JPH0517294B2 - - Google Patents

Info

Publication number
JPH0517294B2
JPH0517294B2 JP60129788A JP12978885A JPH0517294B2 JP H0517294 B2 JPH0517294 B2 JP H0517294B2 JP 60129788 A JP60129788 A JP 60129788A JP 12978885 A JP12978885 A JP 12978885A JP H0517294 B2 JPH0517294 B2 JP H0517294B2
Authority
JP
Japan
Prior art keywords
plating
base material
steel
oxide film
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60129788A
Other languages
Japanese (ja)
Other versions
JPS61288040A (en
Inventor
Kazuya Nakayama
Susumu Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Aen KK
Original Assignee
Nikko Aen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Aen KK filed Critical Nikko Aen KK
Priority to JP60129788A priority Critical patent/JPS61288040A/en
Publication of JPS61288040A publication Critical patent/JPS61288040A/en
Priority to US07/694,750 priority patent/US5141782A/en
Publication of JPH0517294B2 publication Critical patent/JPH0517294B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、亜鉛合金を鋼材に溶融メツキ処理
し、次いで加熱または放冷した後冷却する鋼材の
着色方法に関する。 発明の技術的背景 従来、溶融亜鉛を用いてメツキを施した溶融亜
鉛メツキ鋼は、建築、土木、電力通信、運輸、農
業および水産等の広範囲な分野において耐食材料
として使用されている。 一方、近年、鉄鋼製品の用途の多様化に伴い、
特に、鉄塔、照明用ポール、ガードレール、種々
の仮設用架台、外板等では、従来の溶融亜鉛メツ
キ鋼のような金属色のものよりも周囲の環境に適
合して美観性を呈する着色溶融亜鉛メツキ鋼が要
望されるようになり、今後、建築、土木、電力通
信等のほかに、運輸、農業および水産等の分野に
おいても着色溶融亜鉛メツキ鋼の巾広い需要が見
込まれる。 従来の技術とその問題点 しかして、従来の溶融亜鉛メツキ鋼の着色方法
としては、該メツキ鋼を塗装することによる着色
が主として行われているが、溶融亜鉛メツキ鋼の
メツキ被膜中の亜鉛は活性なため、塗料の油分の
構成分である脂肪酸が徐々にアルカリ分解して亜
鉛石けんを生成するようになる。そのため、着色
に用いた塗料の皮膜がメツキ皮膜表面から剥離す
るに至る欠点がある。 したがつて、従来はこのような欠点を防止する
ために、鋼材に溶融亜鉛を用いてメツキを施し、
次いで得られたメツキ鋼を大気中に1〜3週間暴
露して上記メツキ皮膜上にさらにZn(OH)2
ZnO、ZnCO3およびZnCl2等の腐食生成物を形成
させ、次いでメツキ鋼の表面をクリーニングした
後、着色のための塗装を施すという繁雑な操作を
行うことが余儀なくされている。 また、特公昭46−42007号公報には、チタン等
を含む亜鉛合金を加熱溶融し、これを着色すべき
物品の上に塗布して溶融合金被膜を形成させ、こ
れを酸素含有ガスに接触させて冷却する物品表面
の着色処理方法が開示されている。しかし、この
開示方法では、添加元素の濃度、適正な浴温
度、めつき処理後の適正な加熱、水冷処理
等、重要な要件が、その目的に合致した条件を各
色相ごとに適正に開示しておらず、しかも目的の
色相を均一にかつ鮮明に発現させることができな
い。 特に、着色すべき物品が大きな処理材料、例え
ば長さ5m×幅0.5m×厚さ0.05mのような鋼材等
においては、三種の色調が一つの処理材料に発現
し、均一な着色を得ることが不可能であつた。こ
の原因は、酸化処理後水冷を行なおうとする技術
的思想がないことによる。 本発明者等は、溶融亜鉛メツキ鋼の着色に関す
る上述した状況に鑑み、鉄鋼母材にメツキを施す
と同時に着色も行うことができる技術について検
討した結果、特定量のチタンTiまたはチタンTi
とマンガンMnを含有する溶融亜鉛浴に鉄鋼母材
を浸漬して特定の浴温度でメツキを施し、得られ
たメツキ鋼を特定の温度に加熱するかまたは大気
中で放冷し、次いで空冷した後水冷すると、上記
メツキ鋼のメツキ層が着色してメツキと同時に着
色を施し得ること、およびメツキ層に生成する酸
化膜をさらに助長、発達させると黄色、紫色、青
色および緑色等の色相や色調に調整し得ることを
見出し、本発明をなすに至つた。 発明の構成 本発明は、Ti0.3〜0.7重量%またはTi0.3〜
0.7重量%とMn0.1〜0.5重量%を含有する溶融亜
鉛合金を用い、浴温度480〜530℃で鉄鋼母材にメ
ツキを施し、得られたメツキ鋼を450〜550℃に加
熱し、次いで空冷した後水冷して、メツキ層を着
色させる溶融亜鉛合金のメツキ処理による鉄鋼母
材の着色方法、および上記メツキ鋼を大気中で
放冷し、次いで空冷した後水冷して、メツキ層を
黄色の色相に着色させる溶融亜鉛のメツキ処理に
よる鉄鋼母材の着色方法にある。 発明の具体的な説明 本発明において溶融亜鉛合金に使用する亜鉛地
金としては、JIS H 2107に規定される主として
蒸留亜鉛地金1種(純度98.5%以上)、最純亜鉛
地金(純度99.99%)および特殊亜鉛地金が例示
される。これらの亜鉛地金に不可避的に含まれる
不純物は、例えば蒸留亜鉛地金1種ではPb1.2wt
%以下、Cd0.1wt%以下、Fe0.020wt%以下であ
るが、本発明では、これらの不純物の含量が合計
で1.5wt%未満の亜鉛地金を用いることが好まし
い。 本発明では、上述したような亜鉛地金(主とし
て蒸留亜鉛地金が用いられる)にTi0.3〜0.7重量
%またはTi0.3〜0.7重量%とMn0.1〜0.5重量%を
添加、含有させた溶融亜鉛合金の浴を用いてメツ
キ処理する。このようなメツキ処理を鉄鋼母材に
適用すると、TiまたはTiとMnを前記の量で亜鉛
に含有させることによつて得られるメツキ層は、
着色される色相が鮮明になり、安定した色相を呈
し、メツキ処理が容易になる。 上記溶融亜鉛合金の浴を用いてメツキ処理する
には、480〜530℃の浴温度で鉄鋼母材を亜鉛合金
浴に1〜2分程度浸漬した後、亜鉛合金浴から引
き上げる。次いで、450〜550℃に短時間加熱し、
メツキ処理した鉄鋼母材に空気を吹き付けながら
空冷した後、水に浸漬するかまたは水を吹き付け
て冷却(水冷)する。また、本発明では、鉄鋼母
材を上記亜鉛合金浴に同様にして浸漬後、該浴か
ら引き上げ、次いで大気中で放冷し、空冷した後
水冷する。 上記メツキ処理する際の浴温度が上記範囲から
逸脱すると、その後の着色処理によつても、着色
しないかまたは所望の色相の着色が得られなくな
るので留意する必要がある。 例えば、メツキ処理する際の浴温度が480℃よ
り低いと、その後の着色処理によつても着色しな
かつたり、たとえ着色したとしても不充分な薄い
色調となり、また一方530℃より高いとその後の
着色処理によつても種々の色調が混在し、色相が
不鮮明となつたりして、いずれの場合も所望の着
色が得られない。 そして、メツキ後の鉄鋼母材を加熱するとメツ
キ表面が高温に保持され酸化膜の形成が早くな
