JPH05171457A - Organic composite type alloying galvannealed steel sheet - Google Patents

Organic composite type alloying galvannealed steel sheet

Info

Publication number
JPH05171457A
JPH05171457A JP28037091A JP28037091A JPH05171457A JP H05171457 A JPH05171457 A JP H05171457A JP 28037091 A JP28037091 A JP 28037091A JP 28037091 A JP28037091 A JP 28037091A JP H05171457 A JPH05171457 A JP H05171457A
Authority
JP
Japan
Prior art keywords
plating layer
copolymer resin
steel sheet
content
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28037091A
Other languages
Japanese (ja)
Inventor
Keitaro Shibata
敬大郎 柴田
Toshio Odajima
壽男 小田島
Kazumi Nishimura
一実 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28037091A priority Critical patent/JPH05171457A/en
Publication of JPH05171457A publication Critical patent/JPH05171457A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve a bare corrosion resistance, adhesion and coating suitability of a steel sheet by specifying the compsn. in a plating layer or specifying the roughness, grain size or the like on the surface of the plating layer in the case of low iron, furthermore limiting specified alloy elements in the plating layer and their content and applying it with specified colloid-contg. organic resin. CONSTITUTION:On the surface of a steel sheet, a galvannealing layer in which the average iron content in the plating layer is regulated to, by weight, 8 to 15% and Al content is regulated to 0.1 to 0.5% or the iron content is regulated to 1 to 8% as well as 0.1 to 2% in the topmost surface layer and the Al content is regulated to 0.1 to 0.5% and the average roughness on the surface of the plating layer is regulated to 2.2 to 3.5mu and the average grain size is regulated to 50 to 200mu is formed. In the galvanizing layer, 0.01 to 5% of one or more kinds of alloy elements among Mg, Sb or the like may be incorporated. The surface of the plating layer is coated with chromate by 10 to 150mg/m<2> as Cr content, which is coated with an organic film obtd. by incorporating colloids of SiO2, Cr2O3 or the like having 1 to 12mum grain size by 5 to 100 pts. to 100 pts. resinous solid content into water-base resin having 10 to 200mu grain size such as ethylene-acrylic acid copolymer resin, poly(meta)acrylic acid and its copolymer resin or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、裸耐食性、密着性、塗
装性、加工性に優れた有機樹脂を複合した合金化溶融Z
nめっき鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloyed molten Z compounded with an organic resin excellent in bare corrosion resistance, adhesiveness, paintability and workability.
It relates to an n-plated steel sheet.

【0002】[0002]

【従来の技術】合金化溶融Znめっき鋼板は、塗膜密着
性、塗装後の耐食性等に優れた自動車・建材・家電用の
表面処理鋼板としてすでに知られている。近年では、特
に、耐食性に優れた表面処理鋼板に対する要求がますま
す強くなっており、今後もこの傾向は増加するものと考
えられる。この要求にこたえるために種々の表面処理鋼
板が提案されているが、最近では、特公昭61−287
51号公報にみられるように、合金化溶融Znめっき鋼
板上にクロメート処理を行った後、さらに水溶性有機物
水溶液を含有したクロムを塗布する、合金化Znめっき
鋼板の表面処理方法が提案されている。
2. Description of the Related Art Alloyed hot-dip galvanized steel sheets are already known as surface-treated steel sheets for automobiles, building materials, and home appliances, which are excellent in coating film adhesion, corrosion resistance after coating, and the like. In recent years, in particular, the demand for surface-treated steel sheets having excellent corrosion resistance has become stronger and stronger, and it is considered that this tendency will increase in the future. Various surface-treated steel sheets have been proposed to meet this demand, but recently, Japanese Patent Publication No. 61-287.
As disclosed in Japanese Patent No. 51, a method for surface treatment of an alloyed Zn-plated steel sheet is proposed, in which after performing a chromate treatment on the alloyed Zn-plated steel sheet, chromium containing an aqueous solution of a water-soluble organic substance is further applied. There is.

【0003】[0003]

【発明が解決しようとする課題】合金化溶融Znめっき
鋼板は、塗装されて使用される場合が多いが、塗装工程
の省略を目的として未塗装状態で使用される場合があ
る。また、鋼板同士を合わせた部分や袋構造になった部
分では塗装がまわりこまないため未塗装部が残ることか
ら、特に裸耐食性が重視される。一方、耐食性を向上さ
せる方法として鋼板上にクロメート処理を施す方法があ
る。しかし、出荷後の鋼板の防錆を目的に防錆油が塗油
されたり、鋼板の成形過程でプレス油が塗油されること
から、塗装の前工程で苛性ソーダや苛性カリを主成分と
する脱脂剤によって、これらの油分を除去している。こ
の際、脱脂剤によって合金化溶融Znめっき鋼板に施さ
れたクロメート皮膜が溶出するため、耐食性や塗装性が
劣化してしまう。この問題を解決する目的で、特公昭6
1−28751号公報では、エッチング性クロメート処
理後に水溶性有機物を含有する非エッチング性クロメー
ト処理を施す合金化溶融Znめっき鋼板の表面処理方法
が提案されている。この方法で製造された合金化溶融Z
nめっき鋼板は従来のものに比べると耐食性は改善され
ているものの、依然、有機物を含有するクロメート皮膜
は溶出し、脱脂条件によっては溶出量が多く、この結
果、部分的に脱脂条件が異った場合には、同一のコイル
内においてクロムの溶出量が異なるため、耐食性に差が
生じる。また、クロムが溶出するため、これに伴う排水
処理の問題もある。さらに、鋼板がプレス成形によって
加工されるとクロメート皮膜が破壊されて加工後の裸耐
食性は、クロメートの効果はほとんどないことや加工時
にめっき剥離によるパウダリング性に問題があることが
わかっている。以上のように、従来の技術で製造した合
金化溶融Znめっき鋼板は、未加工時の裸耐食性や加工
後裸耐食性、加工性、排水処理の点で不十分であった。
The alloyed hot-dip galvanized steel sheet is often used after being coated, but it may be used in an uncoated state for the purpose of omitting the coating process. Further, since the coating does not go around in the portion where the steel plates are joined together or the portion having the bag structure, the unpainted portion remains, so that the bare corrosion resistance is particularly important. On the other hand, as a method of improving the corrosion resistance, there is a method of performing chromate treatment on the steel sheet. However, since rust preventive oil is applied for the purpose of rust prevention of the steel plate after shipping, and press oil is applied during the forming process of the steel plate, degreasing containing caustic soda or caustic potash as the main component in the process before coating. These oils are removed by the agent. At this time, the degreasing agent elutes the chromate coating applied to the galvannealed steel sheet, which deteriorates the corrosion resistance and the coating property. For the purpose of solving this problem, Japanese Patent Publication 6
Japanese Patent Laid-Open No. 1-28751 proposes a surface treatment method for an alloyed hot-dip galvanized steel sheet in which a non-etching chromate treatment containing a water-soluble organic substance is performed after the etching chromate treatment. Alloyed molten Z produced by this method
Although the corrosion resistance of n-plated steel sheet is improved compared to the conventional one, the chromate film containing organic substances still elutes, and the elution amount is large depending on the degreasing conditions. As a result, the degreasing conditions partially differ. In such a case, the amount of chromium eluted in the same coil is different, which causes a difference in corrosion resistance. Further, since chromium is eluted, there is a problem of wastewater treatment accompanying this. Further, it has been known that when the steel sheet is processed by press forming, the chromate film is destroyed and the bare corrosion resistance after processing has almost no effect of chromate, and there is a problem in the powdering property due to peeling of the plating during processing. As described above, the alloyed hot-dip galvanized steel sheet produced by the conventional technique is insufficient in terms of bare corrosion resistance before processing, bare corrosion resistance after processing, workability, and wastewater treatment.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者らは、
上記課題を解決すべく、下層の合金化溶融Znめっき層
の組成あるいは構造を種々変化させて、上層のクロメー
ト付着量及びクロメート上の有機樹脂の種類との組み合
わせを種々検討したところ、合金化溶融Znめっき層中
組成がFe8〜15%、Al 0.1〜0.5%である
範囲、あるいは、Feは1〜8%と低含有率であっても
めっき層表面の平均粗度、結晶粒径等が特定の範囲、さ
らには、めっき層中に共存する特定の合金元素および含
有率を制限することによって、めっき層の裸耐食性、加
工性を確保し、この上層に特定量のクロメートとクロメ
ート上に特定コロイドを含有する特定の有機樹脂を塗布
して、クロムの溶出を抑え、クロメート皮膜やめっき層
への腐食因子の進入を抑制し、かつ、加工時のめっき層
およびクロメート層を保護することによって、特公昭6
1−28751号公報のクロメートと同じ付着量でも優
れた耐食性を示し、また、加工性、密着性、塗装性が著
しく向上することを見出した。本発明は上記のように合
金化溶融Znめっき鋼板上にクロメートおよび有機皮膜
層を施すことによって、裸耐食性、加工性、密着性、塗
装性に優れた有機複合型合金化溶融Znめっき鋼板を提
供するものである。
Therefore, the present inventors have
In order to solve the above problems, the composition or structure of the lower alloyed hot-dip Zn coating layer was changed variously, and various combinations of the upper layer chromate deposition amount and the type of the organic resin on the chromate were examined, and the alloyed hot melt The composition in the Zn plating layer is in the range of 8 to 15% of Fe and 0.1 to 0.5% of Al, or even if the Fe content is as low as 1 to 8%, the average roughness of the plating layer surface and the crystal grains. By limiting the specific range of diameter, etc., as well as the specific alloying elements and content that coexist in the plating layer, the bare corrosion resistance and workability of the plating layer are secured, and a specific amount of chromate and chromate is added to this upper layer. A specific organic resin containing a specific colloid is applied on the top to suppress the elution of chromium, suppress the entry of corrosion factors into the chromate film and plating layer, and also to the plating layer and chromate layer during processing. By protecting the
It was found that even with the same amount of chromate as in JP-A 1-28751, excellent corrosion resistance is exhibited, and workability, adhesion, and paintability are remarkably improved. The present invention provides an organic composite type alloyed hot dip galvanized steel sheet excellent in bare corrosion resistance, workability, adhesiveness and coatability by applying a chromate and an organic film layer on the alloyed hot dip galvanized steel sheet as described above. To do.

