JPH05171444A - Wear resistance member coated with boron nitride film - Google Patents

Wear resistance member coated with boron nitride film

Info

Publication number
JPH05171444A
JPH05171444A JP33372891A JP33372891A JPH05171444A JP H05171444 A JPH05171444 A JP H05171444A JP 33372891 A JP33372891 A JP 33372891A JP 33372891 A JP33372891 A JP 33372891A JP H05171444 A JPH05171444 A JP H05171444A
Authority
JP
Japan
Prior art keywords
boron nitride
nitride film
coated
film
hard carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33372891A
Other languages
Japanese (ja)
Inventor
Yukitsugu Takahashi
幸嗣 高橋
Matsuo Kishi
松雄 岸
Jun Tsuneyoshi
潤 恒吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP33372891A priority Critical patent/JPH05171444A/en
Publication of JPH05171444A publication Critical patent/JPH05171444A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To provide a wear resistant member having high performance to an iron family metal, etc., to which diamond is not applicable by enhancing the adhesion and quality of a boron nitride film on a base member with a hard carbon layer formed between them. CONSTITUTION:The surface of a base member 1 to be coated is coated with a hard carbon film 2 showing a peak due to diamond in the Raman spectroscopy and the surface of the film 2 is coated with a boron nitride film 3. By this coating method, the adhesion and quality of the boron nitride film 3 are enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、工具、軸受け等の耐
摩耗性を必要とする部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member such as a tool and a bearing which requires wear resistance.

【0002】[0002]

【従来の技術】従来、耐摩耗性を必要とする部材には、
ダイヤモンドやc−BNが用いられている。ダイヤモン
ドは物質中最高硬度を有するが、化学的に不安定であ
り、大気中で加熱することにより燃えたり、鉄族金属の
加工では、ダイヤモンドを構成している炭素が鉄族金属
の中に拡散し摩耗するという現象がおこる。
2. Description of the Related Art Conventionally, for members requiring wear resistance,
Diamond or c-BN is used. Although diamond has the highest hardness in the substance, it is chemically unstable, and it burns when heated in the atmosphere, and when processing iron group metals, the carbon that constitutes diamond diffuses into the iron group metal. The phenomenon of abrasion occurs.

【0003】一方、窒化ホウ素は熱的、化学的に安定で
あり、燃えたり、鉄族金属の中に拡散することはない。
特にc−BNはダイヤモンドのつぎに硬度が高く、化学
的に安定なダイヤモンドでは加工しにくい鉄族金属等の
切削等に適用されている。近年気相合成技術が発達し、
硬質炭素膜等の各種硬質膜の合成が可能となってきた。
最近では、高硬度であって、c−BNまたはBNのsp
3 結合が多く含まれる、いわゆる膜質の良い窒化ホウ素
膜も気相合成によりSi基板上に合成できるようになっ
た。そして、膜質の良い窒化ホウ素膜を基体表面に被覆
することができれば鉄族金属等の加工等に有効であるこ
とが知られている。
On the other hand, boron nitride is thermally and chemically stable and does not burn or diffuse into iron group metals.
In particular, c-BN has the second highest hardness after diamond, and is applied to the cutting of iron group metals and the like that are difficult to process with chemically stable diamond. In recent years, vapor phase synthesis technology has developed,
It has become possible to synthesize various hard films such as hard carbon film.
Recently, it has a high hardness and has a sp of c-BN or BN.
A so-called boron nitride film having a high film quality, which contains many 3- bonds, can now be synthesized on a Si substrate by vapor phase synthesis. It is known that if a boron nitride film having a good film quality can be coated on the surface of the substrate, it is effective for processing an iron group metal or the like.

【0004】[0004]

【発明が解決しようとする課題】しかし、窒化ホウ素膜
を例えば金属、セラミックス、超硬合金等の基体表面に
直接被覆を試みると、密着性が悪く、工具等に使用した
場合、剥離するという課題があった。また、被覆基体の
種類により窒化ホウ素膜の膜質が変わり、例えば金属、
セラミックス、超硬合金等に直接被覆すると膜質が悪
く、摩耗が激しいという課題もあった。
However, if a boron nitride film is directly coated on the surface of a substrate such as metal, ceramics or cemented carbide, the adhesion is poor and the film is peeled off when used in a tool or the like. was there. Also, the film quality of the boron nitride film changes depending on the type of the coated substrate.
If the ceramics, cemented carbide, etc. are directly coated, the film quality is poor and the wear is severe.