り、酸化膜が厚くなり、強固で安定な酸化膜を形
成することができる。また、メツキ後の鉄鋼母材
を大気中で放冷すると加熱にくらべ酸化がゆるや
かになり、メツキ層における酸化膜の形成が遅く
なり、酸化膜の薄いものが得られる。すなわち、
メツキ処理後の鉄鋼母材を加熱するかあるいは大
気中に放冷するかによつて、酸化膜の厚さをコン
トロールすることができる。この結果、この酸化
膜の厚さで光の干渉度合いが異なり、色相が変化
する。加熱されるほど、さらに酸化膜は厚くなり
発色元素のチタンがメツキ表面に移行し、光の干
渉度合いによつて種々の色が得られる。 さらに、これらの加熱あるいは放冷に続いて、
空冷し、水冷を行うと、発現した色相が他の色相
に移行することを停止させそのまま維持させるこ
とができ、特定の安定な色相が得られる。 本発明おける放冷は、室温に数秒〜数十秒放置
して行い、空冷は室温乃至冷却した空気を数秒〜
数十秒吹きつける等して行なう。また水冷は、水
中に母材を浸漬し、母材が低温、例えば常温にな
るまで行う。 メツキを施した鉄鋼を加熱した場合あるいは加
熱放冷した場合のいずれにおいても、さらに空冷
によつてできるだけ急速に冷却して酸化膜の厚さ
が必要以上に厚くなるのを防止する。 空冷は上記のように数秒〜数十秒の短時間行う
が、その空冷温度あるいは処理時間等は所定の色
になり、それが均一で安定となるか否かによつて
適宜定められる。 さらに、前記水冷によつてメツキ処理及び酸化
処理された鉄鋼母材に対して酸素との接触が遮断
され、その温度を母材全体均一に降下冷却させる
ので、酸化膜がさらに発達することなく、発色元
素のチタンの表面への移行を停止させ、均一な色
相を得ることができる。 上述のようにして、鉄鋼母材を亜鉛合金浴に浸
漬し、次いで加熱した後、空冷、水冷を行う場合
には、加熱時間および加熱温度に応じて紫色、青
色または緑色の色相を呈するようになる。例え
ば、鉄鋼母材にTi含有の亜鉛合金をメツキした
後、450℃の雰囲気中で50〜60秒加熱して空冷、
水冷すると紫色の色相を呈し、2分間加熱して空
冷、水冷すると青色の色相を呈するようになる。 このように、鉄鋼母材をメツキした後加熱する
場合には、加熱条件をコントロールすることによ
り、紫色、青色乃至緑色(若草色)等の所望の色
相に着色できる。さらに、本発明では、上記亜鉛
合金浴中におけるTiやTiとMnの含有量を前述し
た範囲内に変化させることによつてもメツキ層に
形成される酸化膜の色相や色調を任意に調整する
こともできる。 一方、鉄鋼母材を亜鉛合金浴に浸漬して大気中
で放冷すると、該母材にメツキ層が形成されると
ともに該メツキ層上に酸化膜が形成され、メツキ
直後大気中で5〜10秒放冷して空冷、水冷すると
上記酸化膜は黄色の色相を呈する。 次に、本発明において溶融メツキに用いる亜鉛
合金における金属の含有量が上記酸化膜の形成お
よびその色相に与える影響について説明する。 イ) チタン(Ti) 上記メツキ浴におけるTi含有量が0.3重量%
未満ではメツキ鋼のメツキ層における酸化膜の
生成が未熟であるため、メツキ後の加熱温度お
よび加熱時間を上限の条件にしても酸化膜の色
調が薄く、着色メツキ鋼としての商品価値が低
い。一方、Ti含有量が0.7重量%より高くなる
と、酸化膜の生成速度が速くなるため、生成し
た酸化膜の色相の変化が早く、その調整が困難
となり、また、メツキ浴上に生成する酸化物が
多くなつてメツキ母材に対する酸化膜の濡れ性
が悪くなる。 ロ) チタン(Ti)+マンガン(Mn) TiおよびMn含有亜鉛合金におけるMn含有
量が0.1%未満ではTi単独の場合と同様に酸化
膜の生成が未熟であるため、酸化膜の色調が薄
く、一方0.5重量%より高くなると、同様に色
相の調整が困難であるとともに、メツキ母材に
対する酸化膜の濡れ性が悪くなる。 TiとMnを含有する亜鉛合金浴から形成され
るメツキ層は、Ti単独に比べ表面が平滑にな
り、酸化膜の多様な色相を一層鮮やかに発現で
きる利点がある。 本発明に従つて、TiまたはTiとMnの特定量を
含有させた溶融亜鉛合金をメツキ浴として用い
て、鉄鋼母材に溶融亜鉛合金のメツキ層を施すこ
とにより、メツキ層に種々の色相の酸化膜を生成
することができる。しかも、この酸化膜を生成さ
せるための条件を変えることにより、特定の色相
を均一に、濃厚かつ鮮明に安定して発現すること
ができる。 以下に、実施例を示して本発明およびその効果
を具体的に説明する。 実施例 巾50mm、長さ100mmおよび厚さ3.2mm、寸法の
SS41鋼板を、80℃の温度のアルカリ浴に30分間
浸漬して脱脂を行つた後、湯洗し、10%塩酸溶液
に常温で30分間浸漬して錆を除去した。次いで、
この鋼板を湯洗後、ZnCl2−KF溶液に常温で30
秒間浸漬してフラツクス処理を行つた。このフラ
ツクス処理は鋼板表面の酸化物を除去し、素地の
活性面が溶融合金とよく濡れるようにするために
行うものである。 このように処理した鋼板を母材として、各々を
次頁の表に示す種々の組成のメツキ浴に、浴温度
480℃で1分間または500℃で1分間あるいは2分
間浸漬後、3m/minの速度で引き上げた。 メツキ浴から引き上げた各母材を表中の「酸化
膜生成(着色)」に示す条件下で加熱するかある
いは大気中で放冷し、次いで空冷し、水冷した。 すなわち、表にみられるとおり、母材を各種組
成のメツキ浴に浸漬して引き上げてメツキを施し
たものを大気中で放冷した後、空冷し、水冷した
場合には、黄色の色相の酸化膜を生成した。一
方、上記によりメツキを施したものを450℃ある
いは500℃で加熱した後、空冷し、水冷した場合
には、加熱の条件に応じて、紫色、青色乃至若草
色(薄緑)の色相の酸化膜が生成した。なお、こ
の空冷は約30秒前後行い、水冷は母材が常温にな
るまで数分間行なつた。(低温度の450℃で数十秒
のような短時間加熱の場合は紫色で、数分間加熱
の場合は青色の色調が得られた。また、高温度の
500℃で数十秒のような短時間加熱の場合は、濃
青色〜青色で、数分間加熱の場合は若草色乃至壁
色の色調が得られた。)
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for coloring a steel material, in which a zinc alloy is hot-dipped onto a steel material, then heated or allowed to cool, and then cooled. Technical Background of the Invention Conventionally, hot-dip galvanized steel plated using molten zinc has been used as a corrosion-resistant material in a wide range of fields such as architecture, civil engineering, electric power communications, transportation, agriculture, and fisheries. On the other hand, in recent years, with the diversification of uses for steel products,
