JPH05176401A - Instantaneous power interruption preventing circuit for auxiliary power supply for electric vehicle - Google Patents

Instantaneous power interruption preventing circuit for auxiliary power supply for electric vehicle

Info

Publication number
JPH05176401A
JPH05176401A JP4158362A JP15836292A JPH05176401A JP H05176401 A JPH05176401 A JP H05176401A JP 4158362 A JP4158362 A JP 4158362A JP 15836292 A JP15836292 A JP 15836292A JP H05176401 A JPH05176401 A JP H05176401A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
inverter
electric vehicle
overhead line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4158362A
Other languages
Japanese (ja)
Other versions
JP3263974B2 (en
Inventor
Shuichi Sugiyama
修一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP15836292A priority Critical patent/JP3263974B2/en
Publication of JPH05176401A publication Critical patent/JPH05176401A/en
Application granted granted Critical
Publication of JP3263974B2 publication Critical patent/JP3263974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To prevent interruption of power supply in a vehicle by rectifying the output of an inverter and charging a capacitor at the input side of the inverter, and turning a switch element at the input side of the non-conducting inverter ON when an electric vehicle detects a no-voltage section thereby discharging the capacitor. CONSTITUTION:AC voltage taken in from a stringing 2 is transformed 4 and rectified 11 and then it is fed through a filter reactor 13 to an inverter 15 which feeds VVVF power to loads in an AC electric vehicle. AC output voltage of the inverter 15 is transformed through a charging transformer 26 and then rectified through a charging rectifier 25 in order to charge a capacitor 24. When a voltage detector 21 detects a no-voltage section of stringing, a non-conducting thyristor switch 22 is turned ON to discharge the capacitor 24 thus driving the inverter 15 together with the energy stored in the filter reactor 13. According to the constitution, power is not interrupted in the electric vehicle and intrusion of surge current from the stringing is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電気車が架線の無電
圧区間を通過する際でも、補助電源装置が停電せずに車
内電力の供給を継続出来る電気車用補助電源装置の瞬時
停電防止回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention prevents momentary power failure of an auxiliary power supply device for an electric vehicle that can continue to supply electric power in the vehicle without power failure of the auxiliary power supply device even when the electric vehicle passes through a non-voltage section of an overhead line. Regarding the circuit.

【0002】[0002]

【従来の技術】電気車では車内の照明・通信用電力が必
要であるが、近年では空気調和設備が大幅に導入されて
いるので、車内で消費される電力はますます増大してい
る。この車内消費電力を架線から取り入れようとする
と、架線電圧は直流電気車の場合はDC1500ボルト、交流
電気車の場合は AC20000ボルトと極めて高いので、その
ままで使用することは出来ない。又架線電圧は大幅に変
動するので、交流電化区間でも架線電圧を変圧器で低電
圧に変圧しただけでは使用に耐えない。そこで架線から
取り入れた高電圧の電力を、電圧変動が無く且つ使い易
い低電圧、例えば交流 100ボルト或いは 200ボルトに変
換しており、この電力変換に使用するのが補助電源装置
である。
2. Description of the Related Art Electric vehicles require electric power for lighting and communication in the vehicle, but in recent years, since air conditioning equipment has been largely introduced, the electric power consumed in the vehicle is increasing more and more. If you try to take this in-vehicle power consumption from the overhead line, the overhead line voltage is extremely high at DC 1500V for DC electric vehicles and AC 20000V for AC electric vehicles, so it cannot be used as is. Also, since the voltage of the overhead line fluctuates greatly, even if the overhead line voltage is transformed into a low voltage by a transformer, it cannot be used even in the AC electrification section. Therefore, the high voltage power taken from the overhead line is converted into a low voltage that does not fluctuate and is easy to use, for example, AC 100 V or 200 V. The auxiliary power supply unit is used for this power conversion.

【0003】この補助電源装置として、従来から架線電
圧で運転する電動機(交流電化区間では変圧器で減圧し
ている)で所望電圧を出力する発電機を駆動する構成の
電動発電機(以下ではM−Gと略記する)が使用されて
いたが、このM−Gは重量が大であること、回転に伴っ
て消耗する部品があること、保守・点検に手間がかかる
こと等から、半導体スイッチ素子で構成しているインバ
ータなどに置き換えられつつある。半導体スイッチ素子
で構成しているインバータ等の電力変換装置は静止した
機器であることから消耗部品が無く、保守・点検の手間
を省略出来るし、軽量且つ静粛な運転が出来るなど多く
の特徴を有している。
As this auxiliary power supply device, a motor generator conventionally configured to drive a generator that outputs a desired voltage with an electric motor that is operated at an overhead line voltage (the pressure is reduced by a transformer in an AC electrification section) (hereinafter referred to as M -G) has been used, but this MG is a semiconductor switch element because it is heavy, there are parts that wear out with rotation, and maintenance and inspection are troublesome. It is being replaced by an inverter, etc. Power converters such as inverters that are composed of semiconductor switching elements are stationary equipment, so there are no consumable parts, and there are many features such as maintenance and inspection work can be omitted, and lightweight and quiet operation is possible. is doing.

【0004】[0004]

【発明が解決しようとする課題】鉄道を電化した場合、
架線は一定間隔毎に区分して、この区分毎に異なった変
電所から給電するようにするのが普通である。直流電化
の場合は、隣接した変電所からの出力を共通の架線に与
えることが可能(即ち変電所同士の並列運転が可能)で
あるので、架線を細かく区分しなくても良いが、交流電
化の場合は、電圧位相の問題があるので隣接した変電所
の出力を共通の架線に与えることは出来ず(即ち変電所
同士の並列運転は不可能)、必ず架線は各変電所毎に絶
縁して区分しなければならない。この架線を区分してい
る絶縁部分は無電圧区間になるから、電気車が走行中に
この無電圧区間を通過する度に、集電装置を介して電気
車内へ取り入れる電力が中断することになる。従来のM
−G方式では、この無電圧区間を通過する際に電動機電
源が停電になっても、M−Gが保有している回転エネル
ギーを放出しながら発電機は電力を発生し続けるので、
出力電圧に若干の変動を生じるかもしれないが、区分点
通過中に車内電源が停電することは無い。
[Problems to be Solved by the Invention] When the railway is electrified,
It is usual to divide the overhead line at regular intervals so that power is supplied from different substations for each segment. In the case of DC electrification, the output from adjacent substations can be given to a common overhead line (that is, substations can be operated in parallel), so it is not necessary to divide the overhead lines in detail, but AC electrification is possible. In the case of, because there is a problem of voltage phase, the output of adjacent substations cannot be given to the common overhead line (that is, parallel operation between substations is not possible), and the overhead line must be insulated at each substation. Must be classified. Since the insulation part that divides this overhead line is a non-voltage section, every time the electric vehicle passes through this non-voltage section while traveling, the electric power taken into the electric vehicle via the current collector is interrupted. .. Conventional M
In the -G method, even if the motor power source fails during passing through this non-voltage section, the generator continues to generate electric power while releasing the rotational energy held by MG.
There may be some fluctuations in the output voltage, but the in-vehicle power supply does not fail while passing through the dividing points.

