JPH0517813Y2 - - Google Patents

Info

Publication number
JPH0517813Y2
JPH0517813Y2 JP13153186U JP13153186U JPH0517813Y2 JP H0517813 Y2 JPH0517813 Y2 JP H0517813Y2 JP 13153186 U JP13153186 U JP 13153186U JP 13153186 U JP13153186 U JP 13153186U JP H0517813 Y2 JPH0517813 Y2 JP H0517813Y2
Authority
JP
Japan
Prior art keywords
battery
plate
nickel
bipolar
conductive plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13153186U
Other languages
Japanese (ja)
Other versions
JPS6337073U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13153186U priority Critical patent/JPH0517813Y2/ja
Publication of JPS6337073U publication Critical patent/JPS6337073U/ja
Application granted granted Critical
Publication of JPH0517813Y2 publication Critical patent/JPH0517813Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Description

【考案の詳細な説明】 考案の利用分野 本考案は軽量かつ高性能の、バイポーラ極板を
有するオキシハライド/リチウム電池に関するも
のである。
[Detailed Description of the Invention] Field of Application of the Invention The present invention relates to a lightweight, high-performance oxyhalide/lithium battery with bipolar plates.

従来の技術とその問題点 正極活物質として塩化チオニル、塩化スルフリ
ル等のオキシハライドを、負極活物質に活性金属
であるリチウムを用いるオキシハライド/リチウ
ム電池では、オキシハライドが正極活物質と電解
液を兼ね、エネルギー密度が大きく、開路電圧は
1セル当り3.7Vを示すなど、優れた特性を有す
る。
Conventional technologies and their problems In oxyhalide/lithium batteries that use oxyhalides such as thionyl chloride or sulfuryl chloride as the positive electrode active material and lithium, which is an active metal, as the negative electrode active material, the oxyhalide acts as a bond between the positive electrode active material and the electrolyte. It also has excellent characteristics such as high energy density and open circuit voltage of 3.7V per cell.

また、電池は一つのセルだけから得られるより
も大きな電圧を得るため、直列に配列された複数
のセルを有している。この電池は対面したリチウ
ム負極と、炭素正極集電体と、その間に介在する
多孔質セパレータより成り、電解液はセパレータ
および正極集電体の空隙中に保持され、隣接する
電池の負極及び正極集電体は導電正プレートの両
側面上に位置づけ得ることが知られている。この
組立体はバイポーラ極板と称される。
Batteries also have multiple cells arranged in series to obtain a greater voltage than would be available from a single cell alone. This battery consists of a lithium negative electrode facing each other, a carbon positive electrode current collector, and a porous separator interposed between them. The electrolyte is held in the gap between the separator and the positive electrode current collector, and the negative electrode and positive electrode of the adjacent battery are It is known that electrical bodies can be positioned on both sides of a conductive positive plate. This assembly is called a bipolar plate.

電池は多数のバイポーラ極板を端部が負極か正
極集電体のいずれかを担持するプレートで終結す
る様に積層して作製し得る。
A battery may be made by stacking a number of bipolar plates such that the ends terminate in plates carrying either a negative electrode or a positive current collector.

従来の電池ではバイポーラ極板の導電性プレー
トとして、塩化チオニル、塩化スルフリル等のオ
キシハライドに侵されないニツケル等が使用され
ているが、この場合、大形の極板で積層セル数が
増すと、電池の重量が重くなり、比重8.8のニツ
ケルの導電性プレートの重量も無視できなくな
る。また、大電流放電ではジユール発熱の増大、
あるいは副反応による発熱により電池内温度が上
昇するので、その発生する熱を電池外部に放出し
なければならないが、この放熱経路として導電性
プレートが関与する。しかし、熱伝導率が
0.201calcm-1s-1deg-のニツケルの導電性プレート
では十分でないため、電池内温度が上昇し過ぎて
爆発等の危険があつた。
In conventional batteries, nickel, which is not attacked by oxyhalides such as thionyl chloride and sulfuryl chloride, is used as the conductive plate of the bipolar electrode plate. The weight of the battery becomes heavier, and the weight of the nickel conductive plate, which has a specific gravity of 8.8, cannot be ignored. In addition, large current discharge increases Joule heat generation,
Alternatively, the internal temperature of the battery increases due to heat generated by side reactions, and the generated heat must be released to the outside of the battery, and the conductive plate is involved as a heat dissipation path. However, the thermal conductivity
Since the 0.201 calcm -1 s -1 deg - nickel conductive plate was not sufficient, the temperature inside the battery rose too much and there was a risk of explosion.

