JPH05171316A - Flexing member for damper - Google Patents

Flexing member for damper

Info

Publication number
JPH05171316A
JPH05171316A JP35375991A JP35375991A JPH05171316A JP H05171316 A JPH05171316 A JP H05171316A JP 35375991 A JP35375991 A JP 35375991A JP 35375991 A JP35375991 A JP 35375991A JP H05171316 A JPH05171316 A JP H05171316A
Authority
JP
Japan
Prior art keywords
damper
total
elements
resistance
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35375991A
Other languages
Japanese (ja)
Inventor
Masato Asai
真人 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP35375991A priority Critical patent/JPH05171316A/en
Publication of JPH05171316A publication Critical patent/JPH05171316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To provide a flexing member for damper which is excellent in the strength, vibration proof and environmental resistance. CONSTITUTION:Copper alloy having a composition consisting of, by weight, 0.5-6.0% of one or two or more elements selected from the element group consisting of 0.5-4.5% Fe, 0.5-5.5% Ni, and 0.5-4.5% Sn, and the balance copper with inevitable impurities, is formed. This copper alloy is characterized in that its grain size is 15mum or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、温度,圧力,湿度等の
環境要因が厳しいもとに置かれるダクト等を建屋壁部等
に固定し又はダクト同士を固定する為の、振動吸収能を
有するダンパ用屈曲部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a vibration absorbing ability for fixing a duct or the like placed under severe environmental factors such as temperature, pressure and humidity to a building wall or fixing the ducts to each other. The present invention relates to a bending member for a damper.

【0002】[0002]

【従来の技術】温度,圧力,湿度等の環境要因が厳しい
もとに置かれるダクト等を建屋壁部等に固定する固定具
には、振動騒音等を防止する為に振動吸収能を有するダ
ンパ用部材が用いられており、このダンパ用部材には金
属そのものの弾塑性変形を利用する弾塑性ダンパ用部材
が実用されてきた。しかしながら、この弾塑性ダンパ用
部材は、用いた金属材料の材質により、その吸収し得る
振動の周波数領域が限られてしまう為、用途に応じて種
々のダンパ用部材を使い分ける必要があり、管理上から
もコスト的にも不利であった。このようなことから、ダ
ンパ用部材として、金属材料を波状に成形したダンパ用
屈曲部材が用いられるようになった。このダンパ用屈曲
部材は、振動をその波状部分の弾塑性変形により吸収す
るもので、振動吸収能が金属材料の材質により左右され
ることがなく、従って金属材料を広い視野にたって選択
できるという利点があった。
2. Description of the Related Art A fixing device for fixing a duct or the like placed under severe environmental factors such as temperature, pressure and humidity to a building wall or the like has a damper having a vibration absorbing ability to prevent vibration noise. A member for a damper is used, and an elastic-plastic damper member utilizing the elastic-plastic deformation of the metal itself has been put into practical use as the damper member. However, in this elasto-plastic damper member, the frequency range of vibration that can be absorbed is limited depending on the material of the metal material used, so it is necessary to use various damper members properly according to the application, It was also disadvantageous in terms of cost. For this reason, as the damper member, a damper bending member formed by corrugating a metal material has been used. This bending member for damper absorbs vibration by elasto-plastic deformation of its corrugated portion, and its vibration absorption ability is not influenced by the material of the metal material, and therefore the metal material can be selected from a wide field of view. was there.

【0003】[0003]

【発明が解決しようとする課題】ところで、前述のダン
パ用屈曲部材には、従来より普通鋼(例えばSS-490)や
燐青銅合金等の既存の金属材料が用いられていたが、前
記金属材料はいずれも、ダンパ用屈曲部材に要求される
強度や耐振動疲労特性(以下、耐振動性と略記する。)
或いは耐環境性等に劣るものであった。
By the way, conventional metal materials such as ordinary steel (for example, SS-490) and phosphor bronze alloys have been conventionally used for the bending member for the damper. In both cases, the strength and vibration fatigue resistance (hereinafter abbreviated as vibration resistance) required of the bending member for the damper are all.
Or it was inferior in environmental resistance.

【0004】[0004]

【課題を解決する為の手段】本発明はこのような状況に
鑑み鋭意研究を行った結果なされたもので、その目的と
するところは、強度、耐振動性、耐環境性に優れたダン
パ用屈曲部材を提供することにある。即ち、請求項1の
発明は、Ti 0.5〜4.5 wt%を含み、更にFe 0.5〜4.
5 wt%,Ni 0.5〜5.5 wt%、Sn 0.5〜4.5 wt%の元
素群から一種又は二種以上の元素を合計で 0.5〜6.0 wt
%含み、残部Cuと不可避的不純物からなる銅合金によ
り構成され、前記銅合金の結晶粒度が15μm以下である
ことを特徴とするダンパ用屈曲部材である。
The present invention has been made as a result of intensive studies in view of such a situation, and an object of the present invention is to provide a damper excellent in strength, vibration resistance and environment resistance. To provide a bending member. That is, the invention of claim 1 includes Ti 0.5 to 4.5 wt% and further Fe 0.5 to 4.
5 wt%, Ni 0.5-5.5 wt%, Sn 0.5-4.5 wt% One or more elements in total 0.5-6.0 wt
%, The balance is made of a copper alloy composed of Cu and unavoidable impurities, and the crystal grain size of the copper alloy is 15 μm or less.

