JPH05175136A - Optical cvd apparatus - Google Patents

Optical cvd apparatus

Info

Publication number
JPH05175136A
JPH05175136A JP25804091A JP25804091A JPH05175136A JP H05175136 A JPH05175136 A JP H05175136A JP 25804091 A JP25804091 A JP 25804091A JP 25804091 A JP25804091 A JP 25804091A JP H05175136 A JPH05175136 A JP H05175136A
Authority
JP
Japan
Prior art keywords
substrate
flow
gas
flow guard
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25804091A
Other languages
Japanese (ja)
Other versions
JP3112520B2 (en
Inventor
Koichi Tamagawa
孝一 玉川
Shigefumi Itsudo
成史 五戸
Seiichi Takahashi
誠一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP03258040A priority Critical patent/JP3112520B2/en
Publication of JPH05175136A publication Critical patent/JPH05175136A/en
Application granted granted Critical
Publication of JP3112520B2 publication Critical patent/JP3112520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a uniform film-thickness distribution, while a substrate is not rotated, by partially arranging flow guard plates, which are equipped at a flow guard member in the title apparatus, on the gas inlet side from the center of the substrate. CONSTITUTION:The top wall of a reaction chamber 21 is provided with a light transmission window 28 in the position facing a substrate 23, a synthetic quartz jet plate 32 having many small holes is provided under the inside surface of the light transmission window 28, and a flow guard member 34 is attached to the underside of the synthetic quartz jet plate 32 for jetting inert gas. In the flow guard member 34, flow guard plates 36 are mounted at 10mm spaces only on the upstream side from the center of the substrate 23. Each flow guard plate 36 extends in the direction of crossing the flow of the reaction gas from a nozzle 25 and also directs the inert gas jetted from the quartz jet plate 32 downward of the substrate 23 on a susceptor 22. In an apparatus constituted in this manner, the concentration of the reaction gas works in the direction where it is made uniform so that the film-thickness distribution of the substrate is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体や液晶ディスプ
レイ等の製造に用いられる薄膜形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film forming apparatus used for manufacturing semiconductors, liquid crystal displays and the like.

【0002】[0002]

【従来の技術】近年、光のエネルギーを用い、シラン、
ジシランなどの化合物ガスを分解し、シリコンウエハや
ガラス基板上に薄膜を形成する、光CVD装置の開発が
積極的になされている。これら光を用いた光CVD装置
は、プロセスの低温化が可能であり、荷電粒子による基
板や形成膜の劣化も発生しないことから、次世代のデバ
イス製造方法として大きく注目されている。しかしなが
ら、このような光CVD装置においては、反応生成物が
光透過窓やランプ表面を汚し、光量が低下するという大
きな問題があった。このような問題点に対処するため
に、例えば、特開昭60−209248号公報に示され
るように、反応室と光源室とを紫外線透過性の多孔板で
仕切り、該多孔板を通して不活性ガスをパージすること
により光透過窓やランプ表面の汚れを防止する提案がな
されている。しかしながら、減圧下でこのような単純な
ガスフロー方式のみを採用した光CVD装置は、実験機
レベルの小面積の基板で、比較的短時間の成膜プロセス
を行なう場合は有効であるものの、大面積基板を処理す
る生産機レベルの装置で長時間の成膜をおこなう場合に
は、この多孔板への膜付着が顕在化し、生産時間の増加
にともなって光量が大きく低下する。これは、安定かつ
再現性のある量産を考えた場合には致命的な問題とな
る。
2. Description of the Related Art In recent years, silane,
Development of an optical CVD apparatus that decomposes a compound gas such as disilane to form a thin film on a silicon wafer or a glass substrate has been actively made. An optical CVD apparatus using such light can be processed at a low temperature and does not cause deterioration of a substrate or a formed film due to charged particles, and thus has attracted a great deal of attention as a next-generation device manufacturing method. However, in such an optical CVD apparatus, there is a big problem that the reaction product stains the light transmission window and the surface of the lamp, and the light amount is reduced. In order to deal with such a problem, for example, as disclosed in JP-A-60-209248, the reaction chamber and the light source chamber are partitioned by a UV-permeable porous plate, and an inert gas is passed through the porous plate. It has been proposed to prevent contamination of the light transmission window and the surface of the lamp by purging. However, an optical CVD apparatus that employs only such a simple gas flow method under reduced pressure is effective when performing a film formation process for a relatively short time on a substrate with a small area of an experimental machine level, but When a film is deposited for a long time on a production machine level device that processes an area substrate, film deposition on the perforated plate becomes apparent, and the amount of light greatly decreases as the production time increases. This is a fatal problem when considering stable and reproducible mass production.