【0005】しかしながらインバータを補助電源として
使用すると、このインバータにはM−Gのようにエネル
ギーを蓄積する手段が無いので、電気車が架線の無電圧
区間に進入すると直ちに車内電源は停電となってしまう
欠点がある。例えば東日本旅客鉄道株式会社の東北本線
ではほぼ16Km毎に架線を区分しているので、電気車が時
速90Kmで走行するならば、10分ごとに無電圧区間を通過
することになり、その度に車内電源が停電することにな
る。インバータはその直流入力側に平滑用のフィルタコ
ンデンサを備えているけれども、その容量は電気車が架
線の無電圧区間を通過する期間中の車内電力を賄うには
不足であるから、フィルタコンデンサで停電の防止を図
るならば大幅にその容量を増加させなければならない。
更に架線電圧は大きく変動するので、架線電圧が低下す
ればこのフィルタコンデンサの蓄積エネルギーは大幅に
減少してしまう。そこで架線電圧が最低の時でも前述の
期間中の車内電力を賄おうとすれば、より一層フィルタ
コンデンサの容量を大きくしなければならないので(何
故ならばコンデンサの蓄積エネルギーは電圧の2乗に比
例するから)、インバータが大形になり取付けスペース
に制約のある電気車には搭載が困難になる不具合があ
る。そこでやむを得ず補助電源装置としてM−Gを使用
することになる。
However, when the inverter is used as an auxiliary power source, this inverter has no means for storing energy unlike MG, so that the power source in the vehicle immediately fails when the electric vehicle enters the non-voltage section of the overhead line. There is a drawback that ends up. For example, the Tohoku Main Line of East Japan Railway Company divides the overhead lines at intervals of approximately 16km, so if an electric car travels at a speed of 90km / h, it will pass through a no-voltage section every 10 minutes. The power supply in the car will be cut off. Although the inverter has a smoothing filter capacitor on its DC input side, its capacity is insufficient to cover the electric power inside the vehicle during the period when the electric vehicle passes through the no-voltage section of the overhead line, so a power failure occurs with the filter capacitor. To prevent this, the capacity must be greatly increased.
Furthermore, since the overhead line voltage fluctuates greatly, if the overhead line voltage drops, the stored energy of this filter capacitor will greatly decrease. Therefore, even if the overhead wire voltage is the lowest, in order to cover the electric power in the vehicle during the above-mentioned period, it is necessary to further increase the capacity of the filter capacitor (because the stored energy of the capacitor is proportional to the square of the voltage). Therefore, there is a problem that the inverter becomes large and it is difficult to mount it on an electric vehicle that has a limited installation space. Therefore, the MG is inevitably used as the auxiliary power supply device.

【0006】そこでこの発明の目的は、電気車の補助電
源としてインバータを使用し、当該電気車が架線の無電
圧区間を通過する際に、車内電源が停電しないようにす
ることにある。
Therefore, an object of the present invention is to use an inverter as an auxiliary power supply for an electric vehicle so that the power supply in the vehicle does not fail when the electric vehicle passes through a non-voltage section of an overhead line.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めにこの発明の電気車用補助電源装置の瞬時停電防止回
路は、走行中の電気車に車内用電力を供給する電気車用
補助電源装置において、前記電気車が架線から取り入れ
た直流、又は架線から取り入れた交流を整流した直流の
いずれかを電源にして所望の電圧と周波数の交流を出力
するインバータと、架線電圧の有無を検出する電圧検出
手段と、このインバータの直流入力側にスイッチ素子或
いは自己消弧形半導体スイッチ素子のいずれかを介して
接続するキャパシタと、前記インバータが出力する交流
を電源にしてこのキャパシタを充電する第1充電手段と
を備え、常時は前記スイッチ素子或いは自己消弧形半導
体スイッチ素子をオフの状態で前記キャパシタを所望電
圧に充電し、前記電圧検出手段が架線の無電圧を検出す
れば前記スイッチ素子をオンにするか、或いは前記自己
消弧形半導体スイッチ素子を所望の導通率でオン・オフ
制御するものとするが、前記インバータ入力側の直流を
電源とする第2充電手段を設け、この第2充電手段で前
記キャパシタを充電する構成にすることも出来る。更に
前記インバータの入力側にはフィルタコンデンサが設け
られているので、回路のインダクタンスにより前記イン
バータの入力側に設けているフィルタコンデンサの電圧
が異常に上昇する危険を回避するべく、このフィルタコ
ンデンサと前記キャパシタとをダイオードを介して接続
するものとする。
In order to achieve the above-mentioned object, an instantaneous power failure prevention circuit of an auxiliary power supply device for an electric vehicle according to the present invention is an auxiliary power supply for an electric vehicle for supplying electric power for the inside of a vehicle to a running electric vehicle. In the apparatus, an inverter that outputs an alternating current of a desired voltage and frequency by using as a power source either the direct current that the electric vehicle takes in from the overhead line or the direct current obtained by rectifying the alternating current that takes in from the overhead line, and the presence or absence of the overhead line voltage are detected. A voltage detecting means, a capacitor connected to the DC input side of the inverter through either a switch element or a self-turn-off type semiconductor switch element, and an alternating current output from the inverter as a power source to charge the capacitor. A charging means, which normally charges the capacitor to a desired voltage with the switch element or the self-extinguishing semiconductor switch element in an off state, If the pressure detecting means detects no voltage on the overhead wire, the switch element is turned on, or the self-extinguishing type semiconductor switch element is turned on / off at a desired conductivity. It is also possible to provide a second charging means using the direct current as a power source and charge the capacitor by the second charging means. Further, since a filter capacitor is provided on the input side of the inverter, in order to avoid the risk that the voltage of the filter capacitor provided on the input side of the inverter rises abnormally due to the inductance of the circuit, this filter capacitor and the It is assumed that the capacitor is connected via a diode.

【0008】[0008]

【作用】この発明は、インバータの直流入力側にスイッ
チ素子を介してキャパシタを接続するのであるが、この
キャパシタはインバータを構成している各素子が許容出
来る限度まで高い電圧に充電しておき、無電圧区間に進
入すればこのキャパシタ電圧が放電終止電圧に低下する
まで放電させる。この充電電圧をVCH、放電終止電圧を
CLとすると、キャパシタの放電で使用することが出来
るエネルギーWは下記の式に示すようになる。但しCは
キャパシタの静電容量である。
According to the present invention, the capacitor is connected to the DC input side of the inverter through the switch element. This capacitor is charged to a high voltage up to the limit of each element forming the inverter, If the non-voltage section is entered, the capacitor is discharged until the capacitor voltage drops to the discharge end voltage. When this charge voltage is V CH and the discharge end voltage is V CL , the energy W that can be used for discharging the capacitor is as shown in the following formula. However, C is the capacitance of the capacitor.