In particular, for steel towers, lighting poles, guardrails, various temporary structures, exterior panels, etc., colored molten zinc is used, which matches the surrounding environment and has a more aesthetic appearance than conventional hot-dip galvanized steel. Galvanized steel is now in demand, and a wide range of demand for colored hot-dip galvanized steel is expected in the future in fields such as architecture, civil engineering, power communications, and transportation, agriculture, and fisheries. Conventional techniques and their problems However, the conventional method of coloring hot-dip galvanized steel is mainly by painting the galvanized steel, but the zinc in the plating film of hot-dip galvanized steel is Because it is active, the fatty acids that make up the oil component of the paint gradually break down with alkaline to form zinc soap. Therefore, there is a drawback that the paint film used for coloring peels off from the surface of the plating film. Therefore, in order to prevent such defects, conventionally, steel materials were plated with molten zinc.
The resulting plated steel was then exposed to the atmosphere for 1 to 3 weeks to further coat the plated film with Zn(OH) 2 ,
It is necessary to perform a complicated operation of forming corrosion products such as ZnO, ZnCO 3 and ZnCl 2 , then cleaning the surface of the glazed steel, and then applying a coating for coloring. In addition, Japanese Patent Publication No. 46-42007 discloses that a zinc alloy containing titanium, etc. is heated and melted, and this is applied onto an article to be colored to form a molten alloy film, which is then brought into contact with an oxygen-containing gas. A method for coloring the surface of an article is disclosed. However, with this disclosure method, important requirements such as the concentration of added elements, appropriate bath temperature, appropriate heating after plating treatment, and water cooling treatment must be properly disclosed for each hue to meet the purpose. Moreover, the desired hue cannot be expressed uniformly and clearly. In particular, when the object to be colored is a large treated material, such as a steel material measuring 5 m long x 0.5 m wide x 0.05 m thick, three different tones are expressed in one treated material, and it is difficult to obtain uniform coloring. was impossible. The reason for this is that there is no technical idea to perform water cooling after oxidation treatment. In view of the above-mentioned situation regarding the coloring of hot-dip galvanized steel, the present inventors investigated a technology that can color the steel base material at the same time as plating it, and found that a specific amount of titanium Ti or titanium Ti
The steel base material was immersed in a molten zinc bath containing manganese and Mn, and plated at a specific bath temperature, and the resulting plated steel was heated to a specific temperature or allowed to cool in the atmosphere, and then air-cooled. After cooling with water, the plating layer of the above-mentioned plating steel becomes colored and coloring can be applied at the same time as plating, and when the oxide film formed on the plating layer is further promoted and developed, it becomes yellow, purple, blue, green, etc. hues and tones. The present inventors have discovered that the present invention can be adjusted to the following. Structure of the invention The present invention provides Ti0.3 to 0.7% by weight or Ti0.3 to 0.7% by weight.