【0003】上記の問題に対処するために、本発明者ら
は、上記従来型の装置の欠点について更に検討し、先に
特願平3−84043号として提案したように、従来型
の装置における紫外線透過性の多孔板の下に、新たに、
多孔板に形成した各小孔の軸線と平行に延びしかも互い
に間隔をおいて配置した多数のフローガードプレートを
備えたフローガード部材を配置することにより、この問
題を完全に解決した。
In order to address the above-mentioned problems, the present inventors have further studied the drawbacks of the above-mentioned conventional type device, and, as previously proposed in Japanese Patent Application No. 3-84043, in the conventional type device. Under the UV transparent perforated plate, newly,
This problem was completely solved by arranging a flow guard member comprising a number of flow guard plates extending parallel to the axis of each small hole formed in the perforated plate and spaced apart from each other.

【0004】図4は、上記本発明者らが先に提案した光
CVD装置の一例を示す断面図であり、図5はその要部
斜視図である。図4において、1は反応室であり、その
内部に温度可変のサセプタ2が設けられ、該サセプタ2
上に基板3が装着されている。反応室1の側壁には、第
1のガスすなわち反応ガスを導入するための薄いスリッ
ト状の開口4を有するノズル5が設けられ、該ノズル5
は外部導入管6と連結されている。また反応室1の底壁
の一端には排気口7が設けられている。また反応室1の
上壁には、基板3に対向した位置に、合成石英製の光透
過窓8が設けられ、その外側には光化学反応に好適な波
長を放射する光源9と、光の損失を防ぐ反射板10と、
これらを収容する光源室11が取り付けられている。さ
らに光透過窓8の内側表面下には、該光透過窓8の内側
表面との間に若干の隙間をあけて、合成石英製の小孔を
多数持った噴出板12が設けられている。上記光透過窓
8と該合成石英製の小孔を多数持った噴出板12とから
形成される空間は、導管13と接続され第2のガスであ
る不活性ガスの導入口となっている。
FIG. 4 is a cross-sectional view showing an example of the photo-CVD apparatus previously proposed by the present inventors, and FIG. 5 is a perspective view of an essential part thereof. In FIG. 4, reference numeral 1 is a reaction chamber in which a temperature-variable susceptor 2 is provided.
The substrate 3 is mounted on the top. The side wall of the reaction chamber 1 is provided with a nozzle 5 having a thin slit-shaped opening 4 for introducing the first gas, that is, the reaction gas.
Is connected to the external introduction pipe 6. An exhaust port 7 is provided at one end of the bottom wall of the reaction chamber 1. On the upper wall of the reaction chamber 1, a light transmitting window 8 made of synthetic quartz is provided at a position facing the substrate 3, and a light source 9 emitting a wavelength suitable for a photochemical reaction is provided outside the light transmitting window 8 and a loss of light. A reflector 10 for preventing the
A light source chamber 11 that houses these is attached. Further, below the inner surface of the light transmitting window 8, an ejection plate 12 having a large number of small holes made of synthetic quartz is provided with a slight gap between the inner surface of the light transmitting window 8 and the inner surface. The space formed by the light transmission window 8 and the ejection plate 12 having a large number of small holes made of synthetic quartz is connected to the conduit 13 and serves as an inlet for the inert gas which is the second gas.