そこで、重量が軽く、電気伝導性及び熱伝導性
の良い導電性プレートとして、比重2.7、熱伝導
率0.487cal cm-1s-1deg-のアルミニウムが考えら
れる。しかし、アルミニウムは塩化チオニル、塩
化スルフリル等のオキシハライドに侵される問題
がある。
Therefore, aluminum having a specific gravity of 2.7 and a thermal conductivity of 0.487 cal cm -1 s -1 deg - can be considered as a conductive plate that is light in weight and has good electrical and thermal conductivity. However, aluminum has the problem of being attacked by oxyhalides such as thionyl chloride and sulfuryl chloride.

問題点を解決するための手段 本考案者等は上記問題点を解決する手段とし
て、塩化チオニル、塩化スルフリル等のオキシハ
ライドに対して安定なニツケルをアルミニウムプ
レートに被覆することにより、軽量かつ、熱伝導
性の良好な導電性プレートと成りえることを見い
出した。
Means for Solving the Problems The present inventors have solved the above problems by coating an aluminum plate with nickel, which is stable against oxyhalides such as thionyl chloride and sulfuryl chloride. It was discovered that this material can be used as a conductive plate with good conductivity.

本考案はこの事実に基づき、バイポーラ極板の
導電性プレートとして、少なくとも正・負極との
当接面をニツケルで被覆したアルミニウムを使用
するオキシハライド/リチウム電池を提供するも
のである。
Based on this fact, the present invention provides an oxyhalide/lithium battery using aluminum coated with nickel at least on the contact surfaces with the positive and negative electrodes as the conductive plates of the bipolar plates.

実施例 以下、本考案の実施例について詳述する。Example Examples of the present invention will be described in detail below.

第1図は本考案になるオキシハライド/リチウ
ム電池の断面図であり、第2図は本考案電池に使
用するバイポーラ極板の断面図である。上記バイ
ポーラ極板1は一方側に負極体であるリチウム2
を、他方側に正極集電体3を担持する導電性プレ
ート4を有している。前記正極集電体はテフロン
をバインダーとしてアセチレンブラツクを固定化
したものを用い、導電性プレート4は直径100mm、
厚さ0.05mmのアルミニウム箔5に厚さ0.003mmの
ニツケルメツキ6を施したものである。
FIG. 1 is a cross-sectional view of an oxyhalide/lithium battery according to the present invention, and FIG. 2 is a cross-sectional view of a bipolar plate used in the battery according to the present invention. The above-mentioned bipolar electrode plate 1 has lithium 2 which is a negative electrode body on one side.
It has a conductive plate 4 supporting a positive electrode current collector 3 on the other side. The positive electrode current collector used was one in which acetylene black was fixed using Teflon as a binder, and the conductive plate 4 had a diameter of 100 mm.
A nickel plating 6 with a thickness of 0.003 mm is applied to an aluminum foil 5 with a thickness of 0.05 mm.

上記バイポーラ極板を積層したオキシハライ
ド/リチウム電池では、積層体の一方の端部には
負極体2だけを備えた導電性プレートを有する端
部プレート7があり、電池の負極として機能し、
積層体の反対側の端部には正極集電体3だけを備
えた導電性プレートを有する端部プレート8があ
り、電池の正極として機能する。各々のバイポー
ラ極板は負極体が同一の方向に整列し、一つのバ
イポーラ極板の負極体が隣り合うバイポーラ極板
の正極集電体と向い合う様にして方向づけられて
いる。
In the oxyhalide/lithium battery having stacked bipolar plates as described above, at one end of the stack there is an end plate 7 having a conductive plate with only the negative electrode body 2, which functions as the negative electrode of the battery,
At the opposite end of the stack there is an end plate 8 having a conductive plate with only a positive current collector 3, which serves as the positive electrode of the battery. The negative electrode bodies of each bipolar plate are aligned in the same direction, and the negative electrode body of one bipolar plate is oriented so as to face the positive electrode current collector of the adjacent bipolar plate.