Using a molten zinc alloy containing 0.7% by weight and 0.1 to 0.5% by weight of Mn, a steel base material is plated at a bath temperature of 480 to 530℃, the resulting plated steel is heated to 450 to 550℃, and then A method for coloring a steel base material by plating treatment with a molten zinc alloy, in which the plating layer is colored by air-cooling and then water-cooling; There is a method for coloring a steel base material by plating with molten zinc to color the steel base material in a hue of . DETAILED DESCRIPTION OF THE INVENTION In the present invention, the zinc ingots used in the molten zinc alloy mainly include distilled zinc ingots (purity of 98.5% or higher), type 1 distilled zinc ingots (purity of 99.99% or more), and purest zinc ingots (purity of 99.99%). %) and special zinc ingots. The impurities unavoidably included in these zinc ingots are, for example, Pb1.2wt in one type of distilled zinc ingot.
% or less, Cd 0.1 wt % or less, and Fe 0.020 wt % or less, but in the present invention, it is preferable to use a zinc base metal in which the total content of these impurities is less than 1.5 wt %. In the present invention, 0.3 to 0.7% by weight of Ti or 0.3 to 0.7% by weight of Ti and 0.1 to 0.5% by weight of Mn are added to and contained in the above-mentioned zinc ingot (distilled zinc ingot is mainly used). Plating treatment is performed using a bath of molten zinc alloy. When such a plating treatment is applied to a steel base material, the plating layer obtained by incorporating Ti or Ti and Mn in the above amounts in zinc is
The colored hue becomes clearer, exhibits a stable hue, and plating becomes easier. To perform plating using the molten zinc alloy bath described above, the steel base material is immersed in the zinc alloy bath for about 1 to 2 minutes at a bath temperature of 480 to 530°C, and then pulled out of the zinc alloy bath. Then briefly heated to 450-550℃,
After cooling the plated steel base material by blowing air on it, it is immersed in water or cooled by spraying water on it (water cooling). Further, in the present invention, the steel base material is similarly immersed in the zinc alloy bath described above, taken out from the bath, then allowed to cool in the atmosphere, air cooled, and then water cooled. If the bath temperature during the plating treatment deviates from the above range, care must be taken because the subsequent coloring treatment may not be colored or the desired hue cannot be obtained. For example, if the bath temperature during plating is lower than 480°C, the subsequent coloring process will not be colored, or even if it is colored, the color will be insufficiently pale, while if it is higher than 530°C, the subsequent coloring process will be insufficient. Even in the coloring process, various color tones are mixed and the hue becomes unclear, and in any case, the desired coloring cannot be obtained. Then, when the steel base material after plating is heated, the plating surface is kept at a high temperature, the formation of an oxide film is accelerated, the oxide film becomes thicker, and a strong and stable oxide film can be formed. Furthermore, if the steel base material after plating is left to cool in the atmosphere, oxidation will be slower than when heated, and the formation of an oxide film in the plating layer will be delayed, resulting in a thin oxide film. That is,
The thickness of the oxide film can be controlled by heating the steel base material after plating or by allowing it to cool in the atmosphere. As a result, the degree of light interference varies depending on the thickness of this oxide film, and the hue changes. The more heated the oxide film becomes, the thicker the oxide film becomes, and the color-forming element titanium migrates to the plating surface, producing various colors depending on the degree of light interference. Furthermore, following these heating or cooling,