【0005】上記不活性ガスを噴出する噴出板12の下
側にはフローガード部材14が取り付けられており、該
フローガード部材14は、図5に示すように、フローガ
ード枠体15内に、薄い合成石英板からなるフローガー
ドプレート16を一定の間隔をおいて取り付けたもので
あり、図5は11枚取り付けた場合の例を示している。
上記各フローガードプレート16は、ノズル5からの反
応ガスの流れ方向を横切る方向に延び、しかも導管13
より導入され噴出板12から噴出される不活性ガスを、
サセプタ2上の基板3に向って下向きに指向させるよう
に方向づけられている。従ってフローガード部材14に
おける各フローガードプレート16は、反応室1の内寸
等により任意に設定することができる。
A flow guard member 14 is attached to the lower side of the jet plate 12 for jetting the above-mentioned inert gas, and the flow guard member 14 is, as shown in FIG. The flow guard plates 16 made of a thin synthetic quartz plate are attached at regular intervals, and FIG. 5 shows an example in which 11 sheets are attached.
Each of the flow guard plates 16 extends in a direction transverse to the flow direction of the reaction gas from the nozzle 5, and the conduit 13
The inert gas introduced from the jet plate 12
It is oriented downwards towards the substrate 3 on the susceptor 2. Therefore, each flow guard plate 16 in the flow guard member 14 can be set arbitrarily according to the inner size of the reaction chamber 1 and the like.

【0006】作動時、先ず反応ガスは、外部導管6から
ノズル5の薄いスリット状の開口4を経て基板3の表面
にほぼ平行にシート状に導入される。一方、このシート
状の反応ガスの流れに対して不活性ガスは、噴出板12
より導入され、フローガード部材14のフローガード枠
体15及びフローガードプレート16により下向きに基
板3へ向って案内される。このようにフローガード部材
14によって指向された不活性ガスの下向きの流れによ
り、ノズル5からのシート状の反応ガスの流れは、基板
3の近傍に有効に抑えられ、従って導入された反応ガス
の乱流の発生や拡散は有効に抑制され、その結果、光透
過窓8および噴出板12の表面への反応生成物の付着を
完全に防ぐことができ、長時間の安定した成膜が可能に
なる。
In operation, first, the reaction gas is introduced from the external conduit 6 through the thin slit-shaped opening 4 of the nozzle 5 into a sheet shape substantially parallel to the surface of the substrate 3. On the other hand, the inert gas with respect to the flow of the sheet-like reaction gas is discharged from the ejection plate 12
It is introduced further and is guided downward to the substrate 3 by the flow guard frame body 15 of the flow guard member 14 and the flow guard plate 16. By the downward flow of the inert gas directed by the flow guard member 14 in this manner, the flow of the sheet-like reaction gas from the nozzle 5 is effectively suppressed in the vicinity of the substrate 3, and thus the introduced reaction gas The generation and diffusion of turbulence are effectively suppressed, and as a result, it is possible to completely prevent the reaction products from adhering to the surfaces of the light transmission window 8 and the ejection plate 12, and to achieve stable film formation for a long time. Become.

【0007】[0007]

【発明が解決しようとする課題】上記のように構成した
光CVD装置は、光透過窓や不活性ガス噴出板の表面へ
の反応生成物の付着を完全に防ぐという点では非常に優
れているが、大口径基板に成膜した場合、その膜厚分
布、特に反応ガスの流れ方向の分布が極めて悪いという
問題点があった。
The photo-CVD apparatus configured as described above is very excellent in that it completely prevents the reaction products from adhering to the surfaces of the light-transmitting window and the inert gas ejection plate. However, when a film is formed on a large-diameter substrate, there is a problem that the film thickness distribution, particularly the distribution in the flow direction of the reaction gas, is extremely poor.