【0005】本発明は、鋼板表面のめっき層中平均Fe
含有率8〜15%、Al含有率0.1〜0.5%からな
る溶融Znめっき層あるいは鋼板の表面にめっき層中F
e含有率がめっき層中平均で1〜8%最表層で0.1〜
2%、Al含有率がめっき層中平均で0.1〜0.5%
含有し、めっき層表面の平均粗度Raが2.2〜3.5
μm、平均結晶粒径が50〜200μmである溶融Zn
めっき層あるいは記載のZnめっき層中にさらに合金元
素として、Mg,Sb,Pb,Ti,Snを単独あるい
は複合で0.01〜5%含有する溶融Znめっき層を最
下層とし、クロム量で10〜150mg/m2のクロメ
ート被覆した鋼板に10〜200mμの粒径のエチレン
/アクリル酸共重合体樹脂、ポリアクリル酸及びその共
重合体樹脂、ポリアクリル酸エステル及びその共重合体
樹脂、ポリメタクリル酸及びその共重合体樹脂、ポリメ
タクリル酸エステル及びその共重合体樹脂、ビスフェノ
ールAと前記アクリル系樹脂との共重合体樹脂の水系有
機樹脂分散体の1種または2種以上の水系有機樹脂分散
体の固形分100重量部に対し、1mμから12mμの
粒径のSiO2,Cr23,Fe23,Fe34,Mg
O,ZrO2,SnO2,Al23,Sb25のコロイド
(ゾル)の1種または2種以上を固形分で5〜100重
量部含有した有機皮膜で被覆することによって、裸耐食
性、加工性、密着性、塗装性を著しく向上せしめたもの
である。
The present invention is based on the average Fe in the plating layer on the surface of the steel sheet.
On the surface of the hot-dip Zn coating layer or the steel sheet having a content rate of 8 to 15% and an Al content of 0.1 to 0.5%, F in the plating layer
e content is 1 to 8% on average in the plated layer and 0.1 to 0.1 in the outermost layer
2%, Al content is 0.1-0.5% on average in the plating layer
And the average roughness Ra of the plating layer surface is 2.2 to 3.5.
μm, fused Zn having an average crystal grain size of 50 to 200 μm
The lowermost layer is a molten Zn plating layer containing 0.01 to 5% of Mg, Sb, Pb, Ti, Sn alone or in combination as an alloying element in the plating layer or the described Zn plating layer, and the amount of chromium is 10 ~ 150 mg / m 2 chromate-coated steel sheet with ethylene / acrylic acid copolymer resin, polyacrylic acid and its copolymer resin, polyacrylic acid ester and its copolymer resin and polymethacryl having a particle diameter of 10 to 200 mμ One or more aqueous organic resin dispersions of an aqueous organic resin dispersion of an acid and a copolymer resin thereof, a polymethacrylic acid ester and a copolymer resin thereof, and a copolymer resin of bisphenol A and the acrylic resin. the solid content 100 parts by weight of the body, SiO 2 particle size of 12mμ from 1mμ, Cr 2 O 3, Fe 2 O 3, Fe 3 O 4, Mg
Bare corrosion resistance is obtained by coating one or more colloids (sols) of O, ZrO 2 , SnO 2 , Al 2 O 3 , and Sb 2 O 5 with an organic film containing 5 to 100 parts by weight of solid content. , The workability, the adhesion, and the paintability are remarkably improved.