By performing air cooling and water cooling, it is possible to stop the developed hue from shifting to other hues and maintain it as it is, and a specific stable hue can be obtained. In the present invention, cooling is performed by leaving the room at room temperature for several seconds to several tens of seconds, and air cooling is performed by leaving the room at room temperature or cooled air for several seconds to several tens of seconds.
Do this by spraying for several tens of seconds. Water cooling is performed by immersing the base material in water until the base material reaches a low temperature, for example, room temperature. Whether the plated steel is heated or left to cool, it is further cooled as rapidly as possible by air cooling to prevent the oxide film from becoming thicker than necessary. Air cooling is performed for a short period of several seconds to several tens of seconds as described above, and the air cooling temperature, processing time, etc. are appropriately determined depending on whether a predetermined color is obtained and the color is uniform and stable. Furthermore, the water cooling cuts off contact with oxygen to the steel base material that has been plated and oxidized, and the temperature is lowered uniformly throughout the base material, so that the oxide film does not develop further. It is possible to stop the migration of coloring elements to the titanium surface and obtain a uniform hue. When the steel base material is immersed in a zinc alloy bath, heated, and then air-cooled or water-cooled as described above, the steel base material will take on a purple, blue, or green hue depending on the heating time and heating temperature. Become. For example, after plating a steel base material with a Ti-containing zinc alloy, it is heated in an atmosphere of 450°C for 50 to 60 seconds and then air cooled.
When cooled with water, it takes on a purple hue, and when heated for 2 minutes, air-cooled, and then water-cooled, it takes on a blue hue. In this way, when the steel base material is plated and then heated, it can be colored to a desired hue such as purple, blue to green (light green) by controlling the heating conditions. Furthermore, in the present invention, the hue and tone of the oxide film formed on the plating layer can be arbitrarily adjusted by changing the content of Ti or Ti and Mn in the zinc alloy bath within the above-mentioned range. You can also do that. On the other hand, when a steel base material is immersed in a zinc alloy bath and left to cool in the atmosphere, a plating layer is formed on the base material and an oxide film is formed on the plating layer. The oxide film exhibits a yellow hue when left to cool for seconds and then air-cooled or water-cooled. Next, the influence of the metal content in the zinc alloy used for hot-dip plating in the present invention on the formation of the oxide film and its hue will be explained. b) Titanium (Ti) The Ti content in the above plating bath is 0.3% by weight.