【0005】この発明の目的は、従来のこのような課題
を解決するために、膜質の良い窒化ホウ素膜を、密着性
良く被覆し、鉄族金属等の加工等に優れた耐摩耗性を示
す被覆耐摩耗部材を得ることにある。
In order to solve such conventional problems, the object of the present invention is to coat a boron nitride film having a good film quality with good adhesion, and to show excellent wear resistance in the processing of iron group metals and the like. To obtain a coated wear resistant member.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、この発明は、窒化ホウ素膜を被覆した被覆耐摩耗部
材において、基体と窒化ホウ素膜の間にラマン分光分析
でダイヤモンドに起因するピークがみられる硬質炭素層
を有する構成とし、密着性の向上と窒化ホウ素膜の膜質
の向上が図れるようにした。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a coated wear-resistant member coated with a boron nitride film, wherein a peak due to diamond is present between the substrate and the boron nitride film in Raman spectroscopic analysis. The structure has a hard carbon layer in which defects are observed so that the adhesion and the quality of the boron nitride film can be improved.

【0007】[0007]

【作用】上記のように構成された被覆耐摩耗部材におい
ては、ダイヤモンドとc−BNの結晶構造が共に立方晶
であり、格子不整合が1.5%と小さく、またダイヤモ
ンドのsp3 結合とBNのsp3 結合の原子間距離の差
も小さいため、硬質炭素膜表面のダイヤモンド露出部分
には高硬度のc−BNまたはBNのsp3 結合が密着性
良く、高密度で合成され、密着性、膜質が向上すること
になる。
In the coated wear-resistant member constructed as described above, the crystal structures of diamond and c-BN are both cubic, the lattice mismatch is as small as 1.5%, and the sp 3 bond of diamond is Since the difference in interatomic distance of sp 3 bond of BN is also small, high hardness c-BN or sp 3 bond of BN is adhered to the exposed diamond part of the hard carbon film with high density, resulting in high adhesion. , The film quality will be improved.

【0008】[0008]

【実施例】【Example】

(実施例1)以下に、この発明の実施例を説明する。ま
ず、JIS規格K−10の超硬合金素材を用意し、これ
をスローアウェイチップのSPGN120308の形状
に加工し、被覆基体とした。
(Embodiment 1) An embodiment of the present invention will be described below. First, a JIS K-10 cemented carbide material was prepared, and this was processed into the shape of a throwaway tip SPGN120308 to obtain a coated substrate.

【0009】次に該被覆基体に硬質炭素膜の被覆を行っ
た。硬質炭素膜の被覆方法は、マイクロ波プラズマCV
D法を用いた。図2にマイクロ波プラズマCVD法の装
置概略図を示す。原料ガスは石英管6の上部から導入
し、石英管6の下部から排気系9により排気する。マイ
クロ波12は発振器10から導波管11により導かれ、
石英管中央の反応室7に照射される。反応室7では、マ
イクロ波の放電によりプラズマ8が発生し、プラズマ中
に置かれた基体に膜が合成される。
Next, the coated substrate was coated with a hard carbon film. The coating method of the hard carbon film is microwave plasma CV.
Method D was used. FIG. 2 shows a schematic view of an apparatus for the microwave plasma CVD method. The raw material gas is introduced from the upper part of the quartz tube 6 and exhausted from the lower part of the quartz tube 6 by the exhaust system 9. The microwave 12 is guided from the oscillator 10 by the waveguide 11,
The reaction chamber 7 in the center of the quartz tube is irradiated. In the reaction chamber 7, plasma 8 is generated by microwave discharge, and a film is synthesized on the substrate placed in the plasma.

