JPH05345978A - Device for forming thin film - Google Patents

Device for forming thin film

Info

Publication number
JPH05345978A
JPH05345978A JP8404391A JP8404391A JPH05345978A JP H05345978 A JPH05345978 A JP H05345978A JP 8404391 A JP8404391 A JP 8404391A JP 8404391 A JP8404391 A JP 8404391A JP H05345978 A JPH05345978 A JP H05345978A
Authority
JP
Japan
Prior art keywords
gas
flow
substrate
inert gas
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8404391A
Other languages
Japanese (ja)
Other versions
JP3112492B2 (en
Inventor
Shigefumi Itsudo
成史 五戸
Koichi Tamagawa
孝一 玉川
Toshio Kusumoto
淑郎 楠本
Akitoshi Suzuki
章敏 鈴木
Izumi Nakayama
泉 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP03084043A priority Critical patent/JP3112492B2/en
Publication of JPH05345978A publication Critical patent/JPH05345978A/en
Application granted granted Critical
Publication of JP3112492B2 publication Critical patent/JP3112492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To perfectly prevent the contamination of the wall and window of a reaction chamber by the sticking of a reactional product, to improve reproducibility and to enable continuous film formation by concentrating a reactive component on a part, near a substrate. CONSTITUTION:A flow guard member 13 with many flow guard plates 15 arranged parallel to the axial lines of many small holes in a gas blast member 11 at regular intervals is disposed under the gas blast member 11. The thickness distribution of a formed thin film can directly be controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CVDや光CVD装置
等の薄膜形成装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film forming apparatus such as a CVD or photo CVD apparatus.

【0002】[0002]

【従来の技術】従来の薄膜形成装置の一例として、特公
昭63−7619号公報にはCVD装置が開示されている。こ
の装置は、添付図面の図4に示すように、真空槽Aの一
方の側壁部に第1のガスである反応ガスの噴出ノズルB
が設けられ、この噴出ノズルBは導管Cを介して外部の
反応ガス供給源(図示してない)に連結されている。ま
た真空槽Aの上壁部には、真空槽A内に配設されたサセ
プタD上の基板Eに対向して多数の小孔を備えた中空の
不活性ガス噴出部Fが設けられ、さらに真空槽Aの底壁
部の、反応ガス噴出ノズルBの反対側の位置に、排気口
Gが設けられている。反応ガスは導管Cから反応ガス噴
出ノズルBを介して真空槽A内の基板Eの表面にほぼ平
行にシート状に導入され、また第2のガスである不活性
ガスは真空槽Aの上部の不活性ガス噴出部Fから基板E
側に向う方向に導入され、ハッチングを施して示すよう
に反応ガスを基板Fの表面近傍に層流状態に維持するよ
うに作用している。こうして導入された反応ガス及び不
活性ガスは排気口Gを通って排出される。
2. Description of the Related Art As an example of a conventional thin film forming apparatus, Japanese Patent Publication No. Sho 63-7619 discloses a CVD apparatus. As shown in FIG. 4 of the accompanying drawings, this apparatus has a nozzle B for ejecting a reaction gas, which is a first gas, on one side wall of a vacuum chamber A.
Is provided, and the ejection nozzle B is connected to an external reaction gas supply source (not shown) via a conduit C. Further, a hollow inert gas ejection portion F having a large number of small holes is provided on the upper wall of the vacuum chamber A so as to face the substrate E on the susceptor D arranged in the vacuum chamber A. An exhaust port G is provided at a position on the bottom wall of the vacuum chamber A opposite to the reaction gas ejection nozzle B. The reaction gas is introduced from the conduit C through the reaction gas jet nozzle B in a sheet shape substantially parallel to the surface of the substrate E in the vacuum chamber A, and the inert gas as the second gas is in the upper part of the vacuum chamber A. Substrate E from inert gas spout F
It is introduced in the direction toward the side and acts so as to maintain the reaction gas in the laminar flow state near the surface of the substrate F as shown by hatching. The reaction gas and the inert gas thus introduced are discharged through the exhaust port G.