【0009】W=C・(VCH 2 −VCL 2 )/2 上式から明らかなように充電電圧VCHを高くすれば、電
圧の2乗に比例して蓄積エネルギーWが増加するので、
その分キャパシタの容量Cを減少出来ることになる。更
にこのキャパシタを自己消弧形半導体スイッチ素子を介
して接続し、架線の無電圧区間でキャパシタの蓄積エネ
ルギーを前記自己消弧形半導体スイッチ素子をオン・オ
フ制御しながら放電するならば、インバータへの印加電
圧はこの自己消弧形半導体スイッチ素子の導通率に対応
した値となるので、このキャパシタの充電電圧を、イン
バータを構成している各素子に許容出来る電圧ではな
く、このキャパシタに許容出来る電圧にすることが出来
るので、より一層充電電圧を高くしてキャパシタ容量の
さらなる減少を図ることが出来る。前記インバータの入
力側にはフィルタコンデンサがあり、回路のインダクタ
ンスに蓄積されたエネルギーでフィルタコンデンサ電圧
が異常に上昇する恐れがあるが、フィルタコンデンサと
前記キャパシタとをダイオードを介して接続することに
より、フィルタコンデンサ電圧をキャパシタ電圧に抑制
することが出来る。
W = C (V CH 2 -V CL 2 ) / 2 As is clear from the above equation, if the charging voltage V CH is increased, the stored energy W increases in proportion to the square of the voltage.
Therefore, the capacitance C of the capacitor can be reduced accordingly. Furthermore, if this capacitor is connected via a self-arc-extinguishing semiconductor switch element, and if the stored energy of the capacitor is discharged while the self-arc-extinguishing semiconductor switch element is controlled to be turned on / off in the no-voltage section of the overhead line, to the inverter, Since the applied voltage of is a value corresponding to the conductivity of this self-extinguishing type semiconductor switch element, the charging voltage of this capacitor is not a voltage that can be allowed for each element that constitutes the inverter, but can be allowed for this capacitor. Since the voltage can be set to a voltage, the charging voltage can be further increased to further reduce the capacitance of the capacitor. There is a filter capacitor on the input side of the inverter, the filter capacitor voltage may rise abnormally due to the energy stored in the inductance of the circuit, but by connecting the filter capacitor and the capacitor via a diode, The filter capacitor voltage can be suppressed to the capacitor voltage.

【0010】[0010]

【実施例】図1は本発明の第1実施例を表した回路図で
あって、交流電気車の場合を示している。この図1にお
いて、架線2からの高電圧交流電力はパンタグラフ3で
電気車内に取り込まれ、入力変圧器4で減圧した後、車
輪5とレール6とを経て大地に放流される。減圧された
交流は入力変圧器4の二次側に設けた整流器11で直流
に変換し、フィルタリアクトル13とフィルタコンデン
サ14とでリップル分を除去したのち、インバータ15
で所望の電圧と周波数の交流に変換し、この交流電力を
当該交流電気車内の負荷に供給する。又、架線2の電圧
の有無を検出するための電圧検出器21を入力変圧器4
の二次側に接続する。
1 is a circuit diagram showing a first embodiment of the present invention, showing a case of an AC electric vehicle. In FIG. 1, high-voltage AC power from overhead line 2 is taken into the electric car by pantograph 3, reduced in pressure by input transformer 4, and then discharged to the ground via wheels 5 and rails 6. The decompressed AC is converted into DC by the rectifier 11 provided on the secondary side of the input transformer 4, the ripple component is removed by the filter reactor 13 and the filter capacitor 14, and then the inverter 15
Is converted into alternating current of a desired voltage and frequency, and this alternating current power is supplied to the load inside the alternating current electric vehicle. In addition, a voltage detector 21 for detecting the presence or absence of voltage on the overhead line 2 is used as the input transformer 4
Connect to the secondary side of.

【0011】図1に図示の第1実施例回路では、第1充
電手段としての充電整流器25は充電変圧器26を介し
てインバータ15が出力する交流電力を受電しており、
この充電整流器25の直流出力は平滑リアクトル23を
介してキャパシタ24を充電する。又スイッチ素子とし
てのサイリスタスイッチ22を導通させればキャパシタ
24の充電電力を前記インバータ15へ供給出来る回路
構成になっている。ここで走行中の電気車が架線2を区
分している無電圧区間に進入すると、電圧検出器21が
架線2の無電圧を検出してサイリスタスイッチ22をオ
ンにする指令を発する。サイリスタスイッチ22がオン
することで、インバータ15へは整流器11の代わりに
キャパシタ24がその蓄積エネルギーを供給するので、
インバータ15はそのまま運転を継続出来るので、当該
電気車の車内は停電しない。
In the first embodiment circuit shown in FIG. 1, the charging rectifier 25 as the first charging means receives the AC power output from the inverter 15 via the charging transformer 26.
The DC output of the charging rectifier 25 charges the capacitor 24 via the smoothing reactor 23. Further, when the thyristor switch 22 as a switch element is turned on, the circuit configuration is such that the charging power of the capacitor 24 can be supplied to the inverter 15. When the running electric vehicle enters the no-voltage section dividing the overhead line 2, the voltage detector 21 detects the no-voltage of the overhead line 2 and issues a command to turn on the thyristor switch 22. When the thyristor switch 22 is turned on, the capacitor 24 supplies the stored energy to the inverter 15 instead of the rectifier 11.
Since the inverter 15 can continue to operate as it is, there is no power outage in the electric vehicle.