各々の負極体はセパレータ9によつて向い合う
正極集電体と離間されている。セパレータ9は多
孔度92%のガラス繊維不織布である。
Each negative electrode body is separated from the opposing positive electrode current collector by a separator 9. Separator 9 is a glass fiber nonwoven fabric with a porosity of 92%.

電槽10にはアルミニウムにニツケルメツキを
施したものを用い、電槽の内面には絶縁被膜11
を施した。絶縁被膜はPTFE膜とした。
The battery case 10 is made of aluminum plated with nickel, and the inner surface of the battery case is coated with an insulating coating 11.
was applied. The insulation coating was a PTFE film.

正極活物質には塩化チオニルを用い、前記塩化
チオニルに塩化ガリウム1M、塩化アルミニウム
1Mを添加して注液管12を通して各セル中へ注
入し、電池の活性化を計つた。
Thionyl chloride is used as the positive electrode active material, and 1M gallium chloride and aluminum chloride are added to the thionyl chloride.
1M was added and injected into each cell through the injection tube 12 to measure battery activation.

考案の効果 10セルを積層して上述の如く構成した本考案電
池Aの重量と放電特性の向上を確認するため、従
来の電池Bとしてバイポーラ極板の導電性プレー
トにニツケル板を用いたものと比較した。
Effect of the Invention In order to confirm the improvement in weight and discharge characteristics of the battery A of the present invention constructed as described above by stacking 10 cells, a comparison was made with a conventional battery B using nickel plates for the conductive plates of the bipolar electrodes.

10セル積層電池では本考案電池Aは248g、従
来の電池は272gとなり、本考案電池Aは従来の
電池Bに較べて約24g軽減されている。この様に
バイポーラ極板の導電性プレートにニツケルメツ
キしたアルミニウム箔を用いることにより、重量
は軽減されるが、この効果は極板が大きくなる
程、また、極板積層数が多くなる程大きくなる。
In the case of a 10-cell stacked battery, the battery A of the present invention weighs 248 g, and the conventional battery weighs 272 g. The battery A of the present invention weighs approximately 24 g less than the conventional battery B. By using nickel-plated aluminum foil as the conductive plate of the bipolar plate in this manner, the weight is reduced, but this effect becomes greater as the plate becomes larger and as the number of laminated plates increases.

また、放熱特性を調べるため、83mA/cm2の定
電流放電試験を行ない、電池内温度を計測した。
その結果を第3図に示す。本考案電池Aと従来の
電池Bを比較すると、放電開始から10分後の電池
温度は、本考案電池Aでは約53℃、従来の電池B
では約68℃となり、本考案電池Aは従来の電池B
に比べて15℃低くなり、バイポーラ極板の導電性
プレートにニツケルメツキしたアルミニウム箔を
用いることにより極めて優れた放熱特性が得られ
た。
In addition, in order to examine the heat dissipation characteristics, a constant current discharge test of 83 mA/cm 2 was conducted and the temperature inside the battery was measured.
The results are shown in FIG. Comparing inventive battery A and conventional battery B, the battery temperature 10 minutes after the start of discharge was approximately 53°C for inventive battery A and conventional battery B.
The temperature is approximately 68℃, and the battery A of this invention is higher than the conventional battery B.
By using nickel-plated aluminum foil for the conductive plate of the bipolar plate, extremely excellent heat dissipation characteristics were obtained.

尚、上記実施例では直径100mm、厚み0.05mmの
アルミニウム箔に、厚み0.003mmのニツケルメツ
キを施したものを示したが、アルミニウム箔の大
きさと厚み、及びニツケルメツキの厚みを変えて
も同様の効果が得られる。
In the above example, an aluminum foil with a diameter of 100 mm and a thickness of 0.05 mm was coated with nickel plating of 0.003 mm in thickness, but the same effect can be obtained by changing the size and thickness of the aluminum foil and the thickness of the nickel plating. can get.