【0003】このようなガスフロー方式では基板に対向
して導入される不活性ガス流が基板近傍において反応ガ
スの舞い上がりを抑え込むと共に、反応ガスの成分の乱
流や拡散を防止する働きをしているので、 第1のガス流のガス成分が基板の近傍だけに押え込ま
れ、真空槽の壁、覗き窓等に膜が付着する汚染を防止す
ることができる; 第1のガス流が層流であり、制御性、再現性に優れて
いる; 第2のガス流の流量制御により基板上の膜厚分布を制
御することができる 等の利点がある。特にの利点はCVD装置の中でも光
学窓への汚染が問題となる光化学気相成長装置(以下単
に光CVD装置と記載する)における光透過窓の汚染を
防止する方法として用いられてきた。その一例を図5に
示す。
In such a gas flow system, an inert gas flow introduced so as to face the substrate suppresses the rise of the reaction gas in the vicinity of the substrate and also serves to prevent turbulent flow and diffusion of the components of the reaction gas. As a result, the gas component of the first gas flow is suppressed only in the vicinity of the substrate, and it is possible to prevent the contamination that the film adheres to the wall of the vacuum chamber, the viewing window, etc .; And is excellent in controllability and reproducibility; there is an advantage that the film thickness distribution on the substrate can be controlled by controlling the flow rate of the second gas flow. A particular advantage has been used as a method for preventing the contamination of the light transmission window in a photochemical vapor deposition apparatus (hereinafter simply referred to as a photo CVD apparatus) in which the contamination of the optical window is a problem among the CVD apparatuses. An example thereof is shown in FIG.

【0004】図5に示す光CVD装置では、真空槽Aの
上壁部に紫外光や真空紫外光を透過させるための合成石
英から成る光透過窓Hが設けられ、その外側に、紫外光
や真空紫外光を放射する光源I及び光源Iから放射され
た光の損失を防ぐための反射板Jを備えた光源室Kが設
けられている。また光透過窓Hの内側表面上には真空槽
A内に配設されたサセプタD上の基板Eに対向して多数
の小孔を備えた合成石英板から成る不活性ガス噴出部F
が設けられている。図4のCVD装置の場合と同様に第
1のガス(反応ガス)は外部の導管Cから反応ガス噴出
ノズルBを介して真空槽A内の基板Eの表面にほぼ平行
にシート状に導入され、また不活性ガスは真空槽Aの上
部の不活性ガス噴出部Fから基板E側に向う方向に導入
され、第1のガスである反応ガスを基板Fの表面近傍に
層流状態に維持するように作用している。こうして導入
された反応ガスは光源Iから放射される紫外光や真空紫
外光により分解され、基板Eの表面上に所望の膜を堆積
させることになる。この場合、真空槽Aの上部の不活性
ガス噴出部Fから第2のガスである不活性ガスが導入さ
れないと、一瞬の内に不活性ガス噴出部Fや光透過窓H
に反応生成物が付着し、光源Iから放射される光の透過
が阻害され、成膜が不能になってしまうが、ある流量以
上の第2のガス流を不活性ガス噴出部Fから基板E側に
向う方向に導入することにより、上述のように反応ガス
は基板Eの近傍に押え込まれ、不活性ガス噴出部Fや光
透過窓Hへ拡散され難くなる。その結果、成膜動作中に
おける不活性ガス噴出部Fや光透過窓H等の汚染をある
程度抑制することができるようになった。
In the photo CVD apparatus shown in FIG. 5, a light transmission window H made of synthetic quartz for transmitting ultraviolet light or vacuum ultraviolet light is provided on the upper wall of the vacuum chamber A, and ultraviolet light or ultraviolet light is provided outside the window. A light source chamber K is provided which includes a light source I that emits vacuum ultraviolet light and a reflection plate J that prevents loss of light emitted from the light source I. Further, on the inner surface of the light transmission window H, an inert gas ejection portion F made of a synthetic quartz plate having a large number of small holes facing the substrate E on the susceptor D arranged in the vacuum chamber A.
Is provided. Similar to the case of the CVD apparatus in FIG. 4, the first gas (reaction gas) is introduced from an external conduit C through a reaction gas ejection nozzle B in a sheet shape substantially parallel to the surface of the substrate E in the vacuum chamber A. Further, the inert gas is introduced from the inert gas jetting portion F in the upper part of the vacuum chamber A in the direction toward the substrate E side, and the reaction gas as the first gas is maintained near the surface of the substrate F in a laminar flow state. Is acting like. The reaction gas thus introduced is decomposed by the ultraviolet light or vacuum ultraviolet light emitted from the light source I, and a desired film is deposited on the surface of the substrate E. In this case, if the inert gas which is the second gas is not introduced from the inert gas jetting portion F above the vacuum chamber A, the inert gas jetting portion F and the light transmission window H are instantaneously supplied.
The reaction product adheres to the substrate and impedes the transmission of the light emitted from the light source I, making it impossible to form a film. However, a second gas flow of a certain flow rate or more is passed from the inert gas jetting portion F to the substrate E. By introducing the gas in the direction toward the side, the reaction gas is pressed into the vicinity of the substrate E as described above, and is less likely to diffuse into the inert gas ejection portion F or the light transmission window H. As a result, the contamination of the inert gas ejection portion F, the light transmission window H and the like during the film forming operation can be suppressed to some extent.