【0006】以下、本発明について詳細に説明する。ま
ず、めっき層の構成について説明する。めっき層中の平
均Fe含有率を8〜15%としたのは、この範囲内で、
めっき層自体の塗装後の耐食性(キズ部の耐ブリスター
性)および、加工性(耐パウダリング性)が最も優れて
いるためである。8%未満では、塗装後の耐食性がやや
不十分となり、また、15%を超えるとめっき層の合金
化が進みすぎ、地鉄界面のΓ相(Fe5Zn22)が発達
しすぎるため、加工性が不十分となる。めっき層中のA
lは0.1〜0.5%が適量である。めっき層中Alは
溶融Zn浴中へのAlの添加量によって変化し、Alは
めっき反応時に地鉄と結合してZn−Fe合金化反応に
対して強固なFe−Al−Zn3元バリヤー層を形成す
ることが知られている。めっき層中のAlが0.1%未
満の場合には、Fe−Al−Znバリヤー層の形成が不
十分なため、合金層のうちΓ相が発達しすぎるためめっ
き密着性が劣化する。また、0.5%を超えるとZn−
Fe合金化が進行しにくい。また、めっき層中のFeが
めっき層中平均で1〜8%の範囲であっても、めっき層
表層部のFeが0.1〜2%、Al含有率がめっき層中
平均で0.1〜0.5%、めっき層表面の平均粗度Ra
が2.2〜3.5μm、平均結晶粒径が50〜200μ
mの場合に塗装後の耐食性が良好となる。さらに、上
記、めっき層中に合金元素として、Mg,Sb,Pb,
Ti,Snを単独あるいは複合で0.01〜5%含有す
る場合において、特に塗装後の耐食性がさらに良好とな
り、これらの微量元素は、腐食環境下の塗膜下におい
て、Znの腐食生成物を安定化させ、カソード反応を抑
制する作用によるものと考えられる。
The present invention will be described in detail below. First, the structure of the plating layer will be described. Within this range, the average Fe content in the plating layer is set to 8 to 15%.
This is because the plated layer itself has the best corrosion resistance (blister resistance of the scratched portion) and workability (powdering resistance) after coating. If it is less than 8%, the corrosion resistance after coating will be somewhat insufficient, and if it exceeds 15%, the alloying of the plating layer will proceed too much, and the Γ phase (Fe 5 Zn 22 ) at the base iron interface will develop too much. Becomes insufficient. A in the plating layer
The appropriate amount of l is 0.1 to 0.5%. Al in the plating layer changes depending on the amount of Al added to the molten Zn bath, and Al combines with the base iron during the plating reaction to form a Fe-Al-Zn ternary barrier layer that is strong against the Zn-Fe alloying reaction. Known to form. When Al in the plating layer is less than 0.1%, the Fe—Al—Zn barrier layer is not sufficiently formed, and the Γ phase of the alloy layer develops too much, resulting in poor plating adhesion. Further, when it exceeds 0.5%, Zn-
Fe alloying is difficult to proceed. Further, even if Fe in the plating layer is in the range of 1 to 8% on average in the plating layer, Fe in the surface layer portion of the plating layer is 0.1 to 2% and Al content is 0.1 in the plating layer on average. ~ 0.5%, average roughness Ra of the plating layer surface
Is 2.2 to 3.5 μm, and the average crystal grain size is 50 to 200 μm.
In the case of m, the corrosion resistance after coating is good. Further, as alloy elements in the plating layer, Mg, Sb, Pb,
In the case of containing 0.01 to 5% of Ti and Sn alone or in combination, particularly the corrosion resistance after coating is further improved, and these trace elements form a corrosion product of Zn under the coating film in a corrosive environment. It is considered that this is due to the effect of stabilizing and suppressing the cathode reaction.

【0007】次に、クロメート層および有機層について
説明する。Crの付着量を10〜150mg/m2とし
たのは、Cr量が10mg/m2以下の場合、素材を十
分に被覆することができないため、有機皮膜が強い結合
力を確保することができないめっき素地と接触する部分
があらわれ、有機皮膜の密着性が低下し、また、150
mg/m2を超えると、クロメート皮膜自身が凝集破壊
をおこして、トータル的に密着性が低下するためであ
る。なお、クロメート処理として、塗布型、反応型、電
解型などの方法で使用できる。有機層はコロイドと有機
樹脂で構成される。有機樹脂としては、エチレン/アク
リル酸共重合体樹脂、ポリアクリル酸及びその共重合体
樹脂、ポリアクリル酸エステル及びその共重合体樹脂、
ポリメタクリル酸及びその共重合体樹脂、ポリメタクリ
ル酸エステル及びその共重合体樹脂、ビスフェノールA
と前記アクリル系樹脂との共重合体樹脂が適当であり、
コロイドと安定に共存させるために溶媒を水とするエマ
ルジョン、ディスパージョンあるいは水溶性である水系
有機樹脂でなければならない。有機樹脂の粒径は10〜
200mμ、コロイドの粒径については1〜12mμが
適当である。樹脂粒径が200mμを、コロイドの粒径
については12mμを超えると、樹脂およびコロイドの
トータル表面積が小さくなることから、樹脂と樹脂、樹
脂とコロイドおよびコロイドとクロメート間の結合力が
弱くなる。このため、有機皮膜が脆くなり未加工時の裸
耐食性や密着性が低下する。さらに、密着性の低下にと
もなって加工時に有機皮膜が剥離するため、皮膜の成形
金型へのビルドアップが生じたり、加工後の裸耐食性が
低下する。また、樹脂の粒径が10mμ未満、コロイド
の粒径が1mμ未満の場合、メカニズムについては明確
ではないが、未加工時の裸耐食性が劣化する。コロイド
の添加量は、共存する有機樹脂100部に対して、5〜
100部が適当である。5部未満の場合、コロイドとク
ロメート間の結合力が弱いため密着性が低下し、耐食性
や加工性に大きく影響を与える。また、100部を超え
ると特に、湿潤環境下でコロイドのもつ極性のためと考
えられるが、吸水量が多くなる結果、クロメート層と有
機層との密着性が低下する。以上説明したコロイドの効
果はSiO2,Cr23,Fe23,Fe34,Mg
O,ZrO2,SnO2,Al23,Sb25であっても
同様であり、コロイドの種類を特に限定するものではな
い。
Next, the chromate layer and the organic layer will be described. The deposition amount of Cr was 10-150 mg / m 2, when the Cr content is 10 mg / m 2 or less, since it is impossible to sufficiently cover the material, it is impossible to organic coating to ensure a strong bond strength The part that comes into contact with the plating base appears, and the adhesion of the organic film is reduced.
This is because if the amount exceeds mg / m 2 , the chromate film itself causes cohesive failure, resulting in a total decrease in adhesion. As the chromate treatment, a coating type, a reaction type, an electrolytic type or the like can be used. The organic layer is composed of colloid and organic resin. Examples of the organic resin include ethylene / acrylic acid copolymer resin, polyacrylic acid and its copolymer resin, polyacrylic acid ester and its copolymer resin,
Polymethacrylic acid and its copolymer resin, polymethacrylic acid ester and its copolymer resin, bisphenol A
And a copolymer resin of the above acrylic resin is suitable,
In order to stably coexist with the colloid, it must be an emulsion, dispersion or water-soluble water-based organic resin in which the solvent is water. The particle size of the organic resin is 10
It is suitable that the particle size is 200 mμ and the particle size of the colloid is 1 to 12 mμ. If the resin particle diameter exceeds 200 mμ and the colloid particle diameter exceeds 12 mμ, the total surface area of the resin and the colloid becomes small, so that the bonding force between the resin and the resin, the resin and the colloid, and the colloid and the chromate becomes weak. For this reason, the organic coating becomes brittle, and the bare corrosion resistance and the adhesiveness when unprocessed are reduced. Furthermore, since the organic film peels off during processing due to the decrease in adhesion, build-up of the film on the molding die occurs, and bare corrosion resistance after processing decreases. Further, when the particle size of the resin is less than 10 mμ and the particle size of the colloid is less than 1 mμ, although the mechanism is not clear, bare corrosion resistance in unprocessed deteriorates. The amount of colloid added is 5 to 100 parts of the coexisting organic resin.
100 parts is appropriate. If the amount is less than 5 parts, the bonding strength between the colloid and the chromate is weak, so that the adhesiveness is lowered and the corrosion resistance and the processability are greatly affected. Further, if it exceeds 100 parts, it is considered that this is due to the polarity of the colloid, especially in a humid environment, but as a result of the increased water absorption, the adhesion between the chromate layer and the organic layer decreases. The effects of the colloid described above are SiO 2 , Cr 2 O 3 , Fe 2 O 3 , Fe 3 O 4 , and Mg.
The same applies to O, ZrO 2 , SnO 2 , Al 2 O 3 , and Sb 2 O 5 , and the kind of colloid is not particularly limited.