【0012】電気車が架線2の無電圧区間を通過して再
び課電区間へ進入すれば、電圧検出器21が電圧有りを
検出してオンしていたサイリスタスイッチ22をオフに
する。充電整流器25はキャパシタ24の低下した電圧
を回復させるべく充電をし続けるのであるが、この充電
は次の無電圧区間へ進入するまでに完了すればよいの
で、充電期間はキャパシタ24の放電時間に比べてはる
かに長い時間をかけても差し支えない。従って充電整流
器25と充電変圧器26は小容量のもので充分であり、
充電完了後はキャパシタ24の漏れ電流分を補充すれば
よい。よってこの充電のためのインバータ15の出力増
加分は僅かである。キャパシタ24の充電電圧はこのキ
ャパシタ24を接続している直流回路電圧とは無関係に
定めることが出来るので、前述したように許容出来る限
り高い値に充電することでキャパシタ24の静電容量を
減らせる。従ってこの第1実施例回路の場合は、整流器
11やインバータ15を構成している素子の許容電圧ま
でキャパシタ24の充電電圧を上昇させることが可能で
ある。
When the electric vehicle passes through the non-voltage section of the overhead line 2 and again enters the section where the voltage is applied, the voltage detector 21 detects the presence of voltage and turns off the thyristor switch 22 which has been turned on. The charge rectifier 25 continues to charge to restore the lowered voltage of the capacitor 24. However, since this charge may be completed before entering the next non-voltage section, the charging period is the discharge time of the capacitor 24. You can take much longer than that. Therefore, the charge rectifier 25 and the charge transformer 26 need only have a small capacity,
After the charging is completed, the leakage current of the capacitor 24 may be supplemented. Therefore, the increase in the output of the inverter 15 for this charging is small. Since the charging voltage of the capacitor 24 can be determined independently of the DC circuit voltage connecting the capacitor 24, the capacitance of the capacitor 24 can be reduced by charging it to the highest possible value as described above. .. Therefore, in the case of the circuit of the first embodiment, it is possible to raise the charging voltage of the capacitor 24 up to the allowable voltage of the elements forming the rectifier 11 and the inverter 15.

【0013】図2は本発明の第2実施例を表した回路図
であるが、この第2実施例回路は、前述の第1実施例回
路におけるサイリスタスイッチ22の代わりに自己消弧
形半導体スイッチ素子としてのGTO(ゲートターンオ
フ)サイリスタ32を使用するのが異なる点であり、こ
れ以外は総て前述の第1実施例回路と同じであるから、
この第2実施例回路の詳細な説明は省略する。この第2
実施例回路でも、電気車が架線2の無電圧区間に進入し
たことを電圧検出器21が検出すればGTOサイリスタ
32へ動作開始を指令するのであるが、このGTOサイ
リスタ32の動作は適切な導通率でのオン・オフの繰り
返しであり、この動作により、キャパシタ24に蓄積し
たエネルギーをインバータ15に適した電圧に変換す
る。それ故この第2実施例回路では、キャパシタ24の
充電電圧を整流器11やインバータ15の構成要素の許
容電圧を上回って、このキャパシタ24に許容出来る電
圧まで上昇させ得るので、キャパシタ24の静電容量を
更に小さくしても十分な電力を蓄えることが出来る。
FIG. 2 is a circuit diagram showing a second embodiment of the present invention. This second embodiment circuit is a self-turn-off type semiconductor switch instead of the thyristor switch 22 in the first embodiment circuit described above. The difference is that a GTO (gate turn-off) thyristor 32 is used as an element, and other than that, all are the same as the above-described first embodiment circuit,
Detailed description of the circuit of the second embodiment will be omitted. This second
Even in the circuit of the embodiment, if the voltage detector 21 detects that the electric car has entered the non-voltage section of the overhead line 2, the GTO thyristor 32 is instructed to start the operation. However, the operation of the GTO thyristor 32 is appropriately conducted. This is the on / off repetition at a rate, and this operation converts the energy stored in the capacitor 24 into a voltage suitable for the inverter 15. Therefore, in the circuit of the second embodiment, the charging voltage of the capacitor 24 can exceed the allowable voltage of the components of the rectifier 11 and the inverter 15 and can be increased to the allowable voltage of the capacitor 24. Sufficient electric power can be stored even if is made smaller.

【0014】図3は本発明の第3実施例を表した回路図
であるが、この第3実施例回路はキャパシタ24を第2
充電手段としてのチョッパ41で充電するものとし、そ
の充電電源をインバータ15の直流入力側にしているこ
とが前述の第1実施例回路とは異なっているが、それ以
外は総て同じ構成であるから詳細説明は省略する。この
第3実施例回路では、キャパシタ24の充電電力をイン
バータ15の出力から受電していないので、この電力分
だけインバータ15の負担を軽減出来る。尚、架線2の
電圧変動は大であり、キャパシタ24の充電電圧は許容
出来るかぎり高い値にすることが望ましいので、チョッ
パ41の回路構成は図示していないけれども一般に昇圧
チョッパを使用することとなる。
FIG. 3 is a circuit diagram showing a third embodiment of the present invention. In this third embodiment circuit, a capacitor 24 is provided as a second circuit.
The chopper 41 as a charging means charges the battery, and the charging power source is the DC input side of the inverter 15, which is different from the circuit of the first embodiment described above, but otherwise has the same configuration. Therefore, detailed description is omitted. In the third embodiment circuit, since the charging power of the capacitor 24 is not received from the output of the inverter 15, the load on the inverter 15 can be reduced by this amount of power. Since the voltage fluctuation of the overhead wire 2 is large and it is desirable that the charging voltage of the capacitor 24 be as high as possible, the circuit configuration of the chopper 41 is not shown, but a boost chopper is generally used. ..

【0015】図4は本発明の第4実施例を表した回路図
であるが、この第4実施例回路はキャパシタ24を第2
充電手段としてのチョッパ41で充電するものとし、チ
ョッパ41の電源をインバータ15の直流入力側から受
電していることが前述の第2実施例回路とは異なってい
るが、それ以外は総て同じ構成であるから詳細説明は省
略する。
FIG. 4 is a circuit diagram showing a fourth embodiment of the present invention. In this fourth embodiment circuit, a capacitor 24 is provided as a second circuit.
It is different from the second embodiment circuit described above in that it is charged by the chopper 41 as a charging means and the power source of the chopper 41 is received from the direct current input side of the inverter 15, but otherwise the same. Since this is a configuration, detailed description is omitted.

【0016】図5は本発明の第5実施例を表した回路図
であるが、この第5実施例回路は図1で既述の第1実施
例回路におけるフィルタコンデンサ14とキャパシタ2
4とをフリーホイールダイオード50を介して接続して
いるのがこの第1実施例回路と異なる点である。このよ
うな回路構成にすれば、フィルタリアクトル13又は図
示していない回路のインダクタンスに蓄えられていたエ
ネルギーでフィルタコンデンサ14の電圧がキャパシタ
24の電圧よりも高くなれば、フリーホイールダイオー
ド50が導通してその電圧をキャパシタ24の電圧に抑
制することになる。
FIG. 5 is a circuit diagram showing a fifth embodiment of the present invention. This fifth embodiment circuit is a filter capacitor 14 and a capacitor 2 in the first embodiment circuit described above with reference to FIG.
4 is connected via a freewheel diode 50, which is a difference from the first embodiment circuit. With such a circuit configuration, if the voltage stored in the filter reactor 13 or the inductance of the circuit (not shown) causes the voltage of the filter capacitor 14 to become higher than the voltage of the capacitor 24, the freewheel diode 50 becomes conductive. Therefore, the voltage is suppressed to the voltage of the capacitor 24.