【0005】[0005]

【発明が解決しようとする課題】ところでこのような従
来のガスフロー方式を利用した薄膜形成装置は、実験機
レベルの比較的短時間の成膜プロセスでは有効ではある
ものの、生産機レベルの装置で長時間成膜を行う場合に
は真空槽の内壁や真空槽内のその他の部分への反応正生
物による汚染が重要な問題として顕在化してくる。特
に、光CVD装置の場合には光透過窓への膜付着が完全
に防止できず、長時間にわたる連続成膜は不可能であ
る。例えば従来のガスフロー方式を利用した光CVD装
置でa−Si:H(水素化アモルファスシリコン)膜を
1時間成膜させた場合に光透過窓がどの程度汚染される
かを、成膜後と成膜前の基板上における光強度の比Ia
/Ibとして表すと、Ia/Ib=0.3 となり、光透過
窓が全く汚染されてない時のIa/Ib=1に比べて光
透過窓に相当量の反応生成物の付着していることが認め
られる。これは、スリット状の開口から噴出された第1
のガスすなわち反応ガスの第2のガスすなわち不活性ガ
スによる押え込み不十分であるためであり、すなわち不
活性ガスが不活性ガス噴出部の小さな孔を通って噴出す
る場合に噴出した直後に下向きすなわち基板に向う流れ
が崩れ、図4に示すように排気口へ向う方向をもち、そ
のため第1のガスが光透過窓側へ拡散するのを押え込む
働きが弱められる。また不活性ガス噴出部以外の真空槽
の上壁部分には反応ガスが充分存在しており、そしてこ
れらの反応ガスが不活性ガス噴出部から噴出される不活
性ガスに巻き込まれることも汚染要因の一つと考えられ
ている。
By the way, such a thin film forming apparatus using the conventional gas flow system is effective in a relatively short film forming process on an experimental machine level, but is a production apparatus level apparatus. When a film is formed for a long period of time, the contamination of the inner wall of the vacuum chamber and other parts of the vacuum chamber with reaction products becomes an important problem. In particular, in the case of a photo-CVD apparatus, it is impossible to completely prevent the film from adhering to the light transmission window, and continuous film formation for a long time is impossible. For example, how much the light transmission window is contaminated when an a-Si: H (hydrogenated amorphous silicon) film is formed for 1 hour by a conventional photo CVD apparatus using a gas flow method is described as follows. Ratio Ia of light intensity on substrate before film formation
When expressed as / Ib, Ia / Ib = 0.3, and it was confirmed that a considerable amount of reaction product was attached to the light transmission window compared to Ia / Ib = 1 when the light transmission window was not contaminated at all. Be done. This is the first ejected from the slit-shaped opening.
Of the reaction gas, that is, the reaction gas, is insufficiently suppressed by the second gas, that is, the inert gas, that is, when the inert gas spouts through the small holes of the inert gas spouting portion, it faces downward immediately after spouting, The flow toward the substrate collapses and has a direction toward the exhaust port as shown in FIG. 4, so that the function of suppressing the diffusion of the first gas toward the light transmission window side is weakened. In addition, there is sufficient reaction gas in the upper wall of the vacuum chamber other than the inert gas spouting part, and the fact that these reaction gases are entrained in the inert gas spouted from the inert gas spouting part is also a pollution factor. Is considered one of the.