【0008】下地鋼板としては、熱延鋼板、冷延鋼板と
もにでき、Alキルド鋼板、Al−Siキルド鋼板、T
i添加極低炭素鋼板、P−Ti添加極低炭素鋼板、高S
i,Mn系の高張力鋼板などのものが適用できる。ま
た、溶融Znめっき方法としては、通常のゼンジマー
法、無酸化炉法、フラックス法など種々の方法が使用で
きる。以上、本発明をめっき層およびクロメート層・有
機層それぞれについて述べたが、本発明は、これら各層
の個々の効果およびこれらの相乗効果を見出すことによ
って、優れた裸耐食性、加工性、密着性、塗装性を保持
する表面処理鋼板を提供するものである。
The base steel sheet can be a hot-rolled steel sheet or a cold-rolled steel sheet, and may be an Al-killed steel sheet, an Al-Si-killed steel sheet, or a T-rolled steel sheet.
i-added ultra-low carbon steel sheet, P-Ti-added ultra-low carbon steel sheet, high S
Materials such as i and Mn-based high-tensile steel plates can be applied. Further, as the hot-dip Zn plating method, various methods such as a normal Sendzimer method, a non-oxidizing furnace method, and a flux method can be used. Although the present invention has been described with respect to the plating layer and the chromate layer / organic layer, respectively, the present invention finds excellent bare corrosion resistance, workability, and adhesion by finding the individual effects of these layers and their synergistic effects. It is intended to provide a surface-treated steel sheet that retains paintability.

【0009】以下で、本発明を具体的に説明する。下地
に熱延鋼板を用い、60g/m2のめっき付着量で溶融
Znめっきを施した。溶融めっき後は、放冷で合金化の
後水スプレー噴霧、あるいは、470〜520℃で1〜
40秒の範囲内で合金化処理を行って種々の合金化溶融
Znめっき鋼板を作製した。このようにして作製した合
金化溶融Znめっき鋼板上にクロメート処理した後、乾
燥して有機皮膜が1.0g/m2となるように塗布し
た。図1には、めっき層中平均Fe含有率8.1%,A
l含有率0.4%、クロム付着量72.8mg/m2
93mμの粒径のエチレン−アクリル酸共重合体100
固形重量部に対し、5mμのコロイダルシリカを30部
添加した有機樹脂を塗布した時の試料とめっき層は同様
にして特公昭61−28751号公報に基づいて作製し
た試料(1段目クロメート:58.3mg/m2,2段
目クロメート:72.1mg/m2)を液温60℃とし
たリドリン270TO(商品名、日本パーカライジング
(株)製)の浴に浸漬させた時のクロムの溶出量を示し
た。図のように、本発明に基づく試料では脱脂時間を変
更してもクロムの溶出はなく、クロメート皮膜が保持さ
れているが、特公昭61−28751号公報に基づく試
料では、脱脂時間が長くなるほどクロムは溶出してお
り、本発明ではクロムの溶出にともなう排水の問題はな
いことがわかる。
The present invention will be specifically described below. Hot-rolled steel sheet was used as a base, and hot-dip Zn coating was performed at a coating amount of 60 g / m 2 . After hot-dip galvanizing, it is allowed to cool, alloyed and then sprayed with water, or at 470-520 ° C for 1-
Alloying treatment was performed within a range of 40 seconds to produce various alloyed hot-dip galvanized steel sheets. Chromate treatment was performed on the alloyed hot-dip Zn-plated steel sheet thus produced, and then dried to apply an organic coating of 1.0 g / m 2 . In FIG. 1, the average Fe content in the plating layer is 8.1%, A
l content 0.4%, chromium adhesion amount 72.8 mg / m 2 ,
Ethylene-acrylic acid copolymer 100 having a particle size of 93 mμ
A sample obtained by applying an organic resin containing 30 parts of 5 mμ colloidal silica to the solid weight part and a plating layer were similarly prepared according to JP-B-61-28751 (first-stage chromate: 58). Chromium elution amount when 3 mg / m 2 , second-stage chromate: 72.1 mg / m 2 ) was immersed in a bath of Ridrin 270TO (trade name, manufactured by Nihon Parkerizing Co., Ltd.) at a liquid temperature of 60 ° C. showed that. As shown in the figure, in the sample according to the present invention, chromium was not eluted even if the degreasing time was changed, and the chromate film was retained. However, in the sample according to Japanese Patent Publication No. 61-28751, the longer the degreasing time, the longer the degreasing time. Chromium is eluted, and it can be seen that in the present invention, there is no drainage problem associated with the elution of chromium.

【0010】図2には、上記と同様の条件で処理を行
い、クロム付着量のみを変化させた時の皮膜の密着性に
ついて示した。図3〜図11には、上記と同様の条件で
処理を行い(ただし、クロム付着量は68〜76mg/
2)、樹脂粒径、コロイダルシリカの粒径、コロイダ
ルシリカの添加部数をそれぞれ変化させた時の加工後の
裸耐食性、塗料密着性および加工性について示した。図
12、図13には、上記と同様の条件で処理を行い、め
っき層中平均Fe含有率を変化させた時の塗装後の耐食
性、加工性について示した。図14には、上記と同様の
条件で処理を行い、めっき層中平均Al含有率を変化さ
せた時の加工性について示した。図15には、上記と同
様の条件で処理を行い、めっき層中にMgを合金元素と
して添加し、この含有率を変化させた時の塗装後の耐食
性を示した。また、本発明の請求項2の条件に対して、
平均結晶粒径、平均粗度(Ra)、めっき表層部のFe
含有量、めっき層中平均Al含有率、めっき層中平均F
e含有率をそれぞれ変化させた時の塗装後の耐食性を図
16〜図20に示した。
FIG. 2 shows the adhesion of the coating when the treatment was carried out under the same conditions as above and only the amount of chromium deposited was changed. 3 to 11 are treated under the same conditions as above (however, the chromium deposition amount is 68 to 76 mg /
m 2 ), resin particle size, colloidal silica particle size, and number of parts of colloidal silica added were changed to show bare corrosion resistance after processing, paint adhesion and processability. 12 and 13 show the corrosion resistance and workability after coating when the average Fe content in the plating layer was changed by performing the treatment under the same conditions as described above. FIG. 14 shows the workability when the treatment was performed under the same conditions as above and the average Al content in the plating layer was changed. FIG. 15 shows the corrosion resistance after coating when the treatment was performed under the same conditions as above, Mg was added as an alloying element to the plating layer, and the content rate was changed. Further, for the condition of claim 2 of the present invention,
Average crystal grain size, average roughness (Ra), Fe in plating surface layer
Content, average Al content in plating layer, average F in plating layer
Corrosion resistance after coating when the content of e was changed is shown in FIGS. 16 to 20.