【0008】図6は、図4に示す光CVD装置を用いて
6インチ基板にアモルファスシリコン膜を成膜した時の
流れに平行方向の膜厚分布図で、最下流側つまり排気口
側には、最上流側つまり第1のガス導入口側の50%程
度しか膜が堆積していないことがわかる。これは、反応
ガスが導入口から排気口へ向って流れていく間に、上方
からのパージ用不活性ガスが混入して反応ガスが希釈さ
れ、導入口から排気口に向って大きな濃度勾配が発生す
るためと推定される。このような分布を改良する手段と
して、一般には基板3を装着しているサセプタ2を回転
させる方法が広く行なわれている。しかしながら、回転
により摺動部からダストが発生したり、また基板の温度
分布の均一性を得るために工夫された加熱機構がサセプ
タに搭載されている場合には、サセプタ2を回転させる
ことはハード上非常に困難である等の問題がある。ま
た、仮に基板回転が可能であっても、最上流と最下流の
膜厚の平均値が基板中央の膜厚に比べて大きい、或いは
小さい場合には、基板回転により均一な膜厚分布を得る
ことは不可能である。従って、これらの状況を考えれ
ば、基板を回転させないままで膜を堆積し、均一な分布
を得ることのできる装置が要求される。
FIG. 6 is a film thickness distribution diagram in the direction parallel to the flow when an amorphous silicon film is formed on a 6-inch substrate by using the photo CVD apparatus shown in FIG. It is understood that the film is deposited only on the most upstream side, that is, about 50% of the first gas inlet side. This is because while the reaction gas flows from the inlet port toward the exhaust port, the inert gas for purging from above is mixed to dilute the reaction gas, and a large concentration gradient is introduced from the inlet port to the exhaust port. It is presumed to occur. As a means for improving such distribution, generally, a method of rotating the susceptor 2 on which the substrate 3 is mounted is widely used. However, if dust is generated from the sliding portion due to rotation, or if a heating mechanism devised to obtain uniform temperature distribution of the substrate is mounted on the susceptor, it is hard to rotate the susceptor 2. There are problems such as being extremely difficult. Further, even if the substrate can be rotated, if the average value of the film thicknesses of the most upstream and the most downstream is larger or smaller than the film thickness at the center of the substrate, the substrate is rotated to obtain a uniform film thickness distribution. Is impossible. Therefore, in consideration of these situations, an apparatus capable of depositing a film without rotating the substrate and obtaining a uniform distribution is required.

【0009】本発明は、上記のような各問題点を解決
し、生機レベルの大口径基板対応光CVD装置を提供す
ることを目的としている。
An object of the present invention is to solve the above-mentioned problems and to provide an optical CVD apparatus for a large-diameter substrate at a greige level.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の光CVD装置は、処理すべき基板を収容
する反応室と、該反応室内に反応ガスを導入及び排気す
る手段と、該反応ガスを光化学反応させ、該基板上に薄
膜を形成させるための光源と、該光源を収容する光源室
と、該反応室と該光源室の間に、多数の小孔を持った光
透過性ガス噴出板と該噴出板の下に該噴出板に形成した
各小孔の軸線と平行に延びしかも互いに間隔をおいて配
置した多数のフローガードプレートを備えたフローガー
ド部材をを配置し、該反応室内に収容された基板の表面
にほぼ平行にガス導入口より第1のガス流をシート状に
導入し、また該基板上の表面に、この表面に垂直な方向
から第2のガス流を、該ガス噴出板より導入し、さらに
該ガス噴出板の下に設けた該フローガード部材を通すこ
とにより、該基板の表面の近傍に上記第1のガス流を層
流状態に保持するようにした光CVD装置において、上
記フローガード部材に備えられているフローガードプレ
ートを、基板の中心から第1のガス導入口側に部分的に
配置したことを特徴としている。
In order to achieve the above object, the photo-CVD apparatus of the present invention comprises a reaction chamber for accommodating a substrate to be processed, and means for introducing and exhausting a reaction gas into the reaction chamber. A light source for photochemically reacting the reaction gas to form a thin film on the substrate, a light source chamber for housing the light source, and light having a large number of small holes between the reaction chamber and the light source chamber. A permeable gas ejection plate and a flow guard member provided under the ejection plate, the flow guard member having a plurality of flow guard plates extending parallel to the axis of each small hole formed in the ejection plate and spaced from each other, are arranged. Introducing a first gas flow in a sheet form from a gas inlet port substantially parallel to the surface of the substrate housed in the reaction chamber, and introducing a second gas from the direction perpendicular to the surface to the surface on the substrate. Flow is introduced from the gas ejection plate, and further below the gas ejection plate. A flow guard provided in the flow guard member in an optical CVD apparatus configured to maintain the first gas flow in a laminar state near the surface of the substrate by passing the provided flow guard member. It is characterized in that the plate is partially arranged from the center of the substrate to the first gas introduction port side.