【0017】図6は本発明の第6実施例を表した回路図
であるが、この第6実施例回路は図2で既述の第2実施
例回路におけるフィルタコンデンサ14とキャパシタ2
4とをフリーホイールダイオード50を介して接続して
いるのがこの第2実施例回路と異なる点であり、図7は
本発明の第7実施例を表した回路図であるが、この第7
実施例回路は図3で既述の第3実施例回路におけるフィ
ルタコンデンサ14とキャパシタ24とをフリーホイー
ルダイオード50を介して接続しているのがこの第3実
施例回路と異なる点であり、図8は本発明の第8実施例
を表した回路図であるが、この第8実施例回路は図4で
既述の第4実施例回路におけるフィルタコンデンサ14
とキャパシタ24とをフリーホイールダイオード50を
介して接続しているのがこの第4実施例回路と異なる点
である。
FIG. 6 is a circuit diagram showing a sixth embodiment of the present invention. This sixth embodiment circuit is a filter capacitor 14 and a capacitor 2 in the second embodiment circuit already described with reference to FIG.
4 is connected via a freewheel diode 50, which is a difference from the second embodiment circuit. FIG. 7 is a circuit diagram showing a seventh embodiment of the present invention.
The circuit of the third embodiment is different from the circuit of the third embodiment in that the filter capacitor 14 and the capacitor 24 in the circuit of the third embodiment described in FIG. 3 are connected via the freewheel diode 50. 8 is a circuit diagram showing an eighth embodiment of the present invention. This eighth embodiment circuit is the filter capacitor 14 in the fourth embodiment circuit already described in FIG.
This is different from the fourth embodiment circuit in that the capacitor 24 and the capacitor 24 are connected via the freewheel diode 50.

【0018】これらの第6実施例回路、第7実施例回
路、及び第8実施例回路も前述の第5実施例回路の場合
と同様にフリーホイールダイオード50の作用でフィル
タコンデンサ14の電圧がキャパシタ24の電圧よりも
高くなるのを抑制している。
In the sixth embodiment circuit, the seventh embodiment circuit, and the eighth embodiment circuit, the voltage of the filter capacitor 14 becomes a capacitor due to the action of the freewheel diode 50 as in the case of the fifth embodiment circuit. It is prevented that the voltage becomes higher than the voltage of 24.

【0019】[0019]

【発明の効果】電気車の補助電源装置は従来のM−G方
式をインバータを主体にした静止形の装置に置き換え
て、軽量で保守・点検の手間を省略出来るようにしてい
るが、従来のM−G方式のようなはずみ車効果が無いの
で、特に交流電化区間では架線の無電圧区間を通過する
際は停電してしまうか、或いは停電を回避するために大
容量のコンデンサをインバータの入力側に設置する必要
があったが、この発明によればエネルギー蓄積用のキャ
パシタとスイッチ素子との直列回路を前記インバータの
直流入力側に設置しておき、当該電気車が架線の無電圧
区間に進入したことを検出すれば、前記スイッチ素子を
オンにしてキャパシタの蓄積エネルギーをインバータに
与えて停電を回避するのであるが、キャパシタの充電電
圧は回路電圧とは無関係に高い値に充電出来るので、小
容量のキャパシタでも大きな電力を蓄積することが出来
て装置の小型化が図れる。更にキャパシタに直列接続す
る前記スイッチ素子をGTOサイリスタ等の自己消弧形
半導体スイッチ素子に置き換え、この自己消弧形半導体
スイッチ素子を適切な導通率でオン・オフ動作させれ
ば、キャパシタの高い充電電圧を所望電圧に低減して供
給出来るので、このキャパシタの充電電圧をより高く
し、キャパシタの静電容量のより一層の低減が図れる。
又キャパシタの充電はインバータが出力する交流を電源
とする第1充電手段、又はこのインバータの直流入力側
を電源とする第2充電手段のいずれの場合も、充電時間
は放電時間に比べてはるかに長くても良いので、これら
の充電手段の容量を小さくする事が出来る。更に、イン
バータが出力する交流を電源としてキャパシタを充電す
る場合は、架線から侵入する雷サージやスイッチングサ
ージの影響が無いので、耐電圧特性を向上させるべくキ
ャパシタの直列数を増やす必要が無く、装置の小形化が
図れ効果がある。一方インバータの直流入力側を電源と
してキャパシタを充電する場合は、インバータの出力は
すべて車内電力に使用出来る効果が得られる。
EFFECT OF THE INVENTION The auxiliary power supply device for an electric vehicle replaces the conventional MG system with a static type device mainly composed of an inverter, which is light in weight and saves time for maintenance and inspection. Since there is no flywheel effect like the MG method, there is a power failure especially when passing through the non-voltage section of the overhead wire in the AC electrification section, or a large capacity capacitor is installed on the input side of the inverter to avoid the power failure. According to the present invention, the series circuit of the energy storage capacitor and the switch element is installed on the DC input side of the inverter, and the electric car enters the no-voltage section of the overhead line. If this is detected, the switching element is turned on to give the stored energy of the capacitor to the inverter to avoid the power failure, but the charging voltage of the capacitor is not the circuit voltage. Because can charge to a higher value in engagement, miniaturization of the device is able to accumulate a large amount of power in small capacitor can be reduced. Furthermore, if the switching element connected in series with the capacitor is replaced with a self-arc-extinguishing semiconductor switch element such as a GTO thyristor, and this self-arc-extinguishing semiconductor switch element is turned on / off at an appropriate conductivity, high charge of the capacitor is obtained. Since the voltage can be reduced to the desired voltage and supplied, the charging voltage of this capacitor can be made higher and the capacitance of the capacitor can be further reduced.
In addition, in the case of charging the capacitor either by the first charging means using the alternating current output from the inverter as the power source or the second charging means using the direct current input side of the inverter as the power source, the charging time is much longer than the discharging time. Since it may be long, the capacity of these charging means can be reduced. Further, when the capacitor is charged by using the alternating current output from the inverter as a power source, there is no influence of lightning surge or switching surge intruding from the overhead wire, so there is no need to increase the number of capacitors in series in order to improve the withstand voltage characteristics, Has the effect of downsizing. On the other hand, when the capacitor is charged by using the DC input side of the inverter as a power source, all the outputs of the inverter can be used for in-vehicle power.

【0020】更にインバータ入力側に設けているフィル
タコンデンサと前述のキャパシタとをフリーホイールダ
イオードを介して接続することで、回路中のインダクタ
ンスやフィルタリアクトルに蓄えられていたエネルギー
によりフィルタコンデンサ電圧が異常に上昇するのを妨
げ、フィルタコンデンサやインバータに過電圧が加わっ
て装置が停止する恐れを未然に回避出来る効果も得られ
る。
Furthermore, by connecting the filter capacitor provided on the input side of the inverter and the above-mentioned capacitor through the freewheel diode, the filter capacitor voltage becomes abnormal due to the inductance stored in the circuit and the energy stored in the filter reactor. It is possible to obtain an effect that it is possible to prevent the device from stopping due to an overvoltage applied to the filter capacitor and the inverter because it prevents the device from rising.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を表した回路図FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施例を表した回路図FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

【図3】本発明の第3実施例を表した回路図FIG. 3 is a circuit diagram showing a third embodiment of the present invention.