【0006】そこで、本発明は、従来のガスフロー方式
に伴う問題点を解決して、反応成分を基板近傍のみに集
中させることにより反応壁や窓への反応生成物の付着汚
染を完全に防止し、再現性がありしかも連続成膜が可能
な薄膜形成装置を提供することを目的としている。
Therefore, the present invention solves the problems associated with the conventional gas flow system, and concentrates the reaction components only in the vicinity of the substrate, thereby completely preventing the contamination of the reaction products on the reaction walls and windows. However, it is an object of the present invention to provide a thin film forming apparatus which is reproducible and is capable of continuous film formation.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明によれば、密閉槽内に配設された基板の表
面にほぼ平行に第1のガス流をシート状に導入し、また
上記基板の表面にこの表面に垂直な方向から第2のガス
流を導入して、上記基板の表面の近傍に上記第1のガス
流を層流状態に保持するようにした薄膜形成装置におい
て、基板の表面に対向した位置に第2のガス流を導入す
るための多数の小孔をもつガス噴出部材を設け、このガ
ス噴出部材下に、ガス噴出部材における各小孔の軸線と
平行にのびしかも互いに間隔をおいて配置した多数のフ
ローガードプレートを備えたフローガード部材を設けた
ことを特徴としている。フローガード部材は、第1のガ
ス流の方向に沿って高さを漸減させて構成され得る。
In order to achieve the above object, according to the present invention, a first gas flow is introduced in a sheet shape substantially parallel to the surface of a substrate arranged in a closed tank. A thin film forming apparatus which introduces a second gas flow into the surface of the substrate from a direction perpendicular to the surface to maintain the first gas flow in a laminar flow state in the vicinity of the surface of the substrate. In the above, a gas ejection member having a large number of small holes for introducing the second gas flow is provided at a position facing the surface of the substrate, and under the gas ejection member, parallel to the axis of each small hole in the gas ejection member. The present invention is characterized in that a flow guard member provided with a large number of flow guard plates which extend at a distance from each other is provided. The flow guard member may be configured to have a gradually decreasing height along the direction of the first gas flow.

【0008】[0008]

【作用】このように構成した本発明の薄膜形成装置にお
いては、第2のガスのガス噴出部材下に、ガス噴出部材
における各小孔の軸線と平行にのびしかも互いに間隔を
おいて配置した多数のフローガードプレートを備えたフ
ローガード部材を設けたことにより、第2のガスのガス
噴出部材から噴出された第2のガスはフローガード部材
のフローガードプレートによって基板へ向って案内され
ると共に基板へ向う強い流れが形成され、しかもこのフ
ローガード部材は第2のガス流中に第1のガスが回り込
んでくるのを防ぐように作用する。それにより第1のガ
スの乱流の発生や拡散は有効に阻止され、真空槽の内壁
や覗き窓、光透過窓への反応生成物の付着を完全に防止
することができる。
In the thin film forming apparatus of the present invention thus constructed, a large number of gas ejecting members for the second gas extend parallel to the axis of each small hole in the gas ejecting member and are spaced apart from each other. By providing the flow guard member including the flow guard plate of the second gas, the second gas ejected from the gas ejecting member of the second gas is guided toward the substrate by the flow guard plate of the flow guard member and the substrate. A strong flow is created towards the flow path, and this flow guard member acts to prevent the first gas from wrapping around in the second gas flow. As a result, the generation and diffusion of the turbulent flow of the first gas can be effectively prevented, and the reaction products can be completely prevented from adhering to the inner wall of the vacuum chamber, the observation window, and the light transmission window.

【0009】[0009]