【0011】[0011]

【作用】上記のように構成した本発明による光CVD装
置では、フローガード部材のフローガードプレートが基
板の中心から上流側つまり第1のガス導入口側にのみ配
置されているため、不活性ガスによるパージ効果は、基
板の中心から上流側で強く、一方基板の中心から下流側
で弱くなる。これは別の見方をすれば、不活性ガスによ
る希釈効果が基板の中心から上流側で強く、一方、基板
の中心から下流側で弱くなることを意味している。従っ
て、比較的反応ガス濃度の高い上流側でより強く希釈さ
れることになり、全体から見ると、反応ガス濃度が均一
化する方向に働き、基板の膜厚分布が改善されることに
なる。
In the photo-CVD apparatus according to the present invention configured as described above, since the flow guard plate of the flow guard member is arranged only upstream from the center of the substrate, that is, on the side of the first gas inlet, the inert gas is not used. The purging effect due to is strong on the upstream side from the center of the substrate and weak on the downstream side from the center of the substrate. From another viewpoint, this means that the dilution effect of the inert gas is strong from the center of the substrate to the upstream side, while weakened from the center of the substrate to the downstream side. Therefore, the reaction gas is diluted more strongly on the upstream side where the reaction gas concentration is relatively high, and when viewed from the whole, the reaction gas concentration is made uniform and the film thickness distribution of the substrate is improved.

【0012】また、反応ガス濃度の高い上流側にフロー
ガードプレートが配置されているため、先に本発明者ら
が提案した光CVD装置と同様に、光透過窓や不活性ガ
ス噴出板の表面への反応生成物の付着の問題は全く発生
しない。
Further, since the flow guard plate is arranged on the upstream side where the reaction gas concentration is high, the surface of the light transmission window or the surface of the inert gas ejection plate is similar to the photo CVD apparatus proposed by the present inventors. There is no problem of adhesion of reaction products to the.

【0013】[0013]

【実施例】次に、本発明の実施例を図面と共に説明す
る。図1は、本発明の一実施例を示す大口径基板対応の
光CVD装置の断面図、図2は、本実施例で使用したフ
ローガード部材の斜視図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a sectional view of an optical CVD apparatus for a large-diameter substrate showing an embodiment of the present invention, and FIG. 2 is a perspective view of a flow guard member used in this embodiment.

【0014】図において、21は反応室であり、その内
部に温度250℃にコントロールされたサセプタ22が
設けられ、該サセプタ22上に6インチガラス基板23
が装着されている。上記反応室21の側壁には、反応ガ
スを導入するための薄いスリット状の開口24を有する
ノズル25が設けられ、該ノズル25は外部導入管26
と連結されている。反応室21の底壁の一端には排気口
27が設けられている。また反応室21の上壁には、基
板23に対向した位置に、直径300mmで厚さ15m
mの合成石英製の光透過窓28が設けられ、その外側に
は低圧水銀ランプ29と、光の損失を防ぐ反射板30
と、これらを収容する光源室31が取り付けられてい
る。さらに光透過窓28の内側表面下には、該光透過窓
28の内側表面との間に10mmの隙間をあけて、直径
0.6mmの小孔を多数持った、大きさ200mm×3
00mmの合成石英製噴出板32が設けられている。光
透過窓28と合成石英製の噴出板32とから形成される
空間は、導管33と接続される第2のガスである不活性
ガスの導入口となっている。
In the figure, reference numeral 21 denotes a reaction chamber, a susceptor 22 whose temperature is controlled at 250 ° C. is provided inside the reaction chamber, and a 6-inch glass substrate 23 is provided on the susceptor 22.
Is installed. A nozzle 25 having a thin slit-shaped opening 24 for introducing a reaction gas is provided on the side wall of the reaction chamber 21, and the nozzle 25 is provided with an external introduction pipe 26.
Is connected with. An exhaust port 27 is provided at one end of the bottom wall of the reaction chamber 21. Further, on the upper wall of the reaction chamber 21, at a position facing the substrate 23, the diameter is 300 mm and the thickness is 15 m.
m synthetic quartz light transmission window 28 is provided, and a low pressure mercury lamp 29 and a reflection plate 30 for preventing light loss are provided on the outside thereof.
And a light source chamber 31 for accommodating them is attached. Further, below the inner surface of the light transmitting window 28, a space of 10 mm is provided between the inner surface of the light transmitting window 28 and a large number of small holes having a diameter of 0.6 mm, and a size of 200 mm × 3.
An ejection plate 32 made of synthetic quartz and having a diameter of 00 mm is provided. The space formed by the light transmission window 28 and the synthetic quartz ejection plate 32 serves as an inlet for an inert gas that is a second gas and is connected to the conduit 33.