【0005】又請求項2の発明は、Ti 0.5〜4.5 wt%
を含み、更にFe 0.5〜4.5 wt%,Ni 0.5〜5.5 wt
%、Sn 0.5〜4.5 wt%の元素群から一種又は二種以上
の元素を合計で 0.5〜6.0 wt%含み、更にZr0.005 〜
0.3 wt%、Cr 0.005〜0.35wt%、Y 0.005〜0.05wt
%、La 0.005〜0.05wt%、V0.005 〜0.1 wt%、Nb
0.005〜0.05wt%の元素群より一種又は二種以上の元素
を合計で 0.005〜0.5 wt%含み、残部Cuと不可避的不
純物からなる銅合金により構成され、前記銅合金の結晶
粒度が10μm以下であることを特徴とするダンパ用屈曲
部材である。
Further, the invention of claim 2 is Ti 0.5 to 4.5 wt%
In addition, Fe 0.5-4.5 wt%, Ni 0.5-5.5 wt%
%, Sn 0.5 to 4.5 wt%, one or more elements from 0.5 to 6.0 wt% in total, and Zr0.005 to
0.3 wt%, Cr 0.005 to 0.35 wt%, Y 0.005 to 0.05 wt
%, La 0.005 to 0.05 wt%, V 0.005 to 0.1 wt%, Nb
It is composed of a copper alloy containing 0.005 to 0.5 wt% of one or more elements in total from the 0.005 to 0.05 wt% element group and the balance Cu and unavoidable impurities, and the grain size of the copper alloy is 10 μm or less. It is a bending member for a damper, which is characterized in that

【0006】又請求項3の発明は、Ti 0.5〜4.5 wt%
を含み、更にFe 0.5〜4.5 wt%,Ni 0.5〜5.5 wt
%、Sn 0.5〜4.5 wt%の元素群より一種又は二種以上
の元素を合計で 0.5〜6.0 wt%を含み、更にMg0.005
〜0.50wt%、Mn0.01〜1.0 wt%、Zn0.05〜2.0 wt%
の元素群より一種又は二種以上の元素を合計で 0.005〜
3.5 wt%含み、残部Cuと不可避的不純物からなる銅合
金により構成され、前記銅合金の結晶粒度が15μm以下
であることを特徴とするダンパ用屈曲部材である。
The invention according to claim 3 is such that Ti 0.5 to 4.5 wt%
In addition, Fe 0.5-4.5 wt%, Ni 0.5-5.5 wt%
%, Sn 0.5-4.5 wt% element group, one or more elements in total 0.5-6.0 wt% is included, and Mg 0.005
~ 0.50 wt%, Mn 0.01 ~ 1.0 wt%, Zn 0.05 ~ 2.0 wt%
0.005〜 in total of one or more elements from the element group
A bending member for a damper, which is made of a copper alloy containing 3.5 wt% and the balance of Cu and inevitable impurities, and the crystal grain size of the copper alloy is 15 μm or less.

【0007】又請求項4の発明は、Ti 0.5〜4.5 wt%
を含み、更にFe 0.5〜4.5 wt%,Ni 0.5〜5.5 wt
%、Sn 0.5〜4.5 wt%の元素群より一種又は二種以上
の元素を合計で 0.5〜6.0 wt%を含み、更にMg 0.005
〜0.50wt%、Mn0.01〜1.0 wt%、Zn0.05〜2.0 wt%
の元素群より一種又は二種以上の元素を合計で 0.005〜
3.5 wt%含み、更にZr 0.005〜0.3 wt%、Cr 0.005
〜0.35wt%、Y 0.005〜0.05wt%、La 0.005〜0.05wt
%、V 0.005〜0.1 wt%、Nb 0.005〜0.05wt%の元素
群より一種又は二種以上の元素を合計で 0.005〜0.5 wt
%含み、残部Cuと不可避的不純物からなる銅合金によ
り構成され、前記銅合金の結晶粒度が10μm以下である
ことを特徴とするダンパ用屈曲部材である。
The invention of claim 4 is such that Ti 0.5 to 4.5 wt%
In addition, Fe 0.5-4.5 wt%, Ni 0.5-5.5 wt%
%, Sn 0.5 to 4.5 wt% element group, or one or more elements in total, containing 0.5 to 6.0 wt%, and Mg 0.005
~ 0.50 wt%, Mn 0.01 ~ 1.0 wt%, Zn 0.05 ~ 2.0 wt%
0.005〜 in total of one or more elements from the element group
Includes 3.5 wt% Zr 0.005-0.3 wt%, Cr 0.005
~ 0.35wt%, Y 0.005 ~ 0.05wt%, La 0.005 ~ 0.05wt
%, V 0.005 to 0.1 wt%, Nb 0.005 to 0.05 wt%, and a total of one or more elements 0.005 to 0.5 wt%
%, The balance is made of a copper alloy composed of Cu and unavoidable impurities, and the crystal grain size of the copper alloy is 10 μm or less.