【図4】本発明の第4実施例を表した回路図FIG. 4 is a circuit diagram showing a fourth embodiment of the present invention.

【図5】本発明の第5実施例を表した回路図FIG. 5 is a circuit diagram showing a fifth embodiment of the present invention.

【図6】本発明の第6実施例を表した回路図FIG. 6 is a circuit diagram showing a sixth embodiment of the present invention.

【図7】本発明の第7実施例を表した回路図FIG. 7 is a circuit diagram showing a seventh embodiment of the present invention.

【図8】本発明の第8実施例を表した回路図FIG. 8 is a circuit diagram showing an eighth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 架線 3 パンタグラフ 4 入力変圧器 11 整流器 15 インバータ 21 電圧検出器 22 スイッチ素子としてのサイリスタスイッチ 23 平滑リアクトル 24 キャパシタ 25 第1充電手段としての充電整流器 26 充電変圧器 32 自己消弧形半導体スイッチ素子としてのGTO
サイリスタ 41 第2充電手段としてのチョッパ 50 フリーホイールダイオード
2 Overhead wire 3 Pantograph 4 Input transformer 11 Rectifier 15 Inverter 21 Voltage detector 22 Thyristor switch as switch element 23 Smoothing reactor 24 Capacitor 25 Charge rectifier as first charging means 26 Charge transformer 32 Self-extinguishing type semiconductor switch element GTO
Thyristor 41 Chopper as second charging means 50 Freewheel diode