【0011】なお、皮膜の密着性の評価については、試
験片を30分間沸騰水に浸漬し、その後、2mmゴバン
目に皮膜をカット、テープ剥離し、◎,○,△,×,×
×の5段階で評価したものであり、◎が最良である。 ◎ :皮膜剥離面積 0% ○ :皮膜剥離面積 0〜1% △ :皮膜剥離面積 1〜10% × :皮膜剥離面積 10〜50% ××:皮膜剥離面積 50%以上
Regarding the evaluation of the adhesion of the film, the test piece was dipped in boiling water for 30 minutes, and then the film was cut at 2 mm intervals and the tape was peeled off. ◎, ○, △, ×, ×
The evaluation was made in 5 grades of x, and ⊚ is the best. ◎: Film peeling area 0% ○: Film peeling area 0 to 1% △: Film peeling area 1 to 10% ×: Film peeling area 10 to 50% XX: Film peeling area 50% or more

【0012】加工後耐食性は、試験片を前記したリドリ
ン270TOに120sec浸漬させた後、プレス加工
し、加工部の耐食性をみた。評価は、JIS−Z−23
71の規格に準拠した塩水噴霧試験により(食塩水5
%、槽内温度35℃,噴霧圧力20psi)5000時
間後の発錆状況を調査し、◎,○,△,×,××の5段
階で評価したものであり、◎が最良である。 ◎ :赤錆発生 0% ○ :赤錆発生 0〜1% △ :赤錆発生 1〜10% × :赤錆発生 10〜50% ××:赤錆発生 50%以上
Regarding the corrosion resistance after processing, the test piece was dipped in the above-mentioned Rydrin 270TO for 120 seconds and then pressed to check the corrosion resistance of the processed portion. Evaluation is JIS-Z-23
According to the salt spray test according to the standard of 71,
%, In-bath temperature 35 ° C., spray pressure 20 psi) The rusting condition after 5000 hours was investigated and evaluated in 5 grades of ◎, ○, △, ×, XX, and ◎ is the best. ◎: Red rust occurrence 0% ○: Red rust occurrence 0 to 1% △: Red rust occurrence 1 to 10% ×: Red rust occurrence 10 to 50% XX: Red rust occurrence 50% or more

【0013】塗料密着性の評価については、メラミン系
塗料を20μm塗装し、JIS−K−5400により描
画し、ゴバン目エリクセン、衝撃、2T折り曲げの各試
験を行った。なお、ゴバン目エリクセン試験については
50℃の温水中に240時間浸漬した後の試料について
も評価した。評価は、◎,○,△,×,××の5段階で
評価したものであり、◎が最良である。 ◎ :塗膜剥離面積 0% ○ :塗膜剥離面積 0〜1% △ :塗膜剥離面積 1〜10% × :塗膜剥離面積 10〜50% ××:塗膜剥離面積 50%以上
For the evaluation of paint adhesion, a melamine-based paint was applied to a thickness of 20 μm, drawn according to JIS-K-5400, and each test of scoring, elixir, impact, and 2T bending was performed. In addition, in the burdock eye Erichsen test, the sample after being immersed in warm water at 50 ° C. for 240 hours was also evaluated. The evaluation was made in five grades of ⊚, ○, Δ, ×, and XX, and ⊚ is the best. ◎: coating film peeling area 0% ○: coating film peeling area 0 to 1% △: coating film peeling area 1 to 10% ×: coating film peeling area 10 to 50% xx: coating film peeling area 50% or more

【0014】塗装後耐食性の評価については、メラミン
系塗料を20μm塗装し、塗装鋼板の素地に達するクロ
スカットを入れた後、JIS−Z−2371の規格に準
拠した塩水噴霧試験により、合金元素の効果については
840時間後、他については672時間後のクロスカッ
ト部の耐ブリスター性を評価した。評価は、◎,○,
△,×,××の5段階で評価したものであり、◎が最良
である。 ◎ :ブリスター幅 3mm以下 ○ :ブリスター幅 3〜4mm以下 △ :ブリスター幅 4〜5mm以下 × :ブリスター幅 5〜6mm以下 ××:ブリスター幅 6mm以上
Regarding the evaluation of the corrosion resistance after coating, a melamine-based paint was coated to a thickness of 20 μm, a cross cut reaching the base of the coated steel sheet was inserted, and then a salt spray test in accordance with the standard of JIS-Z-2371 was applied to determine the alloy elements. The blister resistance of the cross-cut portion was evaluated after 840 hours for the effect and after 672 hours for the other. Evaluation is ◎, ○,
The evaluation was made in 5 grades of Δ, ×, and XX, and ◎ is the best. ◎: Blister width 3 mm or less ○: Blister width 3 to 4 mm or less Δ: Blister width 4 to 5 mm or less ×: Blister width 5 to 6 mm or less XX: Blister width 6 mm or more

【0015】加工性は500回の連続プレスを行い、途
中の皮膜のビルドアップ性と型カジリ性を調査し◎,
○,△,×,××の5段階で評価したものであり、◎が
最良である。 ◎ :連続プレス500回後、ビルドアップあるいはパ
ウダリング皆無、型カジリ皆無 ○ :連続プレス400〜500回後、ビルドアップあ
るいはパウダリング皆無、型カジリ皆無 △ :連続プレス200〜400回後、ビルドアップあ
るいはパウダリング一部発生、型カジリ一部発生、 × :連続プレス100〜200回後、ビルドアップあ
るいはパウダリング一部発生、型カジリ一部発生 ××:連続プレス 0〜200回後、ビルドアップあ
るいはパウダリング一部発生、型カジリ一部発生
For workability, continuous pressing was performed 500 times, and the build-up property and mold galling property of the coating on the way were investigated.
The evaluation was made in 5 grades of ○, △, ×, and XX, and ◎ is the best. ◎: After 500 continuous presses, no build-up or powdering, no mold galling ○: 400-500 continuous presses, no build-up or powdering, no mold galling △: 200-400 continuous presses, build-up Or partial powdering, partial mold galling, ×: Build-up after 100 to 200 times of continuous press, or build-up or partial powdering, partial mold galling XX: Continuous press after 0 to 200 times, build-up Or part of powdering, part of mold scraping

【0016】図2から明らかなように、クロムの付着量
が10mg/m2未満あるいは150mg/m2超では皮
膜の密着性がやや低下する傾向にある。図3から明らか
なように、樹脂粒径によって塗装後の耐食性は変化し、
粒径が10〜200mμできわめて優れた加工後耐食性
を示し、10mμ未満あるいは200mμ超になると、
加工後耐食性は低下する。図4から明らかなように、樹
脂粒径によって塗料密着性は変化し、粒径が10〜20
0mμできわめて優れた塗料密着性を示し、10mμ未
満あるいは200mμ超になると、塗料密着性は大幅に
低下する。図5から明らかなように、樹脂粒径によって
連続加工性(プレス性)は変化し、粒径が10〜200
mμできわめて優れた加工性を示し、10mμ未満ある
いは200mμ超になると、加工性は大幅に低下し、ビ
ルドアップする。
As is clear from FIG. 2, when the amount of chromium deposited is less than 10 mg / m 2 or more than 150 mg / m 2 , the adhesion of the coating tends to be slightly lowered. As is clear from FIG. 3, the corrosion resistance after coating changes depending on the resin particle size,
When the particle size is 10 to 200 mμ, it shows excellent corrosion resistance after processing, and when it is less than 10 mμ or exceeds 200 mμ,
Corrosion resistance is reduced after processing. As is clear from FIG. 4, the paint adhesion varies depending on the resin particle size, and the particle size is 10 to 20.
When it is less than 10 mμ or more than 200 mμ, the paint adhesion is significantly reduced. As is apparent from FIG. 5, the continuous workability (pressability) changes depending on the resin particle size, and the particle size is 10 to 200.
When it is less than 10 mμ or more than 200 mμ, the workability is significantly reduced and buildup occurs.