If it is less than that, the formation of an oxide film in the plating layer of the plated steel is immature, so even if the heating temperature and heating time after plating are set to the upper limits, the color tone of the oxide film will be pale, and the commercial value as colored plated steel will be low. On the other hand, when the Ti content is higher than 0.7% by weight, the rate of oxide film formation increases, and the hue of the formed oxide film changes quickly, making it difficult to adjust. As a result, the wettability of the oxide film to the plating base material deteriorates. (b) Titanium (Ti) + Manganese (Mn) If the Mn content in a zinc alloy containing Ti and Mn is less than 0.1%, the oxide film is not formed as well as in the case of Ti alone, so the color tone of the oxide film is pale. On the other hand, if it exceeds 0.5% by weight, it is difficult to adjust the hue and the wettability of the oxide film to the plating base material deteriorates. A plating layer formed from a zinc alloy bath containing Ti and Mn has a smoother surface than Ti alone, and has the advantage of being able to express the various hues of the oxide film more vividly. According to the present invention, a plating layer of a molten zinc alloy is applied to a steel base material using a molten zinc alloy containing Ti or a specific amount of Ti and Mn as a plating bath, so that the plating layer can have various hues. An oxide film can be produced. Moreover, by changing the conditions for producing this oxide film, a specific hue can be stably expressed uniformly, intensely, and vividly. EXAMPLES Below, the present invention and its effects will be specifically explained with reference to Examples. Example Width 50mm, length 100mm and thickness 3.2mm, dimensions of
An SS41 steel plate was degreased by immersing it in an alkaline bath at a temperature of 80°C for 30 minutes, then washed with hot water, and immersed in a 10% hydrochloric acid solution at room temperature for 30 minutes to remove rust. Then,
After washing this steel plate with hot water, it was soaked in ZnCl 2 −KF solution for 30 minutes at room temperature.
Flux treatment was performed by dipping for a second. This flux treatment is performed to remove oxides from the surface of the steel sheet and to ensure that the active surface of the base material is well wetted with the molten alloy. Using the steel sheets treated in this way as base materials, each was placed in plating baths with various compositions shown in the table on the next page at various bath temperatures.
After being immersed at 480°C for 1 minute or 500°C for 1 or 2 minutes, it was pulled up at a speed of 3 m/min. Each base material pulled out of the plating bath was heated under the conditions shown in "Oxide film formation (coloring)" in the table or allowed to cool in the atmosphere, then air cooled, and then water cooled. In other words, as shown in the table, when the base material is immersed in plating baths of various compositions, pulled out, plated, left to cool in the atmosphere, then air-cooled, and then water-cooled, oxidation of the yellow hue occurs. produced a film. On the other hand, when the plated material as described above is heated to 450°C or 500°C, air cooled, and then water cooled, the hue changes from purple, blue to light green depending on the heating conditions. A film was formed. Note that this air cooling was performed for about 30 seconds, and water cooling was performed for several minutes until the base material reached room temperature. (When heated at a low temperature of 450℃ for a short time such as several tens of seconds, a purple color was obtained, and when heated for several minutes, a blue tone was obtained.
When heated at 500°C for a short time, such as several tens of seconds, a deep blue to blue color was obtained, and when heated for several minutes, a light green to wall color tone was obtained. )

