゲルを生成させた。これを水熱
合成に従い200°C加圧下で晶析反応を5時間継続
し、平均10〜20μmの球体を得、水洗乾燥した。得
られた球体表面を実施例1と同様な方法でシリコン樹脂
で改質した。この粉体に実施例1と同様な方法により電
子スプレーで散布し、曲げ加工を行った後、各効果につ
いて調べた。その結果は、表2に示すようにガラス表面
に傷や工学的歪みなどは発生しなかったが、キラつきが
認められた。これは、アルミナがガラスの屈折率である
1.40〜1.60の範囲外であることから生じた結果
で、これを合わせガラスに用いると障害となることを示
している。
Comparative Example 3 A 20% aqueous solution of sodium aluminate was prepared and neutralized with diluted sulfuric acid to form an alumina gel. According to the hydrothermal synthesis, the crystallization reaction was continued under pressure at 200 ° C. for 5 hours to obtain spheres having an average of 10 to 20 μm, which were washed with water and dried. The surface of the obtained sphere was modified with a silicone resin in the same manner as in Example 1. This powder was sprayed by an electrospray in the same manner as in Example 1 and subjected to bending, and then each effect was examined. As a result, as shown in Table 2, scratches and engineering strains did not occur on the glass surface, but scratches were recognized. This is a result of the fact that alumina is out of the range of 1.40 to 1.60 which is the refractive index of glass, and shows that it becomes an obstacle when it is used for laminated glass.

【表1】 [Table 1]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】【The invention's effect】

(1)本発明は、5〜40μmのシャープな粒度分布を
有する球形状無機質粉体である。 従って本発明に係る無機質粉体によれば、適度な組成、
粒度、形状及び流動性の総合効果に基づき、不快なオゾ
ン臭及び放電音を発生する高電圧によることなく、低電
圧であっても、電子スプレーにより均一な散布をするこ
とができる。 (2)本発明は、5μm以上の球形粒子であることか
ら、微粉が相互に凝集することによる流動性の低下を防
止でき、更に1μm付近の微粉が粉塵となって周囲に飛
散することがないので、安全かつ衛生的な無機質粉体で
ある。 (3)本発明に係る無機質粉体によれば、40μm以下
の球形粒子であることから、ガラス面への傷や歪み等を
発生させることがなく、剥離後は集塵装置で略完全に取
り去ることができる。 (4)本発明に係る無機質粉体によれば、屈折率が1.
40〜1.60の範囲にあるので、剥離後は集塵除去に
際し、万一残留があった場合であっても、屈折率がガラ
スと近似しているために、水洗工程その後の乾燥工程を
行う必要がなく、光学的障害を発生するこたがない。 (5)本発明に係る無機質粉体によれば、10〜20μ
mのよりシャープな粒度分布を有する球形状無機質粉体
であるから、積層されたガラスが搬送中や加熱炉内での
滑が防止でき、これに伴って生ずるガラス板の相互のズ
レが防止でき、その結果ガラス曲げ加工を行った後、ペ
アー性が悪いことによる泡残りが発生しない。
(1) The present invention is a spherical inorganic powder having a sharp particle size distribution of 5 to 40 μm. Therefore, according to the inorganic powder according to the present invention, an appropriate composition,
Based on the total effect of particle size, shape and fluidity, even with a low voltage, uniform spraying can be carried out by a low voltage, rather than by a high voltage that produces an unpleasant ozone odor and discharge noise. (2) Since the present invention is spherical particles of 5 μm or more, it is possible to prevent deterioration of fluidity due to mutual aggregation of fine powder, and further, fine powder of around 1 μm does not become dust and scatter around. So it is a safe and hygienic inorganic powder. (3) Since the inorganic powder according to the present invention is spherical particles having a size of 40 μm or less, it does not cause scratches or distortion on the glass surface, and is almost completely removed by a dust collector after peeling. be able to. (4) The inorganic powder according to the present invention has a refractive index of 1.
Since it is in the range of 40 to 1.60, even if there is a residue when removing dust after peeling, the refractive index is close to that of glass. There is no need to do it, and there are no optical obstacles. (5) According to the inorganic powder according to the present invention, 10 to 20 μm
Since it is a spherical inorganic powder having a sharper particle size distribution of m, it is possible to prevent the laminated glass from slipping during transportation or in a heating furnace, and prevent the glass plates from being displaced from each other. As a result, after the glass bending process, no bubble residue occurs due to poor pairing.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C08J 7/00 Z 7258−4F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C08J 7/00 Z 7258-4F