【実施例】以下、添付図面の図1〜図3を参照して本発
明の実施例について説明する。図1には、本発明を光C
VD装置に適用した実施例が示されている。図示光CV
D装置において、1は真空槽すなわち反応槽で、その内
部には温度可変のサセプタ2が設けられ、このサセプタ
2上に膜成長の行われる基板3が装着されている。真空
槽1の側壁には第1のガスすなわち反応性ガスを導入す
るための薄いスリット状の開口4をもつノズル5が設け
られ、このノズル5は外部導管6を介して図示してない
第1のガスの供給源に結合されている。ノズル5はAl合
金から成り、そしてサセプタ2上の基板3の表面上にほ
ぼ平行に第1のガスを導入できるように位置決めされて
いる。尚、光CVD法でしばしば用いられる水銀増感法
の場合にはノズル5を構成しているAl合金が水銀と反応
してダストを生じさせる可能性があるので、このような
反応を防止するためにノズル5には陽極酸化被膜処理が
施され得る。また真空槽1の上壁には、基板3に対向し
た位置に合成石英から成る光透過窓7が設けられ、その
外側には紫外光または真空紫外光を放射する光源8と光
源8からの紫外光または真空紫外光を反射させて光透過
窓7を介して基板3上へ指向させ、光の損失を防ぐ反射
板9とを収容した光源室10が取付けられている。さら
に、光透過窓7の内側表面上には、この光透過窓7の内
側表面との間に若干隙間をあけて、合成石英から成り、
多数の小さなガス噴出孔を備えた第2のガス導入用の噴
出部11が設けられ、この噴出部11と光透過窓7の内側表
面との間の隙間は真空槽1の上壁の外側に取付けられた
導管12を介して第2のガスである不活性ガスの供給源
(図示してない)に結合されている。不活性ガス噴出部
11の下側にはフローガード部材13が取付けられている。
このフローガード部材13はフローガード枠体14内に薄い
合成石英板から成るフローガードプレート15を一定の間
隔をおいて取付けて構成されており、各フローガードプ
レート15はノズル5からの反応ガスの流れ方向を横切る
方向にのびしかも不活性ガス噴出部11から噴出される不
活性ガスをサセプタ2上の基板3に向って下向きに指向
させるように方向決めされている。従ってフローガード
部材13における各フローガードプレート15の高さは真空
槽1の内寸等に応じて任意に設定することができる。ま
たフローガード部材13は不活性ガス噴出部11と共に真空
槽1の上壁の内側に固定されている。さらにまた、真空
槽1の底壁の一端近くには図示したように排気口16が設
けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 illustrates the present invention as a light C
An example applied to a VD device is shown. Illustrated light CV
In the apparatus D, 1 is a vacuum tank, that is, a reaction tank, in which a susceptor 2 having a variable temperature is provided, and a substrate 3 on which a film is grown is mounted on the susceptor 2. A nozzle 5 having a thin slit-shaped opening 4 for introducing a first gas, that is, a reactive gas, is provided on a side wall of the vacuum chamber 1, and the nozzle 5 is not shown via an external conduit 6 and is not shown. Is coupled to a gas source. The nozzle 5 is made of Al alloy and is positioned so that the first gas can be introduced substantially parallel to the surface of the substrate 3 on the susceptor 2. In the case of the mercury sensitization method, which is often used in the photo-CVD method, the Al alloy forming the nozzle 5 may react with mercury to generate dust. Moreover, the nozzle 5 may be subjected to an anodic oxide coating treatment. A light transmission window 7 made of synthetic quartz is provided on the upper wall of the vacuum chamber 1 at a position facing the substrate 3, and a light source 8 for emitting ultraviolet light or vacuum ultraviolet light and an ultraviolet light from the light source 8 are provided outside the light transmission window 7. A light source chamber 10 that accommodates a light or vacuum ultraviolet light and directs it onto the substrate 3 through the light transmission window 7 to prevent light loss is installed. Further, on the inner surface of the light transmitting window 7, a slight gap is formed between the inner surface of the light transmitting window 7 and the inner surface of the light transmitting window 7, and synthetic quartz is used.
A second gas-introducing jet portion 11 having a large number of small gas jet holes is provided, and a gap between the jet portion 11 and the inner surface of the light transmitting window 7 is outside the upper wall of the vacuum chamber 1. It is connected via an attached conduit 12 to a source of a second gas, an inert gas (not shown). Inert gas spouting part
A flow guard member 13 is attached to the lower side of 11.
The flow guard member 13 is configured by mounting a flow guard plate 15 made of a thin synthetic quartz plate in a flow guard frame body 14 at regular intervals, and each flow guard plate 15 is provided with a reaction gas from the nozzle 5. It is oriented so as to extend in a direction transverse to the flow direction and direct the inert gas ejected from the inert gas ejecting portion 11 downward toward the substrate 3 on the susceptor 2. Therefore, the height of each flow guard plate 15 in the flow guard member 13 can be arbitrarily set according to the inner size of the vacuum chamber 1 and the like. The flow guard member 13 is fixed to the inside of the upper wall of the vacuum chamber 1 together with the inert gas ejection portion 11. Furthermore, an exhaust port 16 is provided near one end of the bottom wall of the vacuum chamber 1 as shown in the figure.