【0015】一方、不活性ガスを噴出する合成石英製噴
出板32の下側には、フローガード部材34が取り付け
られており、該フローガード部材34は、図2に示すよ
うに、厚さ30mm、大きさ200mm×300mmの
フローガード枠体35内に、厚さ1mm、大きさ200
mm×30mmの合成石英板からなるフローガードプレ
ート36を、基板23の中心より上流側にのみ10mm
の間隔をおいて取り付けたものである。各フローガード
プレート36は、ノズル25からの反応ガスの流れ方向
を横切る方向に延びしかも石英製噴出板32から噴出さ
れる不活性ガスをサセプタ22上の基板23に向って下
向きに指向させるように方向づけられている。
On the other hand, a flow guard member 34 is attached to the lower side of the synthetic quartz ejection plate 32 for ejecting an inert gas, and the flow guard member 34 has a thickness of 30 mm as shown in FIG. In a flow guard frame 35 of size 200 mm x 300 mm, thickness 1 mm, size 200
The flow guard plate 36 made of a synthetic quartz plate having a size of 30 mm × 30 mm is provided 10 mm only upstream from the center of the substrate 23.
It is installed at intervals. Each flow guard plate 36 extends in a direction transverse to the flow direction of the reaction gas from the nozzle 25 and directs the inert gas ejected from the quartz ejection plate 32 downward toward the substrate 23 on the susceptor 22. Oriented.

【0016】上記のように構成した装置において、反応
ガスにシラン及び水銀蒸気、また不活性ガスにアルゴン
ガスを用い、さらにフローガードプレート36をフロー
ガード枠体35の最上流側より10mm間隔で2枚、4
枚、6枚、8枚、と配置した構成で、6インチサイズガ
ラス基板にアモルファスシリコン膜を堆積させた時の膜
厚分布をそれぞれ求めた。
In the apparatus constructed as described above, silane and mercury vapor are used as the reaction gas, and argon gas is used as the inert gas. Further, the flow guard plate 36 is arranged at an interval of 10 mm from the most upstream side of the flow guard frame 35. Sheets, 4
The film thickness distribution when depositing an amorphous silicon film on a 6-inch size glass substrate was determined for each of the configurations of one, six, and eight.

【0017】図3は、反応ガスの流れに平行方向の膜厚
分布測定結果を示す図である。この図から分かるよう
に、膜厚分布はフローガードプレートの枚数により大き
く変化し、本実施例の装置では、フローガードプレート
4枚のときに±5%以内の膜厚分布が得られた。
FIG. 3 is a diagram showing the measurement result of the film thickness distribution in the direction parallel to the flow of the reaction gas. As can be seen from this figure, the film thickness distribution greatly changes depending on the number of flow guard plates, and in the apparatus of this embodiment, the film thickness distribution within ± 5% was obtained when the number of flow guard plates was four.

【0018】この実施例では、フローガードプレートを
10mm間隔で上記のように最上流側より4枚装着した
時に最も良好な膜厚分布が得られたが、用いる反応ガス
や基板の大きさにより、膜厚分布が変化するため、装着
するフローガードプレートの数や場所或いは装着間隔は
これに限定されるものではない。その時々の実験条件に
より装着枚数や装着間隔を増減させたり、フローガード
枠体への装着場所を変化させてもよい。また、この実施
例実験時において光透過窓や不活性ガス噴出板の表面へ
の反応生成物の付着は全く発生しなかった。
In this embodiment, the best film thickness distribution was obtained when four flow guard plates were mounted at intervals of 10 mm from the most upstream side as described above. However, depending on the reaction gas used and the size of the substrate, Since the film thickness distribution changes, the number and place of the flow guard plates to be mounted or the mounting intervals are not limited to this. Depending on the experimental conditions at that time, the number of mounted sheets or the mounting interval may be increased or decreased, or the mounting location on the flow guard frame may be changed. Further, during the experiment of this example, the reaction products did not adhere to the surface of the light transmission window or the inert gas ejection plate.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
フローガード部材のフローガードプレートを基板の中心
から上流側、つまり第1のガス導入口側にのみ配置した
ことにより、光透過窓や不活性ガス噴出板の表面への反
応生成物の付着が発生せず、基板回転機構を使用しない
状態で均一な膜厚分布を得ることができ、良好な歩留り
により生産性を大きく向上させることができる。
As described above, according to the present invention,
By disposing the flow guard plate of the flow guard member only on the upstream side from the center of the substrate, that is, on the side of the first gas introduction port, adhesion of reaction products to the surface of the light transmission window or the inert gas ejection plate occurs. Without doing so, a uniform film thickness distribution can be obtained without using the substrate rotating mechanism, and the productivity can be greatly improved with a good yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す光CVD装置の断面図
である。
FIG. 1 is a sectional view of a photo-CVD apparatus showing an embodiment of the present invention.