【表】 本発明の方法で着色された鉄鋼母材は、均一で
鮮明な色調を有し、変色されにくいので、ガード
レール、屋外の水飲み架台、架線金物、ベンチ、
植木のささえあるいはフエンス等として有用に利
用される。
[Table] The steel base material colored by the method of the present invention has a uniform and clear color tone and is resistant to discoloration.
It is useful as a support for plants or as a fence.

Claims (1)

【特許請求の範囲】 1 Ti0.3〜0.7重量%またはTi0.3〜0.7重量%と
Mn0.1〜0.5重量%を含有し、残りがZnと不純物
からなる組成の溶融亜鉛合金を用い、浴温度480
〜530℃で鉄鋼母材にメツキを施し、得られたメ
ツキ鋼を450〜550℃に加熱し、次いで空冷した後
水冷して、メツキ層を着色させることを特徴とす
る溶融亜鉛合金のメツキ処理による鉄鋼母材の着
色方法。 2 Ti0.3〜0.7重量%またはTi0.3〜0.7重量%と
Mn0.1〜0.5重量%を含有し、残りがZnと不純物
からなる組成の溶融亜鉛合金を用い、浴温度480
〜530℃で鉄鋼母材にメツキを施し、得られたメ
ツキ鋼を大気中で放冷し、次いで空冷した後水冷
して、メツキ層を黄色の色相に着色させることを
特徴とする溶融亜鉛合金のメツキ処理による鉄鋼
母材の着色方法。
[Claims] 1 0.3 to 0.7% by weight of Ti or 0.3 to 0.7% by weight of Ti
Using a molten zinc alloy containing 0.1 to 0.5% by weight of Mn and the remainder consisting of Zn and impurities, the bath temperature was 480%.
A plating process for molten zinc alloy characterized by plating a steel base material at ~530°C, heating the resulting plated steel to 450 to 550°C, then air cooling and then water cooling to color the plating layer. Coloring method for steel base material. 2 Ti0.3-0.7% by weight or Ti0.3-0.7% by weight
Using a molten zinc alloy containing 0.1 to 0.5% by weight of Mn and the remainder consisting of Zn and impurities, the bath temperature was 480%.
A molten zinc alloy characterized by plating a steel base material at ~530°C, allowing the resulting plated steel to cool in the atmosphere, then air cooling, and then water cooling to color the plating layer in a yellow hue. A method of coloring steel base material by plating treatment.
JP60129788A 1985-06-17 1985-06-17 Zinc alloy for hot dipping and its use Granted JPS61288040A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60129788A JPS61288040A (en) 1985-06-17 1985-06-17 Zinc alloy for hot dipping and its use
US07/694,750 US5141782A (en) 1985-06-17 1991-05-02 Colored zinc coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60129788A JPS61288040A (en) 1985-06-17 1985-06-17 Zinc alloy for hot dipping and its use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11818788A Division JPS63317658A (en) 1988-05-17 1988-05-17 Zinc alloy for hot dipping and method of application thereof