【0010】硬質炭素膜の被覆条件は 原料ガス :CH4 +H2 原料ガス混合比 :CH4 /H2 =0.1〜10 vo
l% ガス圧 :20〜40 Torr ガス流量 :100〜500 SCCM マイクロ波出力 :300〜600 W 基材温度 :700〜900 °C する事が好ましい。
The coating conditions of the hard carbon film are as follows: raw material gas: CH 4 + H 2 raw material gas mixing ratio: CH 4 / H 2 = 0.1 to 10 vo
1% gas pressure: 20 to 40 Torr gas flow rate: 100 to 500 SCCM microwave output: 300 to 600 W base material temperature: 700 to 900 ° C is preferable.

【0011】マイクロ波プラズマCVD法では、原料ガ
ス混合比により硬質炭素膜の種類を変えることができ
る。硬質炭素膜の被覆における原料ガス混合比、被覆時
間、膜厚を表1の中に示す。図3には該超硬合金表面に
表1で示す原料ガス混合比で被覆した硬質炭素膜のラマ
ンスペクトルを示す。原料ガス混合比が小さくなるにつ
れ、ダイヤモンドに起因するピークが出現して大きくな
り、非晶質炭素成分に起因するブロードなピークは小さ
くなる。ダイヤモンドに起因するピークと非晶質炭素成
分に起因すピークの高さ比は、ダイヤモンドと非晶質炭
素成分の構成比とほぼ比例しているため、ダイヤモンド
のピーク比が高い程ダイヤモンドが多く含まれている事
になる。
In the microwave plasma CVD method, the type of hard carbon film can be changed depending on the raw material gas mixture ratio. Table 1 shows the raw material gas mixing ratio, the coating time, and the film thickness in coating the hard carbon film. FIG. 3 shows the Raman spectrum of the hard carbon film coated on the surface of the cemented carbide at the raw material gas mixing ratio shown in Table 1. As the raw material gas mixing ratio becomes smaller, the peak due to diamond appears and becomes larger, and the broad peak due to the amorphous carbon component becomes smaller. The height ratio of the peak due to the diamond and the peak due to the amorphous carbon component is almost proportional to the composition ratio of the diamond and the amorphous carbon component. Therefore, the higher the peak ratio of diamond is, the more diamond is included. It is supposed to be.

【0012】次に、該硬質炭素膜を被覆した表面に窒化
ホウ素膜の被覆を行った。窒化ホウ素膜の被覆方法はマ
イクロ波プラズマCVD法を用いた。比較例1として超
硬合金表面に直接窒化ホウ素膜の被覆も行った。窒化ホ
ウ素膜の被覆条件は 原料ガス :H2 +B26 +NH3 料ガス混合比 :B26/(H2+B26+NH3
=0.3 vol% NH3/(H2+B26+NH3 )=0.8 vol% ガス圧 :30 Torr ガス流量 :300 SCCM マイクロ波出力 :400〜700 W 基体温度 :900〜1100 °C 合成時間 :25 hr 膜厚 :2 μm とする事が好ましい。
Then, the surface coated with the hard carbon film was coated with a boron nitride film. A microwave plasma CVD method was used as a method for coating the boron nitride film. As Comparative Example 1, the surface of the cemented carbide was also coated directly with the boron nitride film. The coating conditions of the boron nitride film are as follows: raw material gas: H 2 + B 2 H 6 + NH 3 material gas mixture ratio: B 2 H 6 / (H 2 + B 2 H 6 + NH 3 ).
= 0.3 vol% NH 3 / ( H 2 + B 2 H 6 + NH 3) = 0.8 vol% Gas pressure: 30 Torr Gas flow rate: 300 SCCM Microwave output: 400 to 700 W substrate temperature: 900 to 1100 ° C Synthesis time: 25 hr Film thickness: 2 μm is preferable.