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】走行中の電気車に車内用電力を供給する電
気車用補助電源装置において、 前記電気車が架線から取り入れた直流、又は架線から取
り入れた交流を整流した直流のいずれかを電源にして所
望の電圧と周波数の交流を出力するインバータと、架線
電圧の有無を検出する電圧検出手段と、このインバータ
の直流入力側にスイッチ素子を介して接続するキャパシ
タと、前記インバータが出力する交流を電源にしてこの
キャパシタを充電する第1充電手段とを備え、常時は前
記スイッチ素子をオフの状態で前記キャパシタを所望電
圧に充電し、前記電圧検出手段が架線の無電圧を検出す
れば前記スイッチ素子をオンにすることを特徴とする電
気車用補助電源装置の瞬時停電防止回路。
1. An auxiliary power supply device for an electric vehicle that supplies electric power for a vehicle interior to a running electric vehicle, wherein a power source is either a direct current taken from an overhead line by the electric vehicle or a direct current obtained by rectifying an alternating current taken from the overhead line. An inverter that outputs an alternating current of a desired voltage and frequency, a voltage detection unit that detects the presence or absence of an overhead wire voltage, a capacitor that is connected to the DC input side of this inverter via a switch element, and an AC that the inverter outputs. And a first charging means for charging the capacitor by using the power source as a power source, the capacitor is charged to a desired voltage with the switch element normally turned off, and the voltage detecting means detects the no-voltage of the overhead line. An instantaneous power failure prevention circuit for an auxiliary power supply device for an electric vehicle, which is characterized by turning on a switch element.
【請求項2】走行中の電気車に車内用電力を供給する電
気車用補助電源装置において、 前記電気車が架線から取り入れた直流、又は架線から取
り入れた交流を整流した直流のいずれかを電源にして所
望の電圧と周波数の交流を出力するインバータと、架線
電圧の有無を検出する電圧検出手段と、このインバータ
の直流入力側に自己消弧形半導体スイッチ素子を介して
接続するキャパシタと、前記インバータが出力する交流
を電源にしてこのキャパシタを充電する第1充電手段と
を備え、常時は前記自己消弧形半導体スイッチ素子をオ
フの状態で前記キャパシタを所望電圧に充電し、前記電
圧検出手段が架線の無電圧を検出すれば前記自己消弧形
半導体スイッチ素子を所望の導通率でオン・オフ制御す
ることを特徴とする電気車用補助電源装置の瞬時停電防
止回路。
2. An auxiliary power supply device for an electric vehicle that supplies electric power for a vehicle interior to a running electric vehicle, wherein the electric power source is either direct current taken from an overhead line or direct current obtained by rectifying alternating current taken from the overhead line. And an inverter that outputs an alternating current of a desired voltage and frequency, a voltage detection unit that detects the presence or absence of an overhead wire voltage, a capacitor that is connected to the DC input side of this inverter via a self-extinguishing semiconductor switching element, and A first charging means for charging the capacitor by using the alternating current output from the inverter as a power source, and normally, the capacitor is charged to a desired voltage with the self-arc-extinguishing type semiconductor switch element in an off state, and the voltage detecting means is provided. An on-off control of the self-arc-extinguishing type semiconductor switching element at a desired conductivity if a voltage of the overhead line is detected. Instant power failure prevention circuit.
【請求項3】走行中の電気車に車内用電力を供給する電
気車用補助電源装置において、 前記電気車が架線から取り入れた直流、又は架線から取
り入れた交流を整流した直流のいずれかを電源にして所
望の電圧と周波数の交流を出力するインバータと、架線
電圧の有無を検出する電圧検出手段と、このインバータ
の直流入力側にスイッチ素子を介して接続するキャパシ
タと、前記インバータ入力側の直流を電源にしてこのキ
ャパシタを充電する第2充電手段とを備え、常時は前記
スイッチ素子をオフの状態で前記キャパシタを所望電圧
に充電し、前記電圧検出手段が架線の無電圧を検出すれ
ば前記スイッチ素子をオンにすることを特徴とする電気
車用補助電源装置の瞬時停電防止回路。
3. An auxiliary power supply device for an electric vehicle for supplying electric power for use in a vehicle to a running electric vehicle, wherein a power source is either direct current taken by the electric vehicle from the overhead line or direct current obtained by rectifying alternating current taken from the overhead line. An inverter that outputs an alternating current of a desired voltage and frequency, a voltage detection unit that detects the presence or absence of an overhead wire voltage, a capacitor that is connected to the DC input side of this inverter through a switch element, and a DC input side of the inverter. And a second charging means for charging the capacitor with the power source as a power source, the capacitor is charged to a desired voltage with the switch element normally turned off, and the voltage detection means detects no voltage on the overhead line. An instantaneous power failure prevention circuit for an auxiliary power supply device for an electric vehicle, which is characterized by turning on a switch element.
【請求項4】走行中の電気車に車内用電力を供給する電
気車用補助電源装置において、 前記電気車が架線から取り入れた直流、又は架線から取
り入れた交流を整流した直流のいずれかを電源にして所
望の電圧と周波数の交流を出力するインバータと、架線
電圧の有無を検出する電圧検出手段と、このインバータ
の直流入力側に自己消弧形半導体スイッチ素子を介して
接続するキャパシタと、前記インバータ入力側の直流を
電源にしてこのキャパシタを充電する第2充電手段とを
備え、常時は前記自己消弧形半導体スイッチ素子をオフ
の状態で前記キャパシタを所望電圧に充電し、前記電圧
検出手段が架線の無電圧を検出すれば前記自己消弧形半
導体スイッチ素子を所望の導通率でオン・オフ制御する
ことを特徴とする電気車用補助電源装置の瞬時停電防止
回路。
4. An auxiliary power supply device for an electric vehicle for supplying electric power for use in a vehicle to a running electric vehicle, wherein a power source is either direct current taken from the overhead line by the electric vehicle or direct current obtained by rectifying alternating current taken from the overhead line. And an inverter that outputs an alternating current of a desired voltage and frequency, a voltage detection unit that detects the presence or absence of an overhead wire voltage, a capacitor that is connected to the DC input side of this inverter via a self-extinguishing semiconductor switching element, and A second charging means for charging this capacitor by using a direct current on the input side of the inverter as a power source, and normally, the capacitor is charged to a desired voltage while the self-turn-off type semiconductor switch element is off, and the voltage detecting means is provided. Of the auxiliary power supply device for an electric vehicle, characterized in that the self-extinguishing type semiconductor switch element is controlled to be turned on / off at a desired conductivity rate if no voltage is detected on the overhead line. Instantaneous power failure prevention circuit.
【請求項5】走行中の電気車に車内用電力を供給する電
気車用補助電源装置において、 前記電気車が架線から取り入れた直流、又は架線から取
り入れた交流を整流した直流のいずれかを電源にして所
望の電圧と周波数の交流を出力するべくその入力側に平
滑用のフィルタコンデンサを備えているインバータと、
架線電圧の有無を検出する電圧検出手段と、このインバ
ータの直流入力側にスイッチ素子を介して接続するキャ
パシタと、前記インバータが出力する交流を電源にして
このキャパシタを充電する第1充電手段と、前記フィル
タコンデンサとキャパシタとをダイオードを介して接続
する回路とを備え、常時は前記スイッチ素子をオフの状
態で前記キャパシタを所望電圧に充電し、前記電圧検出
手段が架線の無電圧を検出すれば前記スイッチ素子をオ
ンにすることを特徴とする電気車用補助電源装置の瞬時
停電防止回路。
5. An auxiliary power supply device for an electric vehicle that supplies electric power for a vehicle to a running electric vehicle, wherein a power source is either direct current taken from the overhead line by the electric vehicle or direct current obtained by rectifying alternating current taken from the overhead line. And an inverter equipped with a filter capacitor for smoothing on its input side to output an alternating current of a desired voltage and frequency,
Voltage detection means for detecting the presence or absence of an overhead wire voltage, a capacitor connected to the DC input side of the inverter via a switch element, and first charging means for charging the capacitor by using the AC output from the inverter as a power source. If a circuit that connects the filter capacitor and the capacitor via a diode is provided, the capacitor is charged to a desired voltage with the switch element normally turned off, and the voltage detection means detects no voltage on the overhead line. An instantaneous power failure prevention circuit for an auxiliary power supply device for an electric vehicle, wherein the switch element is turned on.
【請求項6】走行中の電気車に車内用電力を供給する電
気車用補助電源装置において、 前記電気車が架線から取り入れた直流、又は架線から取
り入れた交流を整流した直流のいずれかを電源にして所
望の電圧と周波数の交流を出力するべくその入力側に平
滑用のフィルタコンデンサを備えているインバータと、
架線電圧の有無を検出する電圧検出手段と、このインバ
ータの直流入力側に自己消弧形半導体スイッチ素子を介
して接続するキャパシタと、前記インバータが出力する
交流を電源にしてこのキャパシタを充電する第1充電手
段と、前記フィルタコンデンサとキャパシタとをダイオ
ードを介して接続する回路とを備え、常時は前記自己消
弧形半導体スイッチ素子をオフの状態で前記キャパシタ
を所望電圧に充電し、前記電圧検出手段が架線の無電圧
を検出すれば前記自己消弧形半導体スイッチ素子を所望
の導通率でオン・オフ制御することを特徴とする電気車
用補助電源装置の瞬時停電防止回路。
6. An auxiliary power supply device for an electric vehicle for supplying electric power for a vehicle to a running electric vehicle, wherein the electric power source is either direct current taken from the overhead line or direct current obtained by rectifying alternating current taken from the overhead line. And an inverter equipped with a filter capacitor for smoothing on its input side to output an alternating current of a desired voltage and frequency,
A voltage detecting means for detecting the presence or absence of an overhead wire voltage, a capacitor connected to the DC input side of the inverter through a self-arc-extinguishing type semiconductor switch element, and a capacitor for charging the capacitor by using the AC output from the inverter as a power source. 1 charging means and a circuit for connecting the filter capacitor and the capacitor through a diode, and normally, the capacitor is charged to a desired voltage with the self-extinguishing semiconductor switch element being in an OFF state, and the voltage detection is performed. An instantaneous power failure prevention circuit for an auxiliary power supply device for an electric vehicle, wherein the means controls ON / OFF of the self-extinguishing type semiconductor switch element at a desired conductivity if the means detects no voltage on the overhead line.
【請求項7】走行中の電気車に車内用電力を供給する電
気車用補助電源装置において、 前記電気車が架線から取り入れた直流、又は架線から取
り入れた交流を整流した直流のいずれかを電源にして所
望の電圧と周波数の交流を出力するべくその入力側に平
滑用のフィルタコンデンサを備えているインバータと、
架線電圧の有無を検出する電圧検出手段と、このインバ
ータの直流入力側にスイッチ素子を介して接続するキャ
パシタと、前記インバータ入力側の直流を電源にしてこ
のキャパシタを充電する第2充電手段と、前記フィルタ
コンデンサとキャパシタとをダイオードを介して接続す
る回路とを備え、常時は前記スイッチ素子をオフの状態
で前記キャパシタを所望電圧に充電し、前記電圧検出手
段が架線の無電圧を検出すれば前記スイッチ素子をオン
にすることを特徴とする電気車用補助電源装置の瞬時停
電防止回路。
7. An auxiliary power supply device for an electric vehicle for supplying electric power for use in a vehicle to a running electric vehicle, the power source being either direct current taken in from the overhead line or direct current obtained by rectifying alternating current taken in from the overhead line. And an inverter equipped with a filter capacitor for smoothing on its input side to output an alternating current of a desired voltage and frequency,
Voltage detection means for detecting the presence or absence of an overhead wire voltage, a capacitor connected to the DC input side of the inverter via a switch element, and second charging means for charging the capacitor by using the DC input side of the inverter as a power source. If a circuit that connects the filter capacitor and the capacitor via a diode is provided, the capacitor is charged to a desired voltage with the switch element normally turned off, and the voltage detection means detects no voltage on the overhead line. An instantaneous power failure prevention circuit for an auxiliary power supply device for an electric vehicle, wherein the switch element is turned on.
【請求項8】走行中の電気車に車内用電力を供給する電
気車用補助電源装置において、 前記電気車が架線から取り入れた直流、又は架線から取
り入れた交流を整流した直流のいずれかを電源にして所
望の電圧と周波数の交流を出力するべくその入力側に平
滑用のフィルタコンデンサを備えているインバータと、
架線電圧の有無を検出する電圧検出手段と、このインバ
ータの直流入力側に自己消弧形半導体スイッチ素子を介
して接続するキャパシタと、前記インバータ入力側の直
流を電源にしてこのキャパシタを充電する第2充電手段
と、前記フィルタコンデンサとキャパシタとをダイオー
ドを介して接続する回路とを備え、常時は前記自己消弧
形半導体スイッチ素子をオフの状態で前記キャパシタを
所望電圧に充電し、前記電圧検出手段が架線の無電圧を
検出すれば前記自己消弧形半導体スイッチ素子を所望の
導通率でオン・オフ制御することを特徴とする電気車用
補助電源装置の瞬時停電防止回路。
8. An auxiliary power supply device for an electric vehicle that supplies electric power for a vehicle interior to a running electric vehicle, wherein a power source is either direct current taken from an overhead line by the electric vehicle or direct current obtained by rectifying alternating current taken from the overhead line. And an inverter equipped with a filter capacitor for smoothing on its input side to output an alternating current of a desired voltage and frequency,
A voltage detecting means for detecting the presence or absence of an overhead wire voltage; a capacitor connected to the direct current input side of the inverter through a self-arc-extinguishing type semiconductor switch element; and a capacitor for charging the direct current on the input side of the inverter as a power source. Two charging means and a circuit for connecting the filter capacitor and the capacitor via a diode are provided, and the capacitor is charged to a desired voltage with the self-extinguishing type semiconductor switch element being normally off to detect the voltage. An instantaneous power failure prevention circuit for an auxiliary power supply device for an electric vehicle, wherein the means controls ON / OFF of the self-extinguishing type semiconductor switch element at a desired conductivity if the means detects no voltage on the overhead line.
JP15836292A 1991-07-22 1992-06-18 Momentary power failure prevention circuit of auxiliary power supply for electric vehicle Expired - Fee Related JP3263974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15836292A JP3263974B2 (en) 1991-07-22 1992-06-18 Momentary power failure prevention circuit of auxiliary power supply for electric vehicle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18005691 1991-07-22
JP3-180056 1991-07-22
JP15836292A JP3263974B2 (en) 1991-07-22 1992-06-18 Momentary power failure prevention circuit of auxiliary power supply for electric vehicle