【図2】本発明の光CVD装置に使用されるフローガー
ド部材の一実施例を示す斜視図である。
FIG. 2 is a perspective view showing an embodiment of a flow guard member used in the photo CVD apparatus of the present invention.

【図3】本発明の実施例で得られた反応ガスの流れに平
行方向の膜厚分布特性図である。
FIG. 3 is a film thickness distribution characteristic diagram in a direction parallel to the flow of the reaction gas obtained in the example of the present invention.

【図4】従来例を示す光CVD装置の断面図である。FIG. 4 is a cross-sectional view of a conventional photo-CVD apparatus.

【図5】従来例を示すフローガード部材の斜視図であ
る。
FIG. 5 is a perspective view of a flow guard member showing a conventional example.

【図6】図4の装置で得られた反応ガスの流れに平行方
向の膜厚分布特性図である。
6 is a film thickness distribution characteristic diagram in the direction parallel to the flow of the reaction gas obtained by the apparatus of FIG.

【符号の説明】[Explanation of symbols]

21 反応室 22 サセプタ 23 ガラス基板 24 スリット状の開口 25 ノズル 26 外部導入管 27 排気口 28 合成石英製光透過窓 29 低圧水銀ランプ 30 反射板 31 光源室 32 合成石英製噴出板 33 導管 34 フローガード部材 35 フローガード枠体 36 合成石英製フローガードプレート 21 Reaction Chamber 22 Susceptor 23 Glass Substrate 24 Slit-shaped Opening 25 Nozzle 26 External Introducing Tube 27 Exhaust Port 28 Synthetic Quartz Light Transmission Window 29 Low Pressure Mercury Lamp 30 Reflector 31 Light Source Chamber 32 Synthetic Quartz Spout Plate 33 Conduit 34 Flow Guard Member 35 Flow guard frame 36 Synthetic quartz flow guard plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板を収容する反応室と、該反応室内に
反応ガスを導入及び排気するそれぞれの手段と、該反応
ガスを光化学反応させ、該基板上に薄膜を形成させるた
めの光源と、該光源を収容する光源室と、該反応室と該
光源室の間に、多数の小孔を持った光透過性ガス噴出板
と該噴出板の下に該噴出板に形成した各小孔の軸線と平
行に延びしかも互いに間隔をおいて配置した多数のフロ
ーガードプレートを備えたフローガード部材を配置し、
該反応室内に収容された基板の表面にほぼ平行にガス導
入口より第1のガス流をシート状に導入し、また該基板
上の表面に、この表面に垂直な方向から第2のガス流
を、該ガス噴出板より導入し、さらに該ガス噴出板の下
に設けた該フローガード部材を通すことにより、該基板
の表面の近傍に上記第1のガス流を層流状態に保持する
ようにした光CVD装置において、上記フローガード部
材に備えられているフローガードプレートを、基板の中
心から第1のガス導入口側に部分的に配置したことを特
徴とする光CVD装置。
1. A reaction chamber for accommodating a substrate, means for introducing and exhausting a reaction gas into the reaction chamber, and a light source for photochemically reacting the reaction gas to form a thin film on the substrate. A light source chamber for accommodating the light source, a light-transmissive gas ejection plate having a large number of small holes between the reaction chamber and the light source chamber, and small holes formed in the ejection plate below the ejection plate. Arranging a flow guard member provided with a large number of flow guard plates extending parallel to the axis and spaced from each other,
A first gas flow is introduced into a sheet form from a gas introduction port substantially parallel to the surface of the substrate housed in the reaction chamber, and a second gas flow is introduced onto the surface of the substrate from a direction perpendicular to the surface. Is introduced from the gas ejection plate and further passed through the flow guard member provided under the gas ejection plate, so that the first gas flow is maintained in a laminar state near the surface of the substrate. In the photo-CVD apparatus described above, the flow-guard plate included in the flow-guard member is partially arranged from the center of the substrate to the first gas introduction port side.
JP03258040A 1991-10-04 1991-10-04 Optical CVD equipment Expired - Fee Related JP3112520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03258040A JP3112520B2 (en) 1991-10-04 1991-10-04 Optical CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03258040A JP3112520B2 (en) 1991-10-04 1991-10-04 Optical CVD equipment