【0010】このように構成した図示装置の動作につい
て以下説明する。反応ガスは外部導管6からノズル5の
薄いスリット状の開口4を介して基板3の表面にほぼ平
行にシート状に導入される。このシート状の反応ガスの
流れに対して不活性ガス噴出部11から不活性ガスが下向
きに導入される。不活性ガスの下向きの流れは、フロー
ガード部材13のフローガード枠体14及び各フローガード
プレート15により下向きに基板3に向って案内され、フ
ローガード部材13によって指向された不活性ガスの下向
きの流れにより、ノズル5からのシート状の反応ガスの
流れは基板3の近傍に有効に押えられ、従って導入され
た反応ガスの乱流の発生や拡散は有効に抑制され、その
結果、光透過窓7及び不活性ガス噴出部11の表面への反
応生成物の付着は完全に防ぐことができ、長時間の成膜
動作においても光透過窓7の失透なしに装置を連続して
運転することができる。
The operation of the illustrated apparatus thus configured will be described below. The reaction gas is introduced from the external conduit 6 through the thin slit-shaped opening 4 of the nozzle 5 into a sheet shape substantially parallel to the surface of the substrate 3. The inert gas is introduced downward from the inert gas ejection portion 11 with respect to the flow of the sheet-like reaction gas. The downward flow of the inert gas is guided downward by the flow guard frame body 14 of the flow guard member 13 and each flow guard plate 15 toward the substrate 3, and the downward flow of the inert gas directed by the flow guard member 13 is directed. Due to the flow, the flow of the sheet-like reaction gas from the nozzle 5 is effectively suppressed in the vicinity of the substrate 3, so that the generation and diffusion of the introduced reaction gas turbulence is effectively suppressed, and as a result, the light transmission window 7. It is possible to completely prevent the reaction products from adhering to the surfaces of the gas ejecting part 7 and the inert gas jetting part 11, and to continuously operate the apparatus without devitrification of the light transmitting window 7 even during a long-time film forming operation. You can

【0011】図2には、SiH4 の光分解によりa−S
i:H膜を一時間成膜した場合の成膜前と成膜後の基板
上における光強度の比Ia/Ibがどの様に変化したか
を従来技術による装置と比較して示す。 従来技術によ
る装置では(a)で示すように、Ia/Ibが〜0.3 程
度であるのに対して、不活性ガス噴出部11の下側にフロ
ーガード枠体14のみを配置した場合には(b)で示すよ
うに、Ia/Ibは〜0.8 となり、さらに、フローガー
ド枠体14内にフローガードプレート15を配置すると、
(c)で示すようにIa/Ib=1となり、光透過窓7
及び不活性ガス噴出部11の表面に反応生成物が全く付着
してないことが認められる。また光透過窓7への反応生
成物の付着の度合いは基板3と光透過窓7との間隔hと
不活性ガス噴出部11から吹き出す不活性ガスの流量Qに
依存し、例えば不活性ガスの流量Qが3.0 slm の場合、
hは>75mmであることが要求される。
In FIG. 2, aS is obtained by photodecomposition of SiH 4 .
The change in the light intensity ratio Ia / Ib on the substrate before and after the film formation of the i: H film for one hour is shown in comparison with the conventional device. In the device according to the conventional technique, as shown in (a), Ia / Ib is about 0.3, whereas when only the flow guard frame 14 is arranged below the inert gas jetting portion 11, As shown in b), Ia / Ib is about 0.8, and when the flow guard plate 15 is arranged in the flow guard frame body 14,
As shown in (c), Ia / Ib = 1, and the light transmission window 7
It is also confirmed that the reaction product does not adhere to the surface of the inert gas jetting portion 11 at all. The degree of adhesion of the reaction product to the light transmitting window 7 depends on the distance h between the substrate 3 and the light transmitting window 7 and the flow rate Q of the inert gas blown out from the inert gas jetting portion 11. When the flow rate Q is 3.0 slm,
h is required to be> 75 mm.

【0012】図3にはフローガード部材の変形例が示さ
れている。図1に示す装置では、フローガード部材は不
活性ガスの吹き出し領域全域にわたって一様な高さに構
成されているが、図3に示す例では、真空槽に導入され
るシート状の反応ガスの流れ方向に沿って傾斜した、す
なわち高さが徐々に低くなったフローガード枠体17内に
高さの異なる多数のフローガードプレート18をフローガ
ード枠体17の傾斜に沿って順次配置した構成となってい
る。このように構成することにより、不活性ガスの流量
やノズルから噴出される反応ガスの流量の調節による膜
厚分布の制御に加えて、より直接的に膜厚分布を制御す
ることが可能となる。
FIG. 3 shows a modification of the flow guard member. In the apparatus shown in FIG. 1, the flow guard member is formed to have a uniform height over the entire area of the inert gas blowing region, but in the example shown in FIG. A configuration in which a large number of flow guard plates 18 having different heights are sequentially arranged along the inclination of the flow guard frame body 17 in the flow guard frame body 17 which is inclined along the flow direction, that is, the height of which gradually decreases. Is becoming With this configuration, in addition to controlling the film thickness distribution by adjusting the flow rate of the inert gas and the flow rate of the reaction gas ejected from the nozzle, it is possible to control the film thickness distribution more directly. ..

【0013】ところで、図示実施例では、光源は大気中
に設置されているが、本発明により光透過窓への反応生
成物の付着を完全に防止できるため、光源を真空槽内に
設けることもできる。また図示装置は光CVD装置に関
するものであるが、本発明は光CVD装置に限定される
ものではなく、例えば熱CVD装置やプラズマCVD装
置、ドライエッチング装置等の他の成膜装置等に適用し
て、反応壁や覗き窓への膜汚染を防ぐようにすることが
できる。
In the illustrated embodiment, the light source is installed in the atmosphere, but since the reaction product can be completely prevented from adhering to the light transmitting window according to the present invention, the light source may be installed in the vacuum chamber. it can. Further, although the illustrated apparatus relates to an optical CVD apparatus, the present invention is not limited to the optical CVD apparatus, and is applied to other film forming apparatuses such as a thermal CVD apparatus, a plasma CVD apparatus, a dry etching apparatus and the like. Therefore, it is possible to prevent film contamination on the reaction wall and the viewing window.

【0014】[0014]

【発明の効果】以上説明してきたように、本発明によれ
ば、密閉槽内に配設された基板の表面にほぼ平行にシー
ト状に導入される第1のガス流を基板の表面の近傍に層
流状態に保持するために基板の表面に垂直な方向から導
入される第2のガス流に対して、基板へ向う方向の流れ
を付けさせるフローガード部材を設けているので、第2
のガスの噴出していない密閉槽内に滞留している第1の
ガスの回り込みを防止することができ、槽壁や光透過
窓、覗き窓等への望ましくない膜付着汚染を防止するこ
とができる。その結果、膜質の向上とダストパーティク
ルの低減が可能となるだけでなく、メンテナンスなしで
長時間連続して成膜動作が可能となり、半導体デバイス
や電子デバイスの製造プロセスに適用することができ
る。さらに第1ガス及び第2ガスの流量の調節による膜
厚分布の制御に加えて、フローガード部材により、より
直接的に膜厚分布を制御することができるようになる。
As described above, according to the present invention, the first gas flow introduced in a sheet shape substantially parallel to the surface of the substrate arranged in the closed tank is provided near the surface of the substrate. The second gas flow introduced from the direction perpendicular to the surface of the substrate for maintaining the laminar flow state is provided with the flow guard member for directing the flow in the direction toward the substrate.
It is possible to prevent the first gas staying in the closed tank in which the gas is not ejected from flowing around, and to prevent undesired film-adhering contamination on the tank wall, the light transmission window, the peep window, etc. it can. As a result, not only the film quality can be improved and dust particles can be reduced, but also the film forming operation can be continuously performed for a long time without maintenance, and the present invention can be applied to a manufacturing process of a semiconductor device or an electronic device. Further, in addition to the control of the film thickness distribution by adjusting the flow rates of the first gas and the second gas, the flow guard member can more directly control the film thickness distribution.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例による光CVD装置の概略
断面図。
FIG. 1 is a schematic sectional view of a photo-CVD apparatus according to an embodiment of the present invention.

【図2】 図1の装置の作用効果を例示するグラフ。FIG. 2 is a graph illustrating an operation effect of the device of FIG.

【図3】 図1の装置に使用できるフローガード部材の
変形例を示す斜視図。
3 is a perspective view showing a modified example of a flow guard member that can be used in the apparatus of FIG.

【図4】 従来のガスフロー方式を用いたCVD装置の
概略断面図。
FIG. 4 is a schematic sectional view of a conventional CVD apparatus using a gas flow method.

【図5】 従来のガスフロー方式を用いた光CVD装置
の概略断面図。
FIG. 5 is a schematic sectional view of a conventional photo-CVD apparatus using a gas flow method.

【符号の説明】[Explanation of symbols]

1:真空槽 3:基板 4:薄いスリット状の開口 5:ノズル 11:第2のガス導入用の噴出部 13:フローガード部材 15:フローガードプレート 1: Vacuum tank 3: Substrate 4: Thin slit-like opening 5: Nozzle 11: Second gas introduction spout 13: Flow guard member 15: Flow guard plate

フロントページの続き (72)発明者 鈴木 章敏 神奈川県茅ケ崎市萩園2500番地 日本真空 技術株式会社内 (72)発明者 中山 泉 神奈川県茅ケ崎市萩園2500番地 日本真空 技術株式会社内Front page continued (72) Inventor Akitoshi Suzuki 2500 Hagien, Chigasaki City, Kanagawa Prefecture, Japan Vacuum Technology Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】密閉槽内に配設された基板の表面にほぼ平
行に第1のガス流をシート状に導入し、また上記基板の
表面にこの表面に垂直な方向から第2のガス流を導入し
て、上記基板の表面の近傍に上記第1のガス流を層流状
態に保持するようにした薄膜形成装置において、基板の
表面に対向した位置に第2のガス流を導入するための多
数の小孔をもつガス噴出部材を設け、このガス噴出部材
下に、ガス噴出部材における各小孔の軸線と平行にのび
しかも互いに間隔をおいて配置した多数のフローガード
プレートを備えたフローガード部材を設けたことを特徴
とする薄膜形成装置。
1. A first gas flow is introduced in a sheet shape substantially parallel to the surface of a substrate disposed in a sealed tank, and a second gas flow is introduced onto the surface of the substrate from a direction perpendicular to the surface. In order to introduce the second gas flow to the position facing the surface of the substrate in the thin film forming apparatus in which the first gas flow is maintained in the laminar state near the surface of the substrate by introducing A gas ejecting member having a large number of small holes is provided, and a flow is provided below the gas ejecting member with a large number of flow guard plates extending parallel to the axis of each small hole in the gas ejecting member and spaced from each other. A thin film forming apparatus comprising a guard member.
【請求項2】フローガード部材が第1のガス流の方向に
沿って高さを漸減させて構成されている請求項1に記載
の薄膜形成装置。
2. The thin film forming apparatus according to claim 1, wherein the flow guard member is configured such that its height is gradually reduced along the direction of the first gas flow.
JP03084043A 1991-04-16 1991-04-16 Thin film forming equipment Expired - Lifetime JP3112492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03084043A JP3112492B2 (en) 1991-04-16 1991-04-16 Thin film forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03084043A JP3112492B2 (en) 1991-04-16 1991-04-16 Thin film forming equipment

Publications (2)

Publication Number Publication Date
JPH05345978A true JPH05345978A (en) 1993-12-27
JP3112492B2 JP3112492B2 (en) 2000-11-27

Family

ID=13819487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03084043A Expired - Lifetime JP3112492B2 (en) 1991-04-16 1991-04-16 Thin film forming equipment

Country Status (1)

Country Link
JP (1) JP3112492B2 (en)

Also Published As

Publication number Publication date
JP3112492B2 (en) 2000-11-27

Similar Documents

Publication Publication Date Title
KR940009945B1 (en) Cvd apparatus
KR20030063380A (en) Method and device for atmospheric plasma processing
JPH07283149A (en) Thin film vapor growth device
JP7105187B2 (en) LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD
JPH05345978A (en) Device for forming thin film
JP2010042940A (en) Apparatus and method for producing glass parent material
JP3224238B2 (en) Thin film forming equipment
JP3112520B2 (en) Optical CVD equipment
JP4327319B2 (en) Hinagata shower head and vacuum processing apparatus using the shower head
JPS6328868A (en) Cvd method
JPH0578151A (en) Nozzle for forming film on glass
JPH0610352B2 (en) CVD equipment
JPS61225819A (en) Laser cvd apparatus
JPH05198512A (en) Optical cvd device
JPS637619A (en) Gas flow method of cvd apparatus
JPH1055968A (en) Semiconductor treating device
JPH06120146A (en) Film-forming processing and apparatus therefor
JP2000260730A (en) Laser-annealing device
JPH11290748A (en) Curtain coater
JPH07321057A (en) Film-forming device for semiconductor device
JPH07238379A (en) Cvd method
JP7195778B2 (en) Deposition apparatus, cleaning gas nozzle, cleaning method
JP2004152823A (en) Nozzle for laser annealing device and laser annealing device using the same
JPH02283696A (en) Chemical gaseous phase growth device
JPH04320025A (en) Chemical vapor growth apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090922

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110922

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110922