【0013】図4に各種類の硬質炭素膜上、および超硬
合金表面に被覆した窒化ホウ素膜の赤外線吸収スペクト
ルを示す。硬質炭素膜中のダイヤモンドの量が多く含ま
れにつれ、その表面に被覆された窒化ホウ素膜は、c−
BNまたはBNのsp3 結合に起因する赤外線吸収が大
きくなり、t−BNに起因すると考えられる1380c
-1付近と800cm-1付近の吸収が小さくなった。ま
た、比較例1の超硬合金上に直接被覆した窒化ホウ素膜
はc−BNまたはBNのsp3 結合に起因するピークは
観られなかった。一般にc−BNまたはBNのsp3
合に起因するピークが大きい程、高硬度で、膜質の良い
ことは知られている。
FIG. 4 shows the infrared absorption spectra of the various types of hard carbon films and the boron nitride film coated on the surface of the cemented carbide. As the amount of diamond contained in the hard carbon film was large, the boron nitride film coated on the surface of the hard carbon film was c-
Infrared absorption due to BN or sp 3 bond of BN becomes large, which is considered to be due to t-BN 1380c
Absorption around m -1 and around 800 cm -1 became smaller. Further, in the boron nitride film directly coated on the cemented carbide of Comparative Example 1, no peak due to the sp 3 bond of c-BN or BN was observed. It is generally known that the larger the peak due to the sp 3 bond of c-BN or BN, the higher the hardness and the better the film quality.

【0014】上記のように作製した窒化ホウ素膜被覆超
硬合金スローアウェイチップ(サンプル1から4および
比較例1)とダイヤモンドを刃先にろう付けした同型
(SPGN120308)スローアウェイチップ(比較
例2)を下記条件で切削試験した結果を表1に示す。 切削速度 400m/min 切込み 0.25mm 送り 0.1mm/rev 被削材 SUS 304 切削距離 10000m ラマン分光分析においてのダイヤモンドに起因するピー
クを有する膜を被覆し、該硬質炭素膜を下地にして、窒
化ホウ素膜を被覆すると、c−BNまたはBNのsp3
結合に起因する赤外線吸収ピークを有する(膜質の良
い)窒化ホウ素膜ができ、鉄族金属を切削しても、摩
耗、剥離がなく、ダイヤモンドより優れた耐摩耗部材で
あることが判る。 (実施例2)タングステンをスローアウェイチップのS
PGN120308の形状に加工し被覆基体とした。硬
質炭素膜と窒化ホウ素膜の被覆は、実施例1と同じマイ
クロ波プラズマCVD法で、サンプル2と同じ条件で行
った(サンプル5とする)。また、比較例3として、該
タングステン基体の表面に直接、実施例1と同じ条件で
窒化ホウ素膜の被覆を行ったサンプルも用意した。サン
プル5で被覆した硬質炭素膜、窒化ホウ素膜をラマン分
光分析、赤外線吸収分光分析したところ、サンプル2と
同じ結果が得られた。また、比較例3で被覆した窒化ホ
ウ素膜を赤外線吸収分光分析したところ、比較例1と同
じ結果が得られた。
The boron nitride film-coated cemented carbide throwaway tip (Samples 1 to 4 and Comparative Example 1) produced as described above and the same type (SPGN120308) throwaway tip (Comparative Example 2) brazed with diamond at the cutting edge were used. The results of the cutting test under the following conditions are shown in Table 1. Cutting speed 400 m / min Depth of cut 0.25 mm Feed 0.1 mm / rev Work material SUS 304 Cutting distance 10000 m A film having a peak due to diamond in Raman spectroscopic analysis is coated, and the hard carbon film is used as a base and nitrided. When the boron film is coated, c-BN or BN sp 3
It can be seen that a boron nitride film having an infrared absorption peak due to the bond (having a good film quality) is formed, and even when the iron group metal is cut, there is no wear or peeling and it is a wear resistant member superior to diamond. Example 2 Tungsten throwaway tip S
The coated substrate was processed into the shape of PGN120308. The coating of the hard carbon film and the boron nitride film was performed by the same microwave plasma CVD method as in Example 1 under the same conditions as in Sample 2 (Sample 5). Also, as Comparative Example 3, a sample was prepared in which the surface of the tungsten substrate was directly coated with a boron nitride film under the same conditions as in Example 1. The hard carbon film and the boron nitride film coated with Sample 5 were subjected to Raman spectroscopic analysis and infrared absorption spectroscopic analysis, and the same results as in Sample 2 were obtained. In addition, when the boron nitride film coated in Comparative Example 3 was subjected to infrared absorption spectroscopic analysis, the same results as in Comparative Example 1 were obtained.