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】粒度分布が5から40μmで、かつ屈折率
が1.40から1.60の球形状無機質粉体であること
を特徴とする剥離を可能とする粉体。
1. A peelable powder characterized by being a spherical inorganic powder having a particle size distribution of 5 to 40 μm and a refractive index of 1.40 to 1.60.
【請求項2】粒度分布が5から20μmで、かつ屈折率
が1.40から1.60の球形状無機質粉体であること
を特徴とする剥離を可能とする粉体。
2. A powder capable of exfoliation, which is a spherical inorganic powder having a particle size distribution of 5 to 20 μm and a refractive index of 1.40 to 1.60.
【請求項3】球形状無機質粉体がアルミノケイ酸塩及び
SiO2 から選ばれ少なくとも1種である請求項1又は
2に記載の剥離を可能とする粉体。
3. The peelable powder according to claim 1, wherein the spherical inorganic powder is at least one selected from aluminosilicate and SiO 2 .
【請求項4】球形状無機質粉体がアルミノケイ酸塩及び
SiO2 から選ばれる少なくとも1種に、更にK2 O、
Na2 O、及びMgOから選ばれる少なくとも1種を配
合する請求項1、2又は3に記載の剥離を可能とする粉
体。
4. The spherical inorganic powder is at least one selected from aluminosilicate and SiO 2 , and further K 2 O,
The powder capable of peeling according to claim 1, 2 or 3, which contains at least one selected from Na 2 O and MgO.
【請求項5】球形状無機質粉体表面にシリコ−ン樹脂が
コ−ティングされている請求項1、2、3又は4に記載
の剥離を可能とする粉体。
5. The peelable powder according to claim 1, 2, 3 or 4, wherein the surface of the spherical inorganic powder is coated with a silicone resin.
JP2347792A 1991-02-12 1992-02-10 Releasable powder Pending JPH05178636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2347792A JPH05178636A (en) 1991-02-12 1992-02-10 Releasable powder

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP1856391 1991-02-12
JP28696891 1991-11-01
JP3-286968 1991-11-01
JP3-18563 1991-11-01
JP2347792A JPH05178636A (en) 1991-02-12 1992-02-10 Releasable powder

Publications (1)

Publication Number Publication Date
JPH05178636A true JPH05178636A (en) 1993-07-20

Family

ID=27282264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2347792A Pending JPH05178636A (en) 1991-02-12 1992-02-10 Releasable powder

Country Status (1)

Country Link
JP (1) JPH05178636A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488996B1 (en) 1997-12-24 2002-12-03 Nippon Sheet Glass Co., Ltd. Cushion spacer for glass plates and stack of glass plates
JP2019514819A (en) * 2016-07-27 2019-06-06 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Process for producing modified precipitated silica and composition containing modified precipitated silica

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488996B1 (en) 1997-12-24 2002-12-03 Nippon Sheet Glass Co., Ltd. Cushion spacer for glass plates and stack of glass plates
MY119836A (en) * 1997-12-24 2005-07-29 Nippon Sheet Glass Co Ltd Cushion spacer for glass plates and stack of glass plates
JP2019514819A (en) * 2016-07-27 2019-06-06 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Process for producing modified precipitated silica and composition containing modified precipitated silica

Similar Documents

Publication Publication Date Title
JP5700458B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating
JP4126788B2 (en) Silica-magnesium fluoride hydrate composite sol and process for producing the same
EP1106574B1 (en) Scaly silica particles and hardenable composition containing them
JP4428923B2 (en) Method for producing silica-based hollow fine particles
JP2001233611A (en) Silica-based microparticle, method for producing dispersion with the same, and base material with coating film
WO2006129411A1 (en) DISPERSION CONTAINING HOLLOW SiO2, COATING COMPOSITION, AND SUBSTRATE WITH ANTIREFLECTION COATING FILM
EP2098215A1 (en) Dental filling material, process for producing the same, and dental composite material
JP2006335605A (en) Method for producing hollow sio2 microparticle liquid dispersion, coating composition and substrate with antireflection coating film
JP4592274B2 (en) Antimony oxide-coated silica fine particles, method for producing the fine particles, and coated substrate containing the fine particles
JP6237322B2 (en) Method for producing article with antiglare film
WO2015125929A1 (en) Article with anti-glare film, manufacturing method therefor, and image display device
JP4540979B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP7425407B2 (en) Antifogging agent composition, antifogging article having an antifogging film formed from the composition
WO2017029735A1 (en) Article with anti-glare film, method for producing same and image display device
JP4979876B2 (en) Base material with hard coat film
JPH05178636A (en) Releasable powder
JP4731137B2 (en) Method for producing silica-based fine particles
US3526530A (en) Siliceous coatings
JP3955971B2 (en) Base material with antireflection film
JPH05201742A (en) Powder capable of exfoliation
JP5404568B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating
JPH05294664A (en) Peeling agent
JP2021091607A (en) Manufacturing method of silica-clad silica-titania composite oxide powder
JPH0129225B2 (en)
JP4773626B2 (en) Spherical inorganic oxide particles