Publications (2)

Publication Number Publication Date
JPH05175136A true JPH05175136A (en) 1993-07-13
JP3112520B2 JP3112520B2 (en) 2000-11-27

Family

ID=17314708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03258040A Expired - Fee Related JP3112520B2 (en) 1991-10-04 1991-10-04 Optical CVD equipment

Country Status (1)

Country Link
JP (1) JP3112520B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272889A (en) * 2004-04-27 2010-12-02 Sumco Corp Epitaxial growth apparatus
JP2014127667A (en) * 2012-12-27 2014-07-07 Showa Denko Kk Deposition device
JP2014127665A (en) * 2012-12-27 2014-07-07 Showa Denko Kk Deposition apparatus
JP2014127664A (en) * 2012-12-27 2014-07-07 Showa Denko Kk Deposition apparatus
JP2014127663A (en) * 2012-12-27 2014-07-07 Showa Denko Kk Deposition apparatus and film manufacturing method
US20150345046A1 (en) * 2012-12-27 2015-12-03 Showa Denko K.K. Film-forming device
US20160194753A1 (en) * 2012-12-27 2016-07-07 Showa Denko K.K. SiC-FILM FORMATION DEVICE AND METHOD FOR PRODUCING SiC FILM

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272889A (en) * 2004-04-27 2010-12-02 Sumco Corp Epitaxial growth apparatus
JP2014127667A (en) * 2012-12-27 2014-07-07 Showa Denko Kk Deposition device
JP2014127665A (en) * 2012-12-27 2014-07-07 Showa Denko Kk Deposition apparatus
JP2014127664A (en) * 2012-12-27 2014-07-07 Showa Denko Kk Deposition apparatus
JP2014127663A (en) * 2012-12-27 2014-07-07 Showa Denko Kk Deposition apparatus and film manufacturing method
US20150345046A1 (en) * 2012-12-27 2015-12-03 Showa Denko K.K. Film-forming device
US20160194753A1 (en) * 2012-12-27 2016-07-07 Showa Denko K.K. SiC-FILM FORMATION DEVICE AND METHOD FOR PRODUCING SiC FILM

Also Published As

Publication number Publication date
JP3112520B2 (en) 2000-11-27

Similar Documents

Publication Publication Date Title
EP0254654A1 (en) Method of chemical vapor deposition
US5556474A (en) Plasma processing apparatus
JPH0778863A (en) Improved suscepter design
US5565382A (en) Process for forming tungsten silicide on semiconductor wafer using dichlorosilane gas
JPH05175136A (en) Optical cvd apparatus
JPH05175135A (en) Optical cvd apparatus
JPH02234419A (en) Plasma electrode
JPH05198512A (en) Optical cvd device
JP3131855B2 (en) Film forming method and apparatus
JP3224238B2 (en) Thin film forming equipment
JPH11200052A (en) Chemical vapor phase growth apparatus
JPH06302519A (en) Semiconductor manufacturing equipment
JP2010147201A (en) Substrate processing device
KR102181120B1 (en) Apparatus of treating substrate
JP3174787B2 (en) Optical CVD equipment
JPS58132932A (en) Plasma processing device
JPH11340142A (en) Method and device for single-wafer-processing epitaxial growth
JP2001140077A (en) Semi-conductor manufacturing device
JPS6355192A (en) Normal-pressure vapor growth apparatus
KR20170040815A (en) Atomic layer thin film deposition apparatus with uniform gas flow
JPH11329975A (en) One-by-one-type epitaxial growing device and method for cleaning the same
JPH062146A (en) Photo-cvd apparatus
JPH0860367A (en) Chemical vapor growth apparatus
KR19990040657U (en) Wafer transfer device for semiconductor manufacturing.
JPH05345978A (en) Device for forming thin film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110922

LAPS Cancellation because of no payment of annual fees