【0017】図6から明らかなように、コロイダルシリ
カの粒径によって加工後の耐食性は変化し、1〜12m
μできわめて優れた加工後耐食性を示し、1mμ未満あ
るいは12mμ超になると、加工後耐食性は低下する。
図7から明らかなように、コロイダルシリカの粒径によ
って塗料密着性は変化し、1〜12mμできわめて優れ
た塗料密着性を示し、1mμ未満あるいは12mμ超に
なると塗料密着性は低下する。図8から明らかなよう
に、コロイダルシリカの粒径によって連続加工性は変化
し、粒径が1〜12mμできわめて優れた加工性を示
し、1mμ未満あるいは12mμ超になると、加工性は
低下し、ビルドアップする。図9から明らかなように、
コロイダルシリカの添加部数によって加工後の耐食性は
変化し、5部以上で優れた加工後耐食性を示し、5部未
満になると、加工後耐食性は低下する。
As is clear from FIG. 6, the corrosion resistance after processing varies depending on the particle size of the colloidal silica.
When μ, the corrosion resistance after processing is extremely excellent, and when it is less than 1 mμ or more than 12 mμ, the corrosion resistance after processing decreases.
As is clear from FIG. 7, the coating adhesion varies depending on the particle size of the colloidal silica, and the coating adhesion is extremely excellent at 1 to 12 mμ, and the coating adhesion decreases when it is less than 1 mμ or more than 12 mμ. As is clear from FIG. 8, the continuous workability changes depending on the particle size of the colloidal silica, and when the particle size is 1 to 12 mμ, the workability is extremely excellent, and when the particle size is less than 1 mμ or more than 12 mμ, the workability decreases, Build up. As is clear from FIG.
Corrosion resistance after processing changes depending on the number of parts of colloidal silica added, and excellent corrosion resistance after processing is exhibited at 5 parts or more, and corrosion resistance after processing is reduced when it is less than 5 parts.

【0018】図10から明らかなように、コロイダルシ
リカの添加部数によって塗料密着性は変化し、5〜10
0部で優れた塗料密着性を示し、5部未満あるいは10
0部超になると、塗料密着性は大幅に低下する。図11
から明らかなように、コロイダルシリカの添加部数によ
って連続加工性は変化し、5〜100部で優れた加工性
を示し、5部未満あるいは100部超になると、加工性
は低下し、ビルドアップする。図12から明らかなよう
に、めっき層中平均Fe含有率によって塗装後の耐食性
は変化し、8%以上で優れた塗装後耐食性を示し、8%
未満になると、塗装後耐食性は低下する。図13から明
らかなように、めっき層中平均Fe含有率によって連続
加工性は変化し、15%以下で優れた加工性を示し、1
5%超になると、加工性は低下し、パウダリングをおこ
す。図14から明らかなように、めっき層中平均Al含
有率によって連続加工性は変化し、0.1〜0.5%で
優れた加工性を示し、0.1%未満あるいは0.5%超
になると、加工性は低下し、パウダリングをおこす。図
15から明らかなように、めっき層中Mg含有率によっ
て塗装後の耐食性は変化し、0.01〜5%で優れた塗
装後耐食性を示し、0.01%未満あるいは5%超にな
ると、塗装後耐食性は低下する。
As is clear from FIG. 10, the coating adhesion varies depending on the number of parts of colloidal silica added, and it is 5 to 10
Excellent paint adhesion at 0 parts, less than 5 parts or 10 parts
If it exceeds 0 part, the adhesiveness of the coating material is significantly reduced. 11
As is clear from the above, the continuous workability changes depending on the number of added parts of colloidal silica, and excellent workability is exhibited at 5 to 100 parts, and if less than 5 parts or more than 100 parts, the workability decreases and buildup occurs. .. As is clear from FIG. 12, the corrosion resistance after coating changes depending on the average Fe content in the plating layer, and 8% or more shows excellent corrosion resistance after coating,
If it is less than 1, the corrosion resistance after coating is lowered. As is clear from FIG. 13, continuous workability changes depending on the average Fe content in the plating layer, and excellent workability is exhibited at 15% or less.
If it exceeds 5%, workability deteriorates and powdering occurs. As is clear from FIG. 14, the continuous workability changes depending on the average Al content in the plating layer, showing excellent workability at 0.1 to 0.5%, and less than 0.1% or more than 0.5%. Then, the workability deteriorates and powdering occurs. As is clear from FIG. 15, the corrosion resistance after coating changes depending on the Mg content in the plating layer, and 0.01 to 5% shows excellent corrosion resistance after coating, and when it is less than 0.01% or more than 5%, Corrosion resistance decreases after painting.

【0019】図16から明らかなように、めっき層平均
結晶粒径によって塗装後の耐食性は変化し、50〜20
0μmで優れた塗装後耐食性を示し、50μm未満ある
いは200μm超になると、塗装後耐食性は低下する。
図17から明らかなように、めっき層平均粗度によって
塗装後の耐食性は変化し、2.2〜3.5μmで優れた
塗装後耐食性を示し、2.2μm未満あるいは3.5μ
m超になると、塗装後耐食性は低下する。図18から明
らかなように、めっき表層部Fe含有率によって塗装後
の耐食性は変化し、0.1〜2%で優れた塗装後耐食性
を示し、0.1%未満あるいは2%超になると、塗装後
耐食性は低下する。図19から明らかなように、めっき
層中Al含有率によって塗装後の耐食性は変化し、0.
1〜0.5%で優れた塗装後耐食性を示し、0.1%未
満あるいは0.5%超になると、塗装後耐食性は低下す
る。図20から明らかなように、めっき層中Fe含有率
によって塗装後の耐食性は変化し、1〜8%で優れた塗
装後耐食性を示し、1%未満になると、塗装後耐食性は
低下する。
As is clear from FIG. 16, the corrosion resistance after coating varies depending on the average grain size of the plated layer, and the average grain size of the plated layer varies from 50 to 20.
When 0 μm, excellent corrosion resistance after coating is exhibited, and when it is less than 50 μm or more than 200 μm, the corrosion resistance after coating decreases.
As is clear from FIG. 17, the corrosion resistance after coating changes depending on the average roughness of the plating layer, and shows excellent corrosion resistance after coating at 2.2 to 3.5 μm, which is less than 2.2 μm or 3.5 μm.
If it exceeds m, the corrosion resistance after coating is lowered. As is clear from FIG. 18, the corrosion resistance after coating changes depending on the Fe content in the plating surface layer portion, and shows excellent corrosion resistance after coating at 0.1 to 2%, and when less than 0.1% or more than 2%, Corrosion resistance decreases after painting. As is clear from FIG. 19, the corrosion resistance after coating changes depending on the Al content in the plating layer, and
If the content is less than 0.1% or more than 0.5%, the corrosion resistance after coating is deteriorated. As is clear from FIG. 20, the corrosion resistance after coating changes depending on the Fe content in the plating layer, and excellent corrosion resistance after coating is exhibited at 1 to 8%, and if it is less than 1%, the corrosion resistance after coating is reduced.