【0015】上記のように作製した窒化ホウ素膜被覆ス
ローアウェイチップ(サンプル5、比較例3)を実施例
1と同じ条件で切削試験した結果を表2に示す。基体に
タングステンを用いても実施例1と同様、ラマン分光分
析においてのダイヤモンドに起因するピークを有する膜
を被覆し該硬質炭素膜を下地にして、窒化ホウ素膜を被
覆するとc−BNまたはBNのsp3 結合に起因する赤
外線吸収ピークを有する(膜質の良い)窒化ホウ素膜が
でき、鉄族金属で切削試験を行っても摩耗、剥離のない
ことが判る。 (実施例3)Si3 4 系セラミックスをスローアウェ
イチップのSPGN120308の形状に加工し、被覆
基体とした。硬質炭素膜と窒化ホウ素膜の被覆は、実施
例1と同じマイクロ波プラズマCVD法で、サンプル2
と同じ条件で行った(サンプル6とする)。また、比較
例4として、該Si3 4 系セラミックス基体の表面に
直接、実施例1と同じ条件で窒化ホウ素膜の被覆を行っ
たサンプルも用意した。サンプル6で被覆した硬質炭素
膜、窒化ホウ素膜をラマン分光分析、赤外線吸収分光分
析したところ、サンプル2と同じ結果が得られた。ま
た、比較例4で被覆した窒化ホウ素膜を赤外線吸収分光
分析したところ、比較例1と同じ結果が得られた。
Table 2 shows the results of a cutting test conducted on the boron nitride film-covered throw-away tip (Sample 5, Comparative Example 3) produced as described above under the same conditions as in Example 1. Even if tungsten is used for the substrate, as in Example 1, when a film having a peak due to diamond in Raman spectroscopic analysis is coated and the hard carbon film is used as a base and a boron nitride film is coated, c-BN or BN is obtained. It can be seen that a boron nitride film having an infrared absorption peak due to sp 3 bonds (having a good film quality) is formed, and no wear or peeling occurs even when a cutting test is performed using an iron group metal. (Example 3) Si 3 N 4 based ceramics were processed into a shape of a throw-away tip SPGN120308 to obtain a coated substrate. Sample 2 was coated with the hard carbon film and the boron nitride film by the same microwave plasma CVD method as in Example 1.
Was performed under the same conditions as above (sample 6). In addition, as Comparative Example 4, a sample in which the surface of the Si 3 N 4 based ceramic substrate was directly coated with a boron nitride film under the same conditions as in Example 1 was also prepared. When the hard carbon film and the boron nitride film coated with Sample 6 were subjected to Raman spectroscopic analysis and infrared absorption spectroscopic analysis, the same results as in Sample 2 were obtained. In addition, when the boron nitride film coated in Comparative Example 4 was analyzed by infrared absorption spectroscopy, the same results as in Comparative Example 1 were obtained.

【0016】上記のように作製した窒化ホウ素膜被覆ス
ローアウェイチップ(サンプル6、比較例4)を実施例
1と同じ条件で切削試験した結果を表2に示す。基体に
Si3 4 系セラミックスを用いても実施例1と同様、
ラマン分光分析においてダイヤモンドに起因するピーク
を有する膜を被覆し該硬質炭素膜を下地にして、窒化ホ
ウ素膜を被覆するとc−BNまたはBNのsp3 結合に
起因する赤外線吸収ピークを有する(膜質の良い)窒化
ホウ素膜ができ、鉄族金属で切削試験を行っても摩耗、
剥離のないことが判る。
Table 2 shows the results of a cutting test conducted on the boron nitride film-coated throw-away tip (Sample 6, Comparative Example 4) produced as described above under the same conditions as in Example 1. Even if Si 3 N 4 system ceramics is used for the substrate, as in Example 1.
When a film having a peak due to diamond in Raman spectroscopic analysis is coated and the hard carbon film is used as a base and a boron nitride film is coated, an infrared absorption peak due to the sp 3 bond of c-BN or BN is obtained ( Good) Boron nitride film is formed, and wear occurs even when a cutting test is performed with an iron group metal.
It can be seen that there is no peeling.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】この発明は、以上説明したように、被覆
耐摩耗部材において基体にラマン分光分析においてダイ
ヤモンドに起因するピークがみられる硬質炭素膜を被覆
し、該硬質炭素膜を下地にして、ダイヤモンドより熱
的、化学的に安定している窒化ホウ素膜を被覆した構成
とすることにより、該硬質炭素膜と該窒化ホウ素膜の整
合性が良いことから密着性と膜質が向上し、その実施効
果は絶大であり、ダイヤモンドでは耐摩耗部材として適
応できなかった鉄族金属等に対する高性能の被覆耐摩耗
部材を提供することができる。
As described above, according to the present invention, in a coated wear-resistant member, a substrate is coated with a hard carbon film having a peak due to diamond in Raman spectroscopic analysis, and the hard carbon film is used as a base, By adopting a structure in which a boron nitride film that is more thermally and chemically stable than diamond is coated, the adhesion between the hard carbon film and the boron nitride film is good, and the adhesion and film quality are improved. The effect is tremendous, and it is possible to provide a high-performance coated wear-resistant member for iron group metals and the like, which diamond cannot be applied as a wear-resistant member.