Publications (2)

Publication Number Publication Date
JPS61288040A JPS61288040A (en) 1986-12-18
JPH0517294B2 true JPH0517294B2 (en) 1993-03-08

Family

ID=15018242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60129788A Granted JPS61288040A (en) 1985-06-17 1985-06-17 Zinc alloy for hot dipping and its use

Country Status (1)

Country Link
JP (1) JPS61288040A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247333A (en) * 1987-04-03 1988-10-14 Nikko Aen Kk Zinc alloy for colored galvanization
JPH0768607B2 (en) * 1986-11-21 1995-07-26 日鉱亜鉛株式会社 Method of forming dark copper colored plating on steel
JPS63247330A (en) * 1987-04-01 1988-10-14 Nikko Aen Kk Zinc alloy for hot dipping for forming olive-gray colored plating and formation of above-mentioned colored plating
JPS63247332A (en) * 1987-04-03 1988-10-14 Nikko Aen Kk Zinc alloy for iridescent colored galvanization and its using method
US5022937A (en) * 1986-11-21 1991-06-11 Nippon Mining Co., Ltd. Colored zinc coating
JPS63247331A (en) * 1987-04-03 1988-10-14 Nikko Aen Kk Zinc alloy for colored galvanization
JPH0293034A (en) * 1988-09-29 1990-04-03 Nippon Mining Co Ltd Colored zinc plate and its manufacture
JPH0774422B2 (en) * 1989-04-27 1995-08-09 日鉱金属株式会社 Method for coloring zinc and method for coloring hot dip galvanized iron or steel material
JP2563658B2 (en) * 1990-08-10 1996-12-11 日鉱金属株式会社 Method for producing colored zinc powder
KR100428941B1 (en) * 1997-12-29 2004-07-01 주식회사 포스코 Method for manufacturing colored hot dipped galvanized iron having excellent surface quality and color sharpness by adding ni, enhancing wettability of an oxide film, to plating bath
CN102492913A (en) * 2011-12-26 2012-06-13 株洲创林合金有限责任公司 Zinc-manganese-titanium alloy for hot dipping

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770249A (en) * 1980-10-17 1982-04-30 Sadaji Nagabori Anticorrosive zinc alloy for hot dipping

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770249A (en) * 1980-10-17 1982-04-30 Sadaji Nagabori Anticorrosive zinc alloy for hot dipping

Also Published As

Publication number Publication date
JPS61288040A (en) 1986-12-18

Similar Documents

Publication Publication Date Title
JPH0517294B2 (en)
US3320040A (en) Galvanized ferrous article
CA1064786A (en) Low tin terne coating
JPS63317658A (en) Zinc alloy for hot dipping and method of application thereof
JPS63130756A (en) Formation of yellow colored plating
KR100342308B1 (en) Method for manufacturing galvanized steel sheet with excellent corrosion resistance and good appearance
JPH0581660B2 (en)
JPH0230377B2 (en)
JPH0232349B2 (en)
JPH0581661B2 (en)
JPS63130741A (en) Zinc alloy for hot dipping forming green-colored plating and method of application thereof
JPH0394050A (en) Flux for galvanizing zn-al alloy
JPH0325501B2 (en)
JPS63130758A (en) Formation of purple colored plating
KR100338351B1 (en) METHOD FOR MANUFACTURING Zn-Ti BASED COLORED HOT-DIP GALVANIZED STEEL SHEET
CN108396192A (en) A kind of high intensity kirsite containing Li reducing zinc non-normal consumption
JPS63241132A (en) Zinc alloy for hot dip coating to form olive gray colored plating and method for using alloy
CN108411159A (en) A kind of resistance to oxidation kirsite containing Li reducing zinc non-normal consumption
JPH05132731A (en) Aluminum alloy having a gold color tone after anodic oxidation treatment and its production
JPS63247333A (en) Zinc alloy for colored galvanization
JPH02236263A (en) Hot dip coating method for zinc or zinc alloy of low-temperature heating and reduction omission type
CN108396191A (en) A kind of high heat conduction kirsite containing Li reducing zinc non-normal consumption
JPH0765149B2 (en) Color plating method and coating
JPH03100152A (en) Flux for hot dip zn-al alloy plating
JPH0353051A (en) Plating bath for galvanizing treatment