また、導電性プレートのニツケルメツキは必ず
しもアルミニウム箔の全表面に施す必要はなく、
塩化チオニル、塩化スルフリル等のオキシハライ
ドが接する部分のみに施しても同様の効果が得ら
れる。
Also, the nickel plating of the conductive plate does not necessarily need to be applied to the entire surface of the aluminum foil.
A similar effect can be obtained by applying it only to the areas in contact with oxyhalides such as thionyl chloride and sulfuryl chloride.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案になるオキシハライド/リチウ
ム電池の一実施例を示す断面図、第2図は本考案
電池に使用するバイポーラ極板の断面図、第3図
は本考案電池Aおよび従来の電池Bの84mA/cm2
定電流放電時の電池内温度の変化を示す図であ
る。 1……バイポーラ極板、2……リチウム、3…
…正極集電体、4……導電性プレート、5……ア
ルミニウム箔、6……ニツレルメツキ。
Figure 1 is a cross-sectional view showing one embodiment of the oxyhalide/lithium battery of the present invention, Figure 2 is a cross-sectional view of a bipolar plate used in the battery of the present invention, and Figure 3 is a cross-sectional view of battery A of the present invention and a conventional battery. 84mA/ cm2 of battery B
FIG. 3 is a diagram showing changes in battery internal temperature during constant current discharge. 1... Bipolar plate, 2... Lithium, 3...
... Positive electrode current collector, 4 ... Conductive plate, 5 ... Aluminum foil, 6 ... Nitzel plating.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] バイポーラ極板の導電性プレートとして少なく
とも正・負極との当接面をニツケルで覆つたアル
ミニウムを使用することを特徴とするオキシハラ
イド/リチウム電池。
An oxyhalide/lithium battery characterized in that aluminum is used as the conductive plate of the bipolar plate, with at least the surfaces in contact with the positive and negative electrodes covered with nickel.
JP13153186U 1986-08-27 1986-08-27 Expired - Lifetime JPH0517813Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13153186U JPH0517813Y2 (en) 1986-08-27 1986-08-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13153186U JPH0517813Y2 (en) 1986-08-27 1986-08-27

Publications (2)

Publication Number Publication Date
JPS6337073U JPS6337073U (en) 1988-03-10
JPH0517813Y2 true JPH0517813Y2 (en) 1993-05-12

Family

ID=31030066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13153186U Expired - Lifetime JPH0517813Y2 (en) 1986-08-27 1986-08-27

Country Status (1)

Country Link
JP (1) JPH0517813Y2 (en)

Also Published As

Publication number Publication date
JPS6337073U (en) 1988-03-10

Similar Documents

Publication Publication Date Title
US3486940A (en) Storage battery having a positive electrode comprising a supporting base of titanium nitride having a surface film of non-polarizing material
US3353999A (en) Conductive film battery
JPH10189050A (en) Lithium ion battery
JPH11238528A (en) Lithium secondary battery
JPH01109667A (en) Chargeable electrochemical battery using litium-oxyhalide couple
JPH07122252A (en) Set battery
JP3347439B2 (en) Polymer solid electrolyte lithium secondary battery and method of manufacturing the same
KR20190065077A (en) Cylindrical Secondary Battery having Hollow portion filled with Thermal Conductive Resin
WO1981003718A1 (en) Metal substrate for an electrochemical cell
JP2000195495A (en) Sheet battery
US20110305932A1 (en) Heat transfer layered electrodes
JPH11149916A (en) Organic electrolytic battery
JPH04294071A (en) Li battery
JPH0517813Y2 (en)
US11837701B2 (en) Bipolar lead acid battery cells with increased energy density
JPS63168964A (en) Thin-type cell and cassette cell using thin-type cell
JPH07130389A (en) Nonaqueous electrolyte secondary battery
JPH10106627A (en) Lithium battery
JPH10154494A (en) Pack battery
US20240097266A1 (en) Battery assembly and method therefor
JPS62150649A (en) Enclosed type lead storage battery
Postula et al. On the use of third electrodes in a secondary zinc-air battery
US20210313612A1 (en) Battery Including Bipolar Cells that have a Solid Polymer Peripheral Edge Insulator
JPH0533503B2 (en)
JP2737227B2 (en) Sealed lead-acid battery