【0020】また、本発明に用いられる基体は、硬質炭
素膜や窒化ホウ素の被覆温度に耐えることができ、かつ
硬質炭素膜が被覆できる基体または被覆基体ならばその
種類を選ばない。また、硬質炭素膜の被覆方法もダイヤ
モンドに起因するラマンピークがみられる硬質炭素膜を
被覆できるものであれば、その種類によらない。例えば
硬質炭素膜の被覆方法には熱フィラメント法、EACV
D法、DCプラズマCVD法、プラズマジェット法、高
周波プラズマCVD法、光CVD法等があるが何れを用
いても良い。また、該窒化ホウ素膜の被覆方法もその種
類を選ばない。例えば熱フィラメント法、DCプラズマ
CVD法、高周波プラズマCVD法、イオンプレーティ
ング法等があるが何れを用いても良い。該(ダイヤモン
ドのラマンピークを有する)硬質炭素膜と該窒化ホウ素
膜の整合性が良いことから密着性と膜質が向上するとい
う効果は基体の種類、硬質炭素膜の被覆方法、窒化ホウ
素膜の被覆方法によらないことは明白である。
The substrate used in the present invention may be of any type as long as it can withstand the coating temperature of the hard carbon film or boron nitride and can be coated with the hard carbon film or the coated substrate. The method for coating the hard carbon film does not depend on the type as long as it can coat the hard carbon film having Raman peaks caused by diamond. For example, the coating method of the hard carbon film is a hot filament method, EACV
There are a D method, a DC plasma CVD method, a plasma jet method, a high frequency plasma CVD method, an optical CVD method and the like, but any method may be used. Further, the type of the method for coating the boron nitride film is not selected. For example, there are a hot filament method, a DC plasma CVD method, a high frequency plasma CVD method, an ion plating method, and the like, but any method may be used. The good match between the hard carbon film (having a Raman peak of diamond) and the boron nitride film improves the adhesion and film quality. It is clear that it does not depend on the method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る窒化ホウ素膜被覆耐摩耗部材の断
面図である。
FIG. 1 is a cross-sectional view of a boron nitride film-coated wear-resistant member according to the present invention.

【図2】本発明に係るマイクロ波プラズマCVD法の装
置概略図である。
FIG. 2 is a schematic view of an apparatus for a microwave plasma CVD method according to the present invention.

【図3】本発明に係る硬質炭素膜のラマンスペクトルで
ある。
FIG. 3 is a Raman spectrum of the hard carbon film according to the present invention.

【図4】本発明に係る窒化ホウ素膜の赤外線吸収スペク
トルである。
FIG. 4 is an infrared absorption spectrum of the boron nitride film according to the present invention.

【符号の説明】[Explanation of symbols]

1 被覆基体 2 硬質炭素膜 3 窒化ホウ素膜 4 H2 ガスボンベ 5 CH4 ガスボンベ 6 石英管 7 反応室 8 プラズマ 9 排気系 10 マイクロ波発振器 11 導波管 12 マイクロ波1 Coated Substrate 2 Hard Carbon Film 3 Boron Nitride Film 4 H 2 Gas Cylinder 5 CH 4 Gas Cylinder 6 Quartz Tube 7 Reaction Chamber 8 Plasma 9 Exhaust System 10 Microwave Oscillator 11 Waveguide 12 Microwave

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基体表面に耐摩耗膜として窒化ホウ素膜
を被覆した部材において、該基体と窒化ホウ素膜の間に
硬質炭素層を設けたことを特徴とする窒化ホウ素膜被覆
耐摩耗部材。
1. A wear resistant member coated with a boron nitride film, characterized in that a hard carbon layer is provided between the substrate and the boron nitride film in a member having a surface of the substrate coated with a boron nitride film as a wear resistant film.
【請求項2】 該窒化ホウ素膜は赤外線吸収分光分析に
おいてc−BNまたはBNのsp3 結合に起因する吸収
が存在することを特徴とする請求項1記載の窒化ホウ素
膜被覆耐摩耗部材。
2. The boron nitride film-coated wear-resistant member according to claim 1, wherein the boron nitride film has absorption caused by c 3 BN or BN sp 3 bond in infrared absorption spectroscopy.
【請求項3】 該硬質炭素膜は、ラマン分光分析におい
てダイヤモンドに起因するピークが存在することを特徴
とする請求項1記載の窒化ホウ素膜被覆耐摩耗部材。
3. The boron nitride film-coated wear-resistant member according to claim 1, wherein the hard carbon film has a peak due to diamond in Raman spectroscopic analysis.
JP33372891A 1991-12-17 1991-12-17 Wear resistance member coated with boron nitride film Pending JPH05171444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33372891A JPH05171444A (en) 1991-12-17 1991-12-17 Wear resistance member coated with boron nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33372891A JPH05171444A (en) 1991-12-17 1991-12-17 Wear resistance member coated with boron nitride film

Publications (1)

Publication Number Publication Date
JPH05171444A true JPH05171444A (en) 1993-07-09

Family

ID=18269296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33372891A Pending JPH05171444A (en) 1991-12-17 1991-12-17 Wear resistance member coated with boron nitride film

Country Status (1)

Country Link
JP (1) JPH05171444A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014184534A (en) * 2013-03-25 2014-10-02 Kyocera Corp Surface-coated member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014184534A (en) * 2013-03-25 2014-10-02 Kyocera Corp Surface-coated member

Similar Documents

Publication Publication Date Title
KR920000801B1 (en) Method of producing sintered hard metal with diamond film
JPH0557507A (en) Coating tool and manufacture thereof
JP2628601B2 (en) Diamond coated cemented carbide and method of diamond coating of cemented carbide
US5733668A (en) Method for the preparation of WC-Co Alloys and hard carbon-layer coated on WC-Co Alloys, and their coated tools
EP0560287A1 (en) Diamond cutting tool and method of manufacturing the same
JPH05171444A (en) Wear resistance member coated with boron nitride film
JPH0819522B2 (en) Diamond-coated sintered alloy with excellent adhesion and method for producing the same
JPS62133068A (en) Diamond coated member
US5567522A (en) Diamond cutting tool and method of manufacturing the same
JPH05263251A (en) Coated and sintered body
JPH0328373A (en) Diamond-coated member and its production
JPH04261703A (en) Polycrystal diamond cutting tool
JPH04280974A (en) Boron nitride coated hard material
JP3235206B2 (en) Diamond cutting tool and manufacturing method thereof
JPH0657426A (en) Diamond cutting tool and its production
JPS6333570A (en) Diamond coated cutting tool
JP2530259B2 (en) Diamond coated cutting tools
JPH08151297A (en) Production of diamond
JPH01259171A (en) Cutting tool member coated with hard film
JP3417986B2 (en) Method for producing coated object with excellent adhesion
JPH05125542A (en) Manufacture of thin diamond film tool
JPH05123908A (en) Diamond thin film coat cutting tool
JPH05186870A (en) Cemented carbide member coated with high adhesion hard carbon film and its production
JPS6234704A (en) Diamond coated cutting tool
JPS60123203A (en) Surface-clad cemented carbide member for cutting tool and wear resisting tool