Publications (2)

Publication Number Publication Date
JPH05176401A true JPH05176401A (en) 1993-07-13
JP3263974B2 JP3263974B2 (en) 2002-03-11

Family

ID=26485500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15836292A Expired - Fee Related JP3263974B2 (en) 1991-07-22 1992-06-18 Momentary power failure prevention circuit of auxiliary power supply for electric vehicle

Country Status (1)

Country Link
JP (1) JP3263974B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187160A (en) * 2004-12-28 2006-07-13 Sanyo Electric Co Ltd Hybrid car
KR100682512B1 (en) * 2004-05-18 2007-02-15 한국철도기술연구원 Maintaining Method of Operation and Control Circuit for Light Rail Vehicle
KR100881086B1 (en) * 2007-09-06 2009-01-30 현대로템 주식회사 Power supply system for train
JP2009095080A (en) * 2007-10-04 2009-04-30 Toshiba Corp Auxiliary power unit for ac electric train
JP2009261242A (en) * 2004-06-22 2009-11-05 Toshiba Corp Controller of electric rolling stock
JP2014039474A (en) * 2013-11-27 2014-02-27 Toshiba Corp Control device of electric vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682512B1 (en) * 2004-05-18 2007-02-15 한국철도기술연구원 Maintaining Method of Operation and Control Circuit for Light Rail Vehicle
JP2009261242A (en) * 2004-06-22 2009-11-05 Toshiba Corp Controller of electric rolling stock
JP2012039867A (en) * 2004-06-22 2012-02-23 Toshiba Corp Device for control of electric rolling stock
JP2006187160A (en) * 2004-12-28 2006-07-13 Sanyo Electric Co Ltd Hybrid car
KR100881086B1 (en) * 2007-09-06 2009-01-30 현대로템 주식회사 Power supply system for train
JP2009095080A (en) * 2007-10-04 2009-04-30 Toshiba Corp Auxiliary power unit for ac electric train
JP2014039474A (en) * 2013-11-27 2014-02-27 Toshiba Corp Control device of electric vehicle

Also Published As

Publication number Publication date
JP3263974B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
US9873335B2 (en) Electric railcar power feeding system, power feeding device, and power storage device
JP4572840B2 (en) DC power storage device
JP5082450B2 (en) Power supply equipment
JP2010252524A (en) Device and method for controlling energy storage of electric rolling stock
EP2816717B1 (en) Electric power conversion system equipped with electric storage device
JP3618273B2 (en) DC feeder system for electric railway
KR101301553B1 (en) Device of improving ac power quality with super capacitor(edlc)
JP3263974B2 (en) Momentary power failure prevention circuit of auxiliary power supply for electric vehicle
JP4978354B2 (en) DC power storage device
RU2646770C2 (en) Energy storage arrangement, energy storage system and method for operating energy storage arrangement
US20190036457A1 (en) Power conversion device
JP3071944B2 (en) Electric vehicle power converter
JP5509442B2 (en) Power converter and electric railway system
JP6259778B2 (en) Railway vehicle drive system
JP7034331B2 (en) Power converter and disconnection detection method
JPH11252701A (en) Contact loss compensating device for vehicle power source
JP2001320831A (en) Electric rolling stock for railway
JP6703913B2 (en) Power storage device
JP2015089194A (en) Control system for railway vehicle, control method, and electric power conversion system
CN107431365B (en) Electricity storage device
JP7301684B2 (en) power conversion system
JP2672885B2 (en) Power failure detection device for AC electric vehicles
JPH04359631A (en) Generation set
KR890006459Y1 (en) Inverter sequence circuit of motor car
JPH0670475A (en) Power supply apparatus of collector with active control

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees