JPH05175039A - Cutout anisotropic cylindrical magnet - Google Patents

Cutout anisotropic cylindrical magnet

Info

Publication number
JPH05175039A
JPH05175039A JP3344956A JP34495691A JPH05175039A JP H05175039 A JPH05175039 A JP H05175039A JP 3344956 A JP3344956 A JP 3344956A JP 34495691 A JP34495691 A JP 34495691A JP H05175039 A JPH05175039 A JP H05175039A
Authority
JP
Japan
Prior art keywords
magnetic
cylindrical magnet
magnet
orientation
cogging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3344956A
Other languages
Japanese (ja)
Other versions
JP2769062B2 (en
Inventor
Satoru Nakatsuka
哲 中塚
Itsuro Tanaka
逸郎 田中
Koichi Nushishiro
晃一 主代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP34495691A priority Critical patent/JP2769062B2/en
Publication of JPH05175039A publication Critical patent/JPH05175039A/en
Application granted granted Critical
Publication of JP2769062B2 publication Critical patent/JP2769062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To effectively alleviate change of the magnetic density at the gap of the boundaries of stator magnetic field and thereby prevent generation of cogging by forming cutout portions to non-effectuating surface regions including a part of the effectuating surface and gradually reducing the area of the cutout part at the effectuating surface at least in its circumferential direction. CONSTITUTION:While a synthetic resin magnet material supplied into a cylindrical cavity 1 is still in the soft condition, a magnetic field is applied to this magnet material to orient the axes of easy magnetization of magnetic particles in the magnet material along the direction of the line of magnetic force. Thereby, a cylindrical magnet converges both in the sections in the longitudinal direction and in the sections in the lateral direction. Even in this case, the cutout portions in which the areas thereof are gradually reduced in the one circumferential direction are provided within the cavity 1. Accordingly, generation of cogging can be prevented by effectively alleviating change of magnetic flux density at the gap of the boundaries of stator magnetic field and moreover torque can further be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、モーターの永久磁石
型ステーターやアウターローター等の用途に供して好適
な切欠き異方性円筒状磁石に関し、特にコギング及びそ
れに起因した振動や騒音さらには回転むらの発生を効果
的に防止しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a notched anisotropic cylindrical magnet suitable for use in a permanent magnet type stator of a motor, an outer rotor, etc., and particularly to cogging and vibration and noise caused by the cogging, and rotation. This is to effectively prevent the occurrence of unevenness.

【0002】[0002]

【従来の技術】従来、モーターに使用される比較的表面
磁界の大きな2極円筒状磁石としては、磁粉粒子の磁化
容易軸の配向方向が、横断面においては図1(a)、一
方長手方向断面においては図1(イ)に示す方位になる
ものが用いられてきた。同図中、細線は磁粉粒子の磁化
容易軸の配向方向であり、図1(a)に示される配向は
通常、ラジアル型配向と呼ばれている。
2. Description of the Related Art Conventionally, as a two-pole cylindrical magnet used in a motor, which has a relatively large surface magnetic field, the orientation direction of the easy axis of magnetization of magnetic powder particles is as shown in FIG. A cross section having an orientation shown in FIG. 1A has been used. In the figure, the thin line is the orientation direction of the easy axis of magnetization of the magnetic powder particles, and the orientation shown in FIG. 1A is usually called radial orientation.

【0003】ところで、このラジアル型配向になる2極
円筒状磁石をステーターとして利用した場合、回転する
ローターの磁極面が、ステーターが形成する磁界を横切
るときに、その境界におけるギャップ磁束密度が大きく
変化することから、コギングと呼ばれる弊害が生じてい
た。この点については、2極円筒状磁石をアウターロー
ターとして用いた場合も同様で、やはり内側固定ステー
ターとの間で磁束密度の変化量が大きいことから、コギ
ングの発生が避けられなかった。かかるコギングは、微
妙な振動ひいては騒音や回転むらの発生を招き好ましく
ない。
By the way, when the two-pole cylindrical magnet having the radial orientation is used as the stator, when the magnetic pole surface of the rotating rotor crosses the magnetic field formed by the stator, the gap magnetic flux density at the boundary changes greatly. Therefore, an adverse effect called cogging has occurred. Regarding this point, the same applies to the case where a two-pole cylindrical magnet is used as the outer rotor, and since the change amount of the magnetic flux density with the inner fixed stator is also large, the occurrence of cogging cannot be avoided. Such cogging is not preferable because it causes delicate vibrations, resulting in noise and uneven rotation.

【0004】このため従来、とくにコギングが問題とな
る用途に関しては、例外的に、長尺円筒磁石とする一方
で磁粉の配向度を低めたり、又は短尺磁石としたり、さ
らにプラマグ磁石については磁粉の含有率を低減したり
して、磁石特性そのものを低下させていた。しかしなが
らかような対処の仕方では、コギングについては軽減で
きるにしても、表面磁界の絶対値が小さくなることか
ら、基本特性であるトルクの低下を招くという問題があ
った。
For this reason, conventionally, particularly for applications in which cogging is a problem, exceptionally, a long cylindrical magnet is used while the orientation degree of magnetic powder is lowered, or a short magnet is used. The magnetic properties themselves have been deteriorated by reducing the content rate. However, with such a method of coping, although the cogging can be reduced, the absolute value of the surface magnetic field becomes small, which causes a problem that the torque, which is a basic characteristic, is reduced.

【0005】またコギング防止に関しては、磁石横断面
における磁粉粒子の磁化容易軸の配向方向が、図1
(b)に示すようないわゆるアキシャル型配向になる磁
石の方が、ラジアル型配向磁石よりも有利ではあるが、
やはりトルクの低下が避け得なかった。
Regarding cogging prevention, the orientation direction of the easy axis of magnetization of the magnetic powder particles in the cross section of the magnet is shown in FIG.
The so-called axial orientation magnet as shown in (b) is more advantageous than the radial orientation magnet,
After all, a decrease in torque was unavoidable.

【0006】その他、コギング対策としては、図2
(b)に示すように、ローターに対する着磁を軸心に対
して斜めに行ういわゆるスキュー着磁が知られている。
このスキュー着磁ローターによれば、ローターの回転に
伴うローター磁極面とステーターの作用面との交差面積
が徐々に増大することから、コギングの発生は効果的に
抑制することができるけれども、かかるローターを製造
するには通常の場合に比べて工程が煩雑となり、コスト
高となるところに問題を残していた。
Other measures against cogging are shown in FIG.
As shown in (b), so-called skew magnetization is known in which the rotor is magnetized obliquely to the axis.
According to this skew-magnetized rotor, the crossing area between the rotor magnetic pole surface and the working surface of the stator gradually increases as the rotor rotates, so that the occurrence of cogging can be effectively suppressed. However, the manufacturing process of the above method is more complicated than in the usual case, and there is a problem in that the cost is high.

【0007】また、従来のモーター用ステーターの長手
方向における実質作用幅は、図3に記号aで示すとおり
であって、軸受け9、ワッシャー10、板ばね11及びブラ
シ12等の存在のため、ローターの磁極幅と同程度の狭い
ものでしかなかった。このようにステーターの幅を十分
に活用してはいなかったため、得られるトルクも磁石の
幅を有効に利用したものとは言えなかった。なお図中番
号13は円筒状磁石、14はローター磁極、15はローター励
磁コイル、16はシャフト、17は強磁性体ケースである。
Further, the substantial working width in the longitudinal direction of the conventional motor stator is as shown by symbol a in FIG. 3, and because of the existence of the bearing 9, the washer 10, the leaf spring 11, the brush 12, etc., the rotor. It was only as narrow as the magnetic pole width of. Since the width of the stator was not fully utilized as described above, the obtained torque could not be said to be an effective use of the width of the magnet. In the figure, numeral 13 is a cylindrical magnet, 14 is a rotor magnetic pole, 15 is a rotor exciting coil, 16 is a shaft, and 17 is a ferromagnetic case.

【0008】[0008]

【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決するもので、ローターの回転に伴うギャ
ップ磁束密度の変化を効果的に緩和してコギングの発生
を防止し、さらには有効利用が図られていなかった円筒
状磁石の長手方向両端部を有効に活用することにより、
トルクの一層の向上を実現した2極円筒状磁石を提案す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above problems and effectively alleviates the change in the gap magnetic flux density due to the rotation of the rotor to prevent the occurrence of cogging. By effectively utilizing both longitudinal ends of the cylindrical magnet that has not been effectively utilized,
It is an object of the present invention to propose a two-pole cylindrical magnet that realizes further improvement in torque.

【0009】[0009]

【課題を解決するための手段】すなわちこの発明は、横
断面がO型形状になる円筒の内周面又は外周面のうち、
軸心を挟んで対向する2領域を作用面とする円筒状磁石
であって、作用面の一部を含む非作用面領域に切欠きを
有し、該作用面における切欠き形状につき、その面積
が、少なくとも一方の円周方向において漸次減少するも
のである切欠き異方性円筒状磁石(第1発明)である。
That is, according to the present invention, among the inner peripheral surface or the outer peripheral surface of a cylinder whose cross section is O-shaped,
A cylindrical magnet having two working areas facing each other with an axis in between, and having a notch in a non-working surface area including a part of the working surface, and the area of the notch shape in the working surface. Is a notched anisotropic cylindrical magnet (first invention) that gradually decreases in at least one circumferential direction.

【0010】またこの発明は、第1発明において、円筒
状磁石の作用面及び軸心を含む長手方向断面における磁
粉粒子の磁化容易軸が、作用面の中央域に集束配向して
なる切欠き異方性円筒状磁石(第2発明)である。
According to the first aspect of the present invention, in the first aspect of the invention, the easy axis of magnetization of the magnetic powder particles in the longitudinal cross section including the working surface and the axis of the cylindrical magnet is focused and oriented in the central region of the working surface. It is a cylindrical cylindrical magnet (second invention).

【0011】以下、この発明を具体的に説明する。図4
(a)〜(e)に、この発明に従う切欠き異方性円筒状
磁石の好適例を斜視面で示す。また図2(a)には、か
かる切欠き異方性円筒状磁石をステーターとして組み込
んだモーターを図解する。円筒状磁石に図示したような
切欠きを付与することにより、ローターにスキューを付
与しなくても、ローターの回転に伴うステーター磁石と
ローター磁極面との間のギャップ磁束密度の変化量を軽
減することができるので、ローターをスキュー着磁する
等の煩雑な手間を必要とすることなしに、コギングの発
生を効果的に防止することができるのである。
The present invention will be described in detail below. Figure 4
(A) to (e) show perspective views of preferred examples of the notched anisotropic cylindrical magnet according to the present invention. Further, FIG. 2A illustrates a motor incorporating such a notched anisotropic cylindrical magnet as a stator. By providing the notch as shown in the figure to the cylindrical magnet, the amount of change in the magnetic flux density of the gap between the stator magnet and the rotor magnetic pole face due to the rotation of the rotor is reduced without skewing the rotor. Therefore, it is possible to effectively prevent the occurrence of cogging without requiring a troublesome work such as skew-magnetizing the rotor.

【0012】またこの発明では、円筒状磁石の長手方向
断面における磁粉粒子の磁化容易軸を、作用面中央域の
実質的作用面に集束させるに集束配向させることによっ
てトルクの一層の向上を図ることができる。図1
(ロ),(ハ)に、この発明に従い磁粉粒子の磁化容易
軸を、磁石中央域の実質的作用面に集束させた例を示
す。同図(ロ)は、外周面から中央域に直線的に集束さ
せた場合(単純集束配向)、また同図(ハ)は、外側面
中央部及び両端面から実質的作用面に集束させた場合
(両端部側面集束配向)である。
Further, in the present invention, the axis of easy magnetization of the magnetic powder particles in the longitudinal cross section of the cylindrical magnet is focused and oriented so as to be focused on the substantial working surface in the central area of the working surface to further improve the torque. You can Figure 1
(B) and (C) show examples in which the easy axis of magnetization of the magnetic powder particles is focused on the substantial working surface in the central region of the magnet according to the present invention. In the same figure (b), when the light is focused linearly from the outer peripheral surface to the central area (simple focusing orientation), in the same figure (c), the central portion of the outer surface and both end surfaces are focused on the substantially working surface. This is the case (side-end side-face focusing orientation).

【0013】図5及び図6に、この発明に従う円筒状磁
石を直流モーターのステーターとして組み込んだ状態を
示す。図5,6と従来モーターを組み込んだ前掲図3と
を対比すれば明白なように、実質的な作用面に対し、図
1(イ)に示したような従来磁石では無駄な磁束が存在
するのに対し、図1(ロ),(ハ)に示したようなこの
発明磁石では全ての磁束が実質的作用面に集束して配向
しており、従ってアキシャル型配向の場合に比べてより
高いギャップ磁束密度が得られ、ひいてはトルクの向上
を望み得るのである。
5 and 6 show a state in which the cylindrical magnet according to the present invention is incorporated as a stator of a DC motor. As is clear from comparing FIGS. 5 and 6 with FIG. 3 in which the conventional motor is incorporated, there is a wasteful magnetic flux in the conventional magnet as shown in FIG. On the other hand, in the magnet of the present invention as shown in FIGS. 1B and 1C, all the magnetic fluxes are focused and oriented on the substantially working surface, and therefore higher than those in the axial orientation. It is possible to obtain the gap magnetic flux density, and thus to improve the torque.

【0014】さらにより一層のトルクの向上を図るに
は、図1(e),(f)に示すように、磁石横断面の作
用域における磁粉粒子の配向方向を上述したような単純
集束配向又は両端部側面集束配向とすれば良い。
In order to further improve the torque, as shown in FIGS. 1 (e) and 1 (f), the orientation direction of the magnetic powder particles in the working area of the magnet cross section is set to the simple focusing orientation as described above or It suffices that the both ends are laterally focused.

【0015】なお、切欠きを付与する際に欠け割れがな
く、歩留りの向上という点では、高温焼成が必要な焼結
磁石よりも、プラスチック磁石の方が有利である。
Plastic magnets are more advantageous than sintered magnets that require high-temperature firing, because they do not have cracks when a notch is formed and yield is improved.

【0016】[0016]

【作用】この発明の磁石材料としては、焼結磁石及び合
成樹脂磁石いずれもが利用できる。たとえば焼結磁石及
び合成樹脂磁石における磁粉としては、フェライト系、
アルニコ系、サマリウム−コバルト系、ネオジウム−鉄
−ボロン系など既に知られたものいずれもが使用でき
る。また磁粉粒子の平均粒径についても、既に知られた
範囲で使用することができる。たとえばフェライト系で
は 1.5μm 、希土類系では10〜50μm が一般的である。
The magnet material of the present invention may be either a sintered magnet or a synthetic resin magnet. For example, as a magnetic powder in a sintered magnet and a synthetic resin magnet, a ferrite-based material,
Alnico-based, samarium-cobalt-based, neodymium-iron-boron-based, or any other known material can be used. Also, the average particle size of the magnetic powder particles can be used within a known range. For example, it is generally 1.5 μm for ferrite type and 10 to 50 μm for rare earth type.

【0017】また合成樹脂についても従来公知のものが
使用できる。たとえばポリアミド12、ポリアミド6など
のポリアミド系合成樹脂や、ポリ塩化ビニル、その酢酸
ビニル共重合体、MMA,PS,PPS,PE,PP等
の単独又は共重合したビニル系合成樹脂や、ウレタン,
シリコーン,ポリカーボネート,PBT,PET,PE
EK,CPE,ハイパロン,ネオプレン,SBR,NB
R等の合成樹脂、又はエポキシ系、フェノール系等の熱
硬化合成樹脂が使用できる。さらに磁粉とバインダーで
ある合成樹脂の配合比率は、用途にもよるが一般的には
磁粉:40〜70 vol%とすることが望ましい。なおその他
にも、従来から常用される可塑剤や滑剤、抗酸化剤、表
面処理剤などを目的に応じて適量使用できるのはいうま
でもない。
As the synthetic resin, a conventionally known one can be used. For example, polyamide-based synthetic resins such as polyamide 12 and polyamide 6, polyvinyl chloride, vinyl acetate copolymer thereof, homo- or copolymerized vinyl-based synthetic resins such as MMA, PS, PPS, PE and PP, urethane,
Silicone, Polycarbonate, PBT, PET, PE
EK, CPE, Hypalon, Neoprene, SBR, NB
A synthetic resin such as R or a thermosetting synthetic resin such as an epoxy resin or a phenol resin can be used. Further, the compounding ratio of the magnetic powder and the synthetic resin as the binder depends on the application, but it is generally desirable to set the magnetic powder to 40 to 70 vol%. In addition, it goes without saying that appropriate amounts of conventional plasticizers, lubricants, antioxidants, surface treatment agents and the like can be used according to the purpose.

【0018】次に、この発明に係る磁場配向成形金型の
磁気回路装置について説明する。図7〜11及び図12〜17
にそれぞれ、円筒状磁石の製造に用いて好適な射出成形
金型の磁気回路装置の好適例を模式で示す。図7〜11は
製品の長手方向断面であり、図7にアキシャル型配向、
図8にラジアル型配向、図9にアキシャル型の単純集束
配向、図10にラジアル型の単純集束配向、そして図11に
アキシャル型の両端部側面集束配向を示す。また図12〜
17は、横方向断面であり、図12及び13にアキシャル型配
向、図14及び17にラジアル型配向、図15に単純集束配
向、そして図16に両端部側面集束配向を示す。なお図中
番号1はダイ2に設けたキャビティ、3は主極、4は中
間磁極、5は対極、6はヨーク、7は励磁コイル、8は
補助磁極である。
Next, the magnetic circuit device of the magnetic field orientation molding die according to the present invention will be described. 7 to 11 and 12 to 17
Each of them schematically shows a preferred example of a magnetic circuit device of an injection mold suitable for use in manufacturing a cylindrical magnet. 7 to 11 are longitudinal cross sections of the product, and FIG.
8 shows a radial type alignment, FIG. 9 shows an axial type simple focusing alignment, FIG. 10 shows a radial type simple focusing alignment, and FIG. 11 shows an axial type both end side face focusing alignment. Fig. 12 ~
17 is a transverse cross section, and FIGS. 12 and 13 show an axial orientation, FIGS. 14 and 17 show a radial orientation, FIG. 15 shows a simple focusing orientation, and FIG. 16 shows both end side focusing orientations. In the figure, reference numeral 1 is a cavity provided in the die 2, 3 is a main pole, 4 is an intermediate magnetic pole, 5 is a counter pole, 6 is a yoke, 7 is an exciting coil, and 8 is an auxiliary magnetic pole.

【0019】さてこの発明の磁石は、長手方向断面が上
掲した図7〜11、一方横断面が図12〜17に示したような
磁気回路を適宜に組み合わせることによって製造するこ
とができる。すなわち例えば図7と図12との組合せは、
すでに知られたアキシャル型配向になる2極円筒状磁石
の磁気回路であるが、かかる磁気回路においてそのキャ
ビティにこの発明に従う切欠きを設けるのである。
The magnet of the present invention can be manufactured by appropriately combining magnetic circuits as shown in FIGS. 7 to 11 whose longitudinal sections are shown above and FIGS. 12 to 17 whose transverse section is shown above. That is, for example, the combination of FIG. 7 and FIG.
A magnetic circuit of a dipole-cylindrical magnet having an axial orientation, which is already known, in which a notch according to the present invention is provided in the cavity of the magnetic circuit.

【0020】また図9と図15との組合せになる射出成形
用金型によってこの発明に従う円筒状磁石を製造する場
合を考えると、円筒状キャビティ1内に導入された合成
樹脂磁石材料が軟化状態にある内に、該磁石材料に対し
て磁場を印加すると、磁力線は、キャビティ1の長手方
向断面においては、一方の作用面領域の外周から、作用
面内側の中央域に集束するように中間磁極4に抜け、つ
いでこの中間磁極4から他方の作用面領域の外周に向か
い発散するように透過し、また横断面においては、作用
面領域の外周から、作用面内側に集束するように中間磁
極4に抜け、ついでこの中間磁極4から他方の作用面領
域の円弧外周に向かって発散するように透過し、それ故
磁石材料中の磁粉粒子の磁化容易軸が、かかる磁力線の
方向に沿って配向する結果、長手方向断面が図1
(ロ)、横断面が図1(e)に示したような集束配向な
る円筒状磁石が得られるのである。この場合にも、キャ
ビティ内には、図4に示したような形状の切欠きを設け
ておく必要があるのは言うまでもない。
Considering a case where a cylindrical magnet according to the present invention is manufactured by an injection molding die which is a combination of FIGS. 9 and 15, the synthetic resin magnet material introduced into the cylindrical cavity 1 is in a softened state. When a magnetic field is applied to the magnet material, the lines of magnetic force in the longitudinal cross section of the cavity 1 converge from the outer circumference of one working surface area to the central area inside the working surface. 4 and then permeate from this intermediate magnetic pole 4 so as to diverge toward the outer periphery of the other working surface region, and in the cross section, the intermediate magnetic pole 4 is focused from the outer periphery of the working surface region to the inside of the working surface. Through the intermediate magnetic pole 4 so as to diverge toward the outer circumference of the arc of the other working surface area, and therefore the easy axis of magnetization of the magnetic powder particles in the magnet material is oriented along the direction of the magnetic force line. That result, longitudinal cross-section in FIG. 1
(B) As a result, a cylindrical magnet having a horizontal cross-section as shown in FIG. 1 (e) can be obtained. Even in this case, needless to say, it is necessary to provide a notch having a shape as shown in FIG. 4 in the cavity.

【0021】なお、主極3,中間磁極4,対極5,ヨー
ク7及び補助磁極8としては、S55C,S50C,S40C等の炭
素鋼、SKD11, SKD61等のダイス鋼及びパメンジュール、
純鉄等の強磁性体が使用され、一方ダイ2としては、ス
テンレス鋼、銅ベリリウム合金、ハイマンガン鋼、青
銅、真ちゅう及び非磁性超硬鋼N−7等の非磁性体が用
いられる。また磁場中成形方法としては、磁場配向射出
成形、磁場配向圧縮成形及び磁場配向RIM成形などが
適当である。
As the main pole 3, the intermediate magnetic pole 4, the counter pole 5, the yoke 7 and the auxiliary magnetic pole 8, carbon steel such as S55C, S50C and S40C, die steel such as SKD11 and SKD61 and pamenjour,
A ferromagnetic material such as pure iron is used, while the die 2 is a non-magnetic material such as stainless steel, copper-beryllium alloy, high-manganese steel, bronze, brass and non-magnetic cemented carbide N-7. As the magnetic field molding method, magnetic field orientation injection molding, magnetic field orientation compression molding, magnetic field orientation RIM molding and the like are suitable.

【0022】[0022]

【実施例】 実施例1 長手方向断面が図7〜11、横断面が図12〜17に示したよ
うな磁気回路を適宜に組み合わせて構成した金型を用
い、図18に示す形状、寸法になる円筒状磁石を、以下表
1〜3に示す条件で製作した。ここに切欠き形状は鼓型
とし、その大きさは図19に示すように横断面における開
口度でα=70°, β=35°とした。また開口幅比は(b
/a)×100 (%)=80 %である。さらに磁粉粒子の
長手方向断面における集束配向形態は、図20(a)に示
すような全面集束配向の場合は内面集束角度を50°と
し、一方図20(b)に示すような両端部側面集束配向の
場合は、側面集束率Z〔=(a−b)/a×100 %〕=
80 %とした。
Example 1 A mold having an appropriate combination of magnetic circuits whose longitudinal cross sections are shown in FIGS. 7 to 11 and transverse cross sections shown in FIGS. 12 to 17 is used, and the shape and dimensions shown in FIG. 18 are obtained. The following cylindrical magnet was manufactured under the conditions shown in Tables 1 to 3 below. Here, the notch shape is a drum shape, and the sizes thereof are α = 70 ° and β = 35 ° in terms of the opening degree in the cross section as shown in FIG. The aperture width ratio is (b
/ A) × 100 (%) = 80%. Further, in the focusing orientation form in the longitudinal cross section of the magnetic powder particles, in the case of the overall focusing orientation as shown in FIG. 20 (a), the inner surface focusing angle is 50 °, while the side surface focusing at both ends as shown in FIG. In the case of orientation, the side surface focusing rate Z [= (a−b) / a × 100%] =
80%.

【0023】なおこの発明で使用したローターは、図2
(a)に示した標準巻ローターとした。また希土類磁粉
を用いる場合には、予め磁化容易軸方向に磁気モーメン
トを揃えるべく、キャビティ内に導入する直前に、パル
ス状の高磁場処理を施した。
The rotor used in the present invention is shown in FIG.
The standard winding rotor shown in (a) was used. When using rare earth magnetic powder, pulsed high magnetic field treatment was performed immediately before the introduction into the cavity in order to align the magnetic moment in the easy axis of magnetization in advance.

【0024】[0024]

【表1】 ・原料 磁粉A:フェライト磁粉(平均粒径 1.5μm のマグネト
プランバイト系ストロンチウム系フェライト) 磁粉B:サマリウム−コバルト磁粉(2−17系;平均粒
径15μm )
[Table 1] Raw magnetic powder A: Ferrite magnetic powder (magnetoplumbite strontium ferrite with an average particle size of 1.5 μm) Magnetic powder B: samarium-cobalt magnetic powder (2-17 system; average particle size 15 μm)

【0025】[0025]

【表2】 ・配合 配合A(プラマグ配合) 磁 粉 :63 vol% ポリアミド12 :36 vol% アミノシランA−1100:1 vol% 配合B(焼結配向) 磁 粉 :50wt% 水 :50wt%TABLE 2 - formulation formulation A (plastic magnet formulation) magnetic powder: 63 vol% Polyamide 12: 36 vol% aminosilane A-1100: 1 vol% formulation B (sintered orientation) magnetic powder: 50 wt% Water: 50 wt%

【0026】[0026]

【表3】 ・成形方法A:プラマグ射出成形条件 使用ペレット配合 :配合A 成形機 :コイル内蔵式磁場配向射出成形機 射出シリンダー温度:300 ℃ 金型温度 :100 ℃ 射出圧力 :1500kg/cm2 励磁時間 :15秒 冷却時間 :20秒 射出サイクル :40秒 ・成形方法B:焼結磁石作成条件 使用スラリー :配合B 成形機 :コイル搭載式磁場配向圧縮成形機 水抜き方法 :インジェクション方式 励磁方向 :竪磁場 成形温度 :20℃ 焼成温度 :1250℃ ・ホール素子 70μm 角のガリウム−ひ素
使用
[Table 3] Molding method A: Plamag injection molding conditions Pellets used: Mixing A Molding machine: Magnetic field orientation injection molding machine with built-in coil Injection cylinder temperature: 300 ℃ Mold temperature: 100 ℃ Injection pressure: 1500 kg / cm 2 Excitation Time: 15 seconds Cooling time: 20 seconds Injection cycle: 40 seconds ・ Molding method B: Sintered magnet making conditions Slurry used: Mixing B Molding machine: Coil-mounted magnetic field orientation compression molding machine Draining method: Injection method Excitation direction: Vertical Magnetic field Molding temperature: 20 ℃ Firing temperature: 1250 ℃ ・ Hall element 70μm square gallium-arsenic is used

【0027】かくして得られた2極円筒状磁石の有効作
用面における表面磁束密度及びモーターディテントトル
クについて測定した結果を、コギング現象の評価と共に
表4,表5,表6及び表7に示す。
The results of the measurement of the surface magnetic flux density and the motor detent torque on the effective working surface of the thus obtained two-pole cylindrical magnet are shown in Table 4, Table 5, Table 6 and Table 7 together with the evaluation of the cogging phenomenon.

【0028】[0028]

【表4】 [Table 4]

【0029】[0029]

【表5】 [Table 5]

【0030】[0030]

【表6】 [Table 6]

【0031】[0031]

【表7】 [Table 7]

【0032】同表より明らかなように、この発明に従い
2極円筒状ステーター磁石に、ローターの回転に伴うロ
ーター磁極面とステーターの作用面との交差面積が徐々
に増大する形状になる切欠きを設けることにより、コギ
ングの発生が効果的に防止され、さらに長手方向断面に
おける磁粉粒子を実質的作用面に集束配向させた場合に
は、トルクの向上も併せて達成できる。
As is apparent from the table, the two-pole cylindrical stator magnet according to the present invention is provided with a notch having a shape in which the intersecting area between the rotor magnetic pole surface and the working surface of the stator gradually increases as the rotor rotates. By providing the cogging, the generation of cogging can be effectively prevented, and further, when the magnetic powder particles in the longitudinal cross section are focused and oriented on the substantially working surface, the torque can be improved together.

【0033】[0033]

【発明の効果】かくしてこの発明に従い、2極円筒状磁
石の作用面の一部を含む非作用面領域に、その面積が少
なくとも一方の円周方向において漸次減少する形状の切
欠きを設けることにより、たとえばかかる2極円筒状磁
石をステーターとして利用した場合に、ステーター磁界
の境界におけるギャップ磁束密度の変化を効果的に緩和
してコギングの発生を防止することができ、さらに長手
方向断面における磁粉粒子を実質的作用面に集束配向さ
せることにより、より一層のトルクの向上を図ることが
できる。
As described above, according to the present invention, the non-active surface area including a part of the active surface of the two-pole cylindrical magnet is provided with a notch having a shape in which the area is gradually reduced in at least one circumferential direction. For example, when such a two-pole cylindrical magnet is used as a stator, it is possible to effectively alleviate the change in the gap magnetic flux density at the boundary of the stator magnetic field and prevent the occurrence of cogging. By converging and aligning with the substantially acting surface, the torque can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】円筒状磁石の横断面及び長手方向断面における
磁粉粒子の磁化容易軸の配向状態を示した図である。
FIG. 1 is a diagram showing an orientation state of an easy axis of magnetization of magnetic powder particles in a transverse section and a longitudinal section of a cylindrical magnet.

【図2】(a)は、従来のモーターの分解図である。
(b)は、この発明に従う円筒状磁石を組み込んだモー
ターの分解図である。
FIG. 2A is an exploded view of a conventional motor.
(B) is an exploded view of a motor incorporating a cylindrical magnet according to the present invention.

【図3】従来の円筒状磁石を組み込んだモーターの断面
図である。
FIG. 3 is a sectional view of a motor incorporating a conventional cylindrical magnet.

【図4】好適切欠き形状を示す斜視図である。FIG. 4 is a perspective view showing a suitable cutout shape.

【図5】この発明に従う円筒状磁石を組み込んだモータ
ーの断面図である。
FIG. 5 is a cross-sectional view of a motor incorporating a cylindrical magnet according to the present invention.

【図6】この発明に従う別の円筒状磁石を組み込んだモ
ーターの断面図である。
FIG. 6 is a cross-sectional view of a motor incorporating another cylindrical magnet according to the present invention.

【図7】アキシャル型配向になる円筒状磁石の製造に用
いて好適な磁気回路装置の長手方向断面図である。
FIG. 7 is a longitudinal cross-sectional view of a magnetic circuit device suitable for use in manufacturing a cylindrical magnet having an axial orientation.

【図8】ラジアル型配向になる円筒状磁石の製造に用い
て好適な磁気回路装置の長手方向断面図である。
FIG. 8 is a longitudinal cross-sectional view of a magnetic circuit device suitable for use in manufacturing a cylindrical magnet having a radial orientation.

【図9】アキシャル型の単純集束配向になる円筒状磁石
の製造に用いて好適な磁気回路装置の長手方向断面図で
ある。
FIG. 9 is a longitudinal cross-sectional view of a magnetic circuit device suitable for use in manufacturing a cylindrical magnet having an axial simple focusing orientation.

【図10】ラジアル型の単純集束配向になる円筒状磁石
の製造に用いて好適な磁気回路装置の長手方向断面図で
ある。
FIG. 10 is a longitudinal cross-sectional view of a magnetic circuit device suitable for use in manufacturing a cylindrical magnet having a radial type simple focusing orientation.

【図11】アキシャル型の両端部側面集束配向になる円
筒状磁石の製造に用いて好適な磁気回路装置の長手方向
断面図である。
FIG. 11 is a longitudinal cross-sectional view of a magnetic circuit device that is suitable for use in the manufacture of a cylindrical magnet that has an axial-type side face-focusing orientation.

【図12】アキシャル型配向になる円筒状磁石の製造に
用いて好適な磁気回路装置の横断面図である。
FIG. 12 is a cross-sectional view of a magnetic circuit device suitable for use in manufacturing a cylindrical magnet having an axial orientation.

【図13】同じくアキシャル型配向になる円筒状磁石の
製造に用いて好適な磁気回路装置の横断面図である。
FIG. 13 is a transverse cross-sectional view of a magnetic circuit device that is also suitable for manufacturing a cylindrical magnet that also has an axial orientation.

【図14】ラジアル型配向になる円筒状磁石の製造に用
いて好適な磁気回路装置の横断面図である。
FIG. 14 is a cross-sectional view of a magnetic circuit device suitable for use in manufacturing a cylindrical magnet having a radial orientation.

【図15】横断面が単純集束配向になる円筒状磁石の製
造に用いて好適な磁気回路装置の横断面図である。
FIG. 15 is a cross-sectional view of a magnetic circuit device suitable for use in manufacturing a cylindrical magnet whose cross section has a simple focusing orientation.

【図16】横断面が両端部側面集束配向になる円筒状磁
石の製造に用いて好適な磁気回路装置の横断面図であ
る。
FIG. 16 is a transverse cross-sectional view of a magnetic circuit device suitable for use in manufacturing a cylindrical magnet whose transverse cross section has side-end side-focusing orientation.

【図17】ラジアル型配向になる円筒状磁石の製造に用
いて好適な磁気回路装置の横断面図である。
FIG. 17 is a cross-sectional view of a magnetic circuit device suitable for use in manufacturing a cylindrical magnet having a radial orientation.

【図18】実施例で作製した円筒状磁石の形状を示した
図である。
FIG. 18 is a diagram showing the shape of a cylindrical magnet manufactured in an example.

【図19】実施例で作製した円筒状磁石の寸法及び切欠
きの寸法、形状を示した図である。
FIG. 19 is a diagram showing the dimensions and notch dimensions and shape of the cylindrical magnet manufactured in the example.

【図20】実施例で作製した円筒状磁石の長手方向断面
における磁粉粒子の磁化容易軸の配向状態を示した図で
ある。
FIG. 20 is a diagram showing the orientation state of the easy axis of magnetization of the magnetic powder particles in the longitudinal cross section of the cylindrical magnet manufactured in the example.

【符号の説明】[Explanation of symbols]

1 キャビティ 2 ダイ 3 主極 4 中間磁極 5 対極 6 ヨーク 7 励磁コイル 8 補助磁極 9 軸受け 10 ワッシャー 11 板ばね 12 ブラシ 13 円筒状磁石 14 ローター磁極 15 ローター励磁コイル 16 シャフト 17 強磁性体ケース 1 Cavity 2 Die 3 Main pole 4 Intermediate pole 5 Counter pole 6 Yoke 7 Excitation coil 8 Auxiliary pole 9 Bearing 10 Washer 11 Leaf spring 12 Brush 13 Cylindrical magnet 14 Rotor pole 15 Rotor excitation coil 16 Shaft 17 Ferromagnetic case

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 横断面がO型形状になる円筒の内周面又
は外周面のうち、軸心を挟んで対向する2領域を作用面
とする円筒状磁石であって、作用面の一部を含む非作用
面領域に切欠きを有し、該作用面における切欠き形状に
つき、その面積が、少なくとも一方の円周方向において
漸次減少するものである切欠き異方性円筒状磁石。
1. A cylindrical magnet having, as an acting surface, two regions facing each other with an axis center among the inner circumferential surface or the outer circumferential surface of a cylinder having an O-shaped cross section, and a part of the acting surface. A notched anisotropic cylindrical magnet having a notch in a non-acting surface region including a notch, and the area of the notch shape in the acting surface gradually decreases in at least one circumferential direction.
【請求項2】 請求項1において、円筒状磁石の作用面
及び軸心を含む長手方向断面における磁粉粒子の磁化容
易軸が、作用面の中央域に集束配向してなる2極円筒状
磁石。
2. The two-pole cylindrical magnet according to claim 1, wherein an easy axis of magnetization of the magnetic powder particles in a longitudinal cross section including a working surface and an axial center of the cylindrical magnet is focused and oriented in a central region of the working surface.
JP34495691A 1991-12-26 1991-12-26 Notched anisotropic cylindrical magnet Expired - Lifetime JP2769062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34495691A JP2769062B2 (en) 1991-12-26 1991-12-26 Notched anisotropic cylindrical magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34495691A JP2769062B2 (en) 1991-12-26 1991-12-26 Notched anisotropic cylindrical magnet

Publications (2)

Publication Number Publication Date
JPH05175039A true JPH05175039A (en) 1993-07-13
JP2769062B2 JP2769062B2 (en) 1998-06-25

Family

ID=18373295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34495691A Expired - Lifetime JP2769062B2 (en) 1991-12-26 1991-12-26 Notched anisotropic cylindrical magnet

Country Status (1)

Country Link
JP (1) JP2769062B2 (en)

Also Published As

Publication number Publication date
JP2769062B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
US5204569A (en) Anisotropic magnet for rotary electric machine
JPWO2005008862A1 (en) Thin hybrid magnetized ring magnet, thin hybrid magnetized ring magnet with yoke, and brushless motor
WO2005104337A1 (en) Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
US20110248591A1 (en) Anisotropic bonded magnet and direct current motor using the same
JP4029679B2 (en) Bond magnet for motor and motor
JP2769061B2 (en) Extremely anisotropically oriented magnet
JP2587608B2 (en) Motor
JP2004023085A (en) Method of orienting anisotropically bonded magnet for motor
JP2007028714A (en) Dc brush motor
JP2009247041A (en) Rotating machine
JP3012049B2 (en) Anisotropic segment type magnet
JPH05175039A (en) Cutout anisotropic cylindrical magnet
JP3012067B2 (en) Extremely anisotropic cylindrical magnet
JP3049134B2 (en) 2-pole cylindrical magnet
JP3012051B2 (en) Anisotropic segment type magnet
JPH01129741A (en) Magnet for rotor
JP4471698B2 (en) Mold, permanent magnet magnetic field molding machine, and method for manufacturing permanent magnet
JPH05144632A (en) Bipolar cylindrical magnet
JP2002134314A (en) Anisotropic segmental magnet and its molding die magnetic circuit device
JPS6158456A (en) Motor
JPH06124822A (en) R-tm-b group anisotropic ring magnet and its manufacture
JP2005312166A (en) Anisotropic bond magnet for four magnetic pole motor and motor employing it
JP2593252B2 (en) Focused orientation type outsert cylindrical magnet and magnetic field orientation mold
JP2002134315A (en) Anisotropic cylindrical magnet and its molding die magnetic circuit device
KR100611447B1 (en) Brushless dc motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100410

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100410

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110410

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110410

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 14