【0020】[0020]

【実施例】表1、に本発明のめっき層およびクロメート
層、有機層の条件で得られた鋼板の実施例を示す。作製
方法および評価方法は、本発明を具体的に説明した項の
方法と同様である。★は本発明の条件から逸脱した試料
である。また、*は特公昭61−28751号公報の実
施例1にしたがって作製した比較材である。No.1〜
44に示した通り、本発明の条件を満足する有機複合型
合金化溶融Znめっき鋼板では、No.56に示した従
来の合金化溶融Znめっき鋼板と比べて、裸耐食性、塗
料密着性、塗装後耐食性においていずれも飛躍的に向上
していることは明白であり、No.45〜55に示した
ように、本発明の条件を逸脱するめっき鋼板の場合、上
記いずれの性能も劣る。また、No.57〜59に示す
ようにエッチング性クロメート処理後に水溶性有機物を
含有する非エッチング性クロメート処理を施す特公昭6
1−28751号公報の方法で作製した合金化溶融Zn
めっき鋼板に比べても上記性能が著しく向上しているこ
とがわかる。
EXAMPLES Table 1 shows examples of steel sheets obtained under the conditions of the plating layer, the chromate layer and the organic layer of the present invention. The manufacturing method and the evaluation method are the same as the methods described in the section specifically describing the present invention. * Indicates a sample that deviates from the conditions of the present invention. Further, * is a comparative material produced according to Example 1 of Japanese Examined Patent Publication No. 61-28751. No. 1 to
As shown in No. 44, in the organic composite type alloyed hot dip galvanized steel sheet satisfying the conditions of the present invention, No. Compared with the conventional hot-dip galvannealed steel sheet shown in No. 56, it is clear that the bare corrosion resistance, the paint adhesion, and the post-coating corrosion resistance are all significantly improved. As shown in Nos. 45 to 55, in the case of a plated steel sheet that deviates from the conditions of the present invention, all of the above performances are inferior. In addition, No. 57-59, a non-etching chromate treatment containing a water-soluble organic substance is performed after the etching chromate treatment.
Alloyed fused Zn produced by the method of 1-28751
It can be seen that the above performance is remarkably improved as compared with the plated steel sheet.

【0021】[0021]

【表1A】 [Table 1A]

【0022】[0022]

【表1B】 [Table 1B]

【0023】[0023]

【表1C】 [Table 1C]

【0024】[0024]

【表1D】 [Table 1D]

【0025】[0025]

【発明の効果】以上のように、本発明に基づく有機複合
型合金化溶融Znめっき鋼板は、従来にない裸耐食性、
塗料密着性、塗装後耐食性を有していることからその工
業的意義は極めて大きい。
As described above, the organic composite type alloyed hot dip galvanized steel sheet according to the present invention has unprecedented bare corrosion resistance,
Since it has paint adhesion and corrosion resistance after painting, its industrial significance is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱脂時間とクロムの溶出量の関係を示した図、FIG. 1 is a diagram showing the relationship between degreasing time and chromium elution amount,

【図2】クロム付着量を変化させた時の皮膜の密着性に
ついて示した図、
FIG. 2 is a diagram showing the adhesion of the film when the amount of deposited chromium is changed,

【図3】〜[Figure 3]

【図11】樹脂粒径、コロイダルシリカの粒径、コロイ
ダルシリカの添加部数をそれぞれ変化させた時の加工後
の裸耐食性、塗料密着性および加工性について示した
図、
FIG. 11 is a diagram showing bare corrosion resistance after processing, coating adhesion and processability when the resin particle size, the colloidal silica particle size, and the number of colloidal silica added parts are changed,

【図12】めっき層中平均Fe含有率を変化させた時の
塗装後の耐食性、加工性について示した図、
FIG. 12 is a diagram showing corrosion resistance and workability after coating when the average Fe content in the plating layer is changed,

【図13】めっき層中平均Fe含有率を変化させた時の
塗装後の耐食性、加工性について示した図、
FIG. 13 is a diagram showing corrosion resistance and workability after coating when the average Fe content in the plating layer is changed,

【図14】めっき層中平均Al含有率を変化させた時の
加工性について示した図、
FIG. 14 is a diagram showing workability when the average Al content in the plating layer is changed,

【図15】めっき層中にMgを合金元素として添加し、
この含有率を変化させた時の塗装後の耐食性を示した
図、
FIG. 15 is a diagram showing that Mg is added as an alloying element in the plating layer,
Diagram showing the corrosion resistance after coating when changing this content rate,

【図16】〜FIG. 16

【図20】本発明に係る条件に対して、平均結晶粒径、
平均粗度(Ra)、めっき表層部のFe含有量、めっき
層中平均Al含有率、めっき層中平均Fe含有率をそれ
ぞれ変化させた時の塗装後の耐食性を示した図である。
FIG. 20 shows the average crystal grain size,
It is the figure which showed the corrosion resistance after coating when changing average roughness (Ra), Fe content of a plating surface layer part, average Al content rate in a plating layer, and average Fe content rate in a plating layer, respectively.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋼板の表面にめっき層中平均Fe含有率
8〜15%、Al含有率0.1〜0.5%よりなる溶融
Znめっき層を最下層とし、クロム量として10〜15
0mg/m2のクロメート被覆した鋼板に10〜200
mμの粒径のエチレンアクリル酸共重合体樹脂、ポリア
クリル酸及びその共重合体樹脂、ポリアクリル酸エステ
ル及びその共重合体樹脂、ポリメタクリル酸及びその共
重合体樹脂、ポリメタクリル酸エステル及びその共重合
体樹脂、ビスフェノールAと前記アクリル系樹脂との共
重合体樹脂の水系有機樹脂分散体の1種または2種以上
の水系有機樹脂分散体の固形分100重量部に対し、1
mμから12mμの粒径のSiO2,Cr23,Fe2
3,Fe34,MgO,ZrO2,SnO2,Al23
Sb25のコロイド(ゾル)の1種または2種以上を固
形分で5〜100重量部含有した有機皮膜で被覆するこ
とを特徴とする有機複合型合金化溶融Znめっき鋼板。
1. A molten Zn plating layer having an average Fe content of 8 to 15% and an Al content of 0.1 to 0.5% in the plating layer on the surface of a steel sheet is the lowermost layer, and the amount of chromium is 10 to 15%.
10 to 200 on 0 mg / m 2 chromate-coated steel sheet
Ethylene acrylic acid copolymer resin, polyacrylic acid and its copolymer resin, polyacrylic acid ester and its copolymer resin, polymethacrylic acid and its copolymer resin, polymethacrylic acid ester and their of mμ particle size 1% of one or two or more aqueous organic resin dispersions of an aqueous organic resin dispersion of a copolymer resin, a copolymer resin of bisphenol A and the above acrylic resin, relative to 100 parts by weight of the solid content of 1
SiO 2 , Cr 2 O 3 , Fe 2 O with a particle size of mμ to 12 mμ
3 , Fe 3 O 4 , MgO, ZrO 2 , SnO 2 , Al 2 O 3 ,
An organic composite-type alloyed hot-dip Zn-plated steel sheet, characterized in that one or more Sb 2 O 5 colloids (sols) are coated with an organic coating containing 5 to 100 parts by weight of solid content.
【請求項2】 鋼板の表面にめっき層中Fe含有率がめ
っき層中平均で1〜8%、最表層で0.1〜2%、Al
含有率がめっき層中平均で0.1〜0.5%含有し、め
っき層表面の平均粗度Raが2.2〜3.5μm、平均
結晶粒径が50〜200μmである溶融Znめっき層を
最下層として、クロム量として10〜150mg/m2
のクロメート被覆した鋼板に10〜200mμの粒径の
エチレンアクリル酸共重合体樹脂、ポリアクリル酸及び
その共重合体樹脂、ポリアクリル酸エステル及びその共
重合体樹脂、ポリメタクリル酸及びその共重合体樹脂、
ポリメタクリル酸エステル及びその共重合体樹脂、ビス
フェノールAと前記アクリル系樹脂との共重合体樹脂の
水系有機樹脂分散体の1種または2種以上の水系有機樹
脂分散体の固形分100重量部に対し、1mμから12
mμの粒径のSiO2,Cr23,Fe23,Fe
34,MgO,ZrO2,SnO2,Al23,Sb25
のコロイド(ゾル)の1種または2種以上を固形分で5
〜100重量部含有した有機皮膜で被覆することを特徴
とする有機複合型合金化溶融Znめっき鋼板。
2. The Fe content in the plating layer on the surface of the steel sheet is 1 to 8% on average in the plating layer, 0.1 to 2% in the outermost layer, and Al.
A hot-dip Zn plating layer having an average content of 0.1 to 0.5% in the plating layer, an average roughness Ra of the plating layer surface of 2.2 to 3.5 μm, and an average crystal grain size of 50 to 200 μm. As the lowermost layer, and the amount of chromium is 10 to 150 mg / m 2
Chromate-coated steel sheet having a particle size of 10 to 200 μm, ethylene acrylic acid copolymer resin, polyacrylic acid and its copolymer resin, polyacrylic acid ester and its copolymer resin, polymethacrylic acid and its copolymer resin,
To 100 parts by weight of solid content of one or two or more water-based organic resin dispersions of polymethacrylic acid ester and its copolymer resin, water-based organic resin dispersion of copolymer resin of bisphenol A and the acrylic resin. On the other hand, from 1 mμ to 12
SiO 2 , Cr 2 O 3 , Fe 2 O 3 , Fe with mμ particle size
3 O 4 , MgO, ZrO 2 , SnO 2 , Al 2 O 3 , Sb 2 O 5
One or two or more of the colloids (sols) of 5 in solid content
An organic composite-type alloyed hot-dip Zn-plated steel sheet, which is coated with an organic coating containing 100 to 100 parts by weight.
【請求項3】 請求項1および2記載のZnめっき層中
にさらに合金元素として、Mg,Sb,Pb,Ti,S
nを単独あるいは複合で0.01〜5%含有する溶融Z
nめっき層を最下層として、クロム量として10〜15
0mg/m2のクロメート被覆した鋼板に10〜200
mμの粒径のエチレンアクリル酸共重合体樹脂、ポリア
クリル酸及びその共重合体樹脂、ポリアクリル酸エステ
ル及びその共重合体樹脂、ポリメタクリル酸及びその共
重合体樹脂、ポリメタクリル酸エステル及びその共重合
体樹脂、ビスフェノールAと前記アクリル系樹脂との共
重合体樹脂の水系有機樹脂分散体の1種または2種以上
の水系有機樹脂分散体の固形分100重量部に対し、1
mμから12mμの粒径のSiO2,Cr23,Fe2
3,Fe34,MgO,ZrO2,SnO2,Al23
Sb25のコロイド(ゾル)の1種または2種以上を固
形分で5〜100重量部含有した有機皮膜で被覆するこ
とを特徴とする有機複合型合金化溶融Znめっき鋼板。
3. The Zn plating layer according to claim 1 or 2, further comprising Mg, Sb, Pb, Ti and S as alloying elements.
Molten Z containing 0.01 to 5% of n alone or in combination
The n-plated layer is the bottom layer, and the chromium amount is 10 to 15
10 to 200 on 0 mg / m 2 chromate-coated steel sheet
Ethylene acrylic acid copolymer resin, polyacrylic acid and its copolymer resin, polyacrylic acid ester and its copolymer resin, polymethacrylic acid and its copolymer resin, polymethacrylic acid ester and their of mμ particle size 1% of one or two or more aqueous organic resin dispersions of an aqueous organic resin dispersion of a copolymer resin, a copolymer resin of bisphenol A and the above acrylic resin, relative to 100 parts by weight of the solid content of 1
SiO 2 , Cr 2 O 3 , Fe 2 O with a particle size of mμ to 12 mμ
3 , Fe 3 O 4 , MgO, ZrO 2 , SnO 2 , Al 2 O 3 ,
An organic composite-type alloyed hot-dip Zn-plated steel sheet, characterized in that one or more Sb 2 O 5 colloids (sols) are coated with an organic coating containing 5 to 100 parts by weight of solid content.
JP28037091A 1991-10-02 1991-10-02 Organic composite type alloying galvannealed steel sheet Withdrawn JPH05171457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28037091A JPH05171457A (en) 1991-10-02 1991-10-02 Organic composite type alloying galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28037091A JPH05171457A (en) 1991-10-02 1991-10-02 Organic composite type alloying galvannealed steel sheet

Publications (1)

Publication Number Publication Date
JPH05171457A true JPH05171457A (en) 1993-07-09

Family

ID=17624075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28037091A Withdrawn JPH05171457A (en) 1991-10-02 1991-10-02 Organic composite type alloying galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JPH05171457A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100423439B1 (en) * 1999-12-28 2004-03-19 주식회사 포스코 Anti finger resin solution and method for manufacturing anti finger steel sheet using the solution
KR100428839B1 (en) * 1999-12-29 2004-04-28 주식회사 포스코 Manufacturing method for anti-finger steel plate
JP2009242870A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Galvannealed steel sheet and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100423439B1 (en) * 1999-12-28 2004-03-19 주식회사 포스코 Anti finger resin solution and method for manufacturing anti finger steel sheet using the solution
KR100428839B1 (en) * 1999-12-29 2004-04-28 주식회사 포스코 Manufacturing method for anti-finger steel plate
JP2009242870A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Galvannealed steel sheet and method for manufacturing the same

Similar Documents

Publication Publication Date Title
RU2429084C2 (en) Steel flat section and procedure for production of steel sheet
JPH0324255A (en) Hot-dip galvanized hot rolled steel plate and its production
JP2020523474A (en) Coated metal substrate and manufacturing method
JPH0212179B2 (en)
JPH05171457A (en) Organic composite type alloying galvannealed steel sheet
JPH0374144B2 (en)
JP2968147B2 (en) Acid displacement plating solution composition for zinc-containing metal plated steel sheet
JP3706524B2 (en) Surface-coated metal plate and manufacturing method thereof
JPH0696783B2 (en) Galvanized steel sheet with excellent press formability, chemical conversion treatment and weldability
JPH072997B2 (en) Zinc-based plated steel sheet with excellent corrosion resistance and paintability
JP2003253458A (en) Zinc galvanized steel sheet and its manufacturing method
JPH05302179A (en) Acidic substituted plating solution for zinc or zinc alloy coated steel sheet
JPH0468140B2 (en)
JPS58224740A (en) Weldable painted steel plate
JPH03219950A (en) Organic composite coated steel plate
JPH02173249A (en) Multilayered plated steel sheet having excellent flaking resistance
JPH0536516B2 (en)
JP2977650B2 (en) Multi-layer plated aluminum and aluminum alloy plate
JPH0544006A (en) Production of alloyed hot dip galvanized steel sheet having excellent workability and corrosion resistance
JPH02122056A (en) Alloying hot dip galvanized steel sheet
JP2004263268A (en) HOT-DIP Zn-Al-Mn ALLOY PLATED STEEL HAVING EXCELLENT CORROSION RESISTANCE
JPH06272059A (en) Production of thin-film organic composite steel sheet excellent in coating material adhesion property
JPS63153299A (en) Zn-based double-layer electroplated steel sheet having high corrosion resistance
JPH0241594B2 (en)
JPH04154976A (en) Organic multiply coated steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107