【0008】[0008]

【作用】請求項1の発明部材を構成する合金の主要成分
のTiは、Cuと反応してCu−Ti系化合物を高密度
に且つ微細に形成して、強度と耐振動性を向上させる作
用を果たすものである。而してその組成範囲を 0.5〜4.
5 wt%に限定した理由は、前記限定値を下回ると、前記
化合物量が不足して強度と耐振動性に十分な性能が得ら
れなくなり、又前記限定値を上回ると、前記化合物が多
量に生成して耐環境性等のダンパ用屈曲部材として重要
な特性が低下する為である。次に、前記Cu−Ti合金
に更にFe,Ni,Snの元素群のうちの少なくとも一
種の元素を含有させる理由は、Cu−Ti系化合物の他
に、Cu−Ti−Fe系化合物,Cu−Ti−Ni系化
合物,Cu−Ti−Sn系化合物又はこれらの化合物の
複合化合物を高密度且つ微細に形成して、前述のCu−
Ti系化合物にて得られる作用を更に増大させる為であ
り、Fe,Ni,Snの各々の元素及び前記元素の合計
量を前述の如く限定した理由は、Tiの場合と同じであ
る。
The function of Ti, which is the main component of the alloy constituting the invention member of claim 1, reacts with Cu to form a Cu—Ti compound at a high density and finely, thereby improving strength and vibration resistance. To fulfill. The composition range is 0.5 to 4.
The reason why the content is limited to 5 wt% is that if the amount is less than the above limit value, the amount of the compound is insufficient and sufficient performance for strength and vibration resistance cannot be obtained. This is because the properties that are generated and are important for the bending member for the damper, such as environment resistance, are deteriorated. Next, the reason why the Cu-Ti alloy further contains at least one element from the element group of Fe, Ni, and Sn is that Cu-Ti-based compounds, Cu-Ti-Fe-based compounds, and Cu- A Ti-Ni-based compound, a Cu-Ti-Sn-based compound, or a composite compound of these compounds is formed in high density and finely to form the Cu-
The reason is that the effect obtained by the Ti-based compound is further increased, and the reason why each element of Fe, Ni, Sn and the total amount of the elements are limited as described above is the same as in the case of Ti.

【0009】請求項2の発明部材は、請求項1の発明部
材を構成する合金に、更に副成分として前記のZr等の
元素群の少なくとも一種を含有せしめ、その結晶粒度を
10μm以下に調整した合金をもって構成したものであ
る。而して前記副成分はTiを主要合金成分とするCu
合金材料の結晶粒度をより微細化する作用を果たし、こ
れによりダンパ用屈曲部材の耐振動性が著しく高められ
る。更に、前記副成分は使用環境下で密着性の良い緻密
な表面酸化皮膜を形成して、表面の酸化膜の剥離による
ダンパ用屈曲部材の強度や耐振動性の低下を防止する作
用を果たすものである。前記副成分の各々の元素又はそ
の合計の含有量を前述のように限定した理由は、含有量
が前記限定値を下回ると、前述の結晶粒の微細化や緻密
な酸化皮膜の形成作用が十分に発揮されず、前記限定値
を上回ると、鋳造時の溶湯の湯流れ性が低下し又ガスが
溶湯中に大量に含有されるようになって、鋳造欠陥や圧
延欠陥が生じ易くなる為である。
According to the invention member of claim 2, the alloy constituting the invention member of claim 1 further contains at least one of the above-mentioned element groups such as Zr as an auxiliary component, and has a crystal grain size.
It is composed of an alloy adjusted to 10 μm or less. Thus, the auxiliary component is Cu containing Ti as a main alloying component.
This serves to further reduce the grain size of the alloy material, which significantly enhances the vibration resistance of the bending member for a damper. Further, the above-mentioned sub-components form a dense surface oxide film with good adhesion in the environment of use, and serve to prevent the strength and vibration resistance of the bending member for damper from being deteriorated due to peeling of the oxide film on the surface. Is. The reason why the content of each element of the subcomponents or the total thereof is limited as described above is that when the content is less than the above-mentioned limit value, the above-mentioned grain refinement and the formation action of a dense oxide film are sufficient. If the above-mentioned limit value is not exhibited, the flowability of the molten metal at the time of casting is lowered, and a large amount of gas is contained in the molten metal, so that casting defects and rolling defects are likely to occur. is there.

【0010】請求項3の発明部材は、請求項1の発明部
材の構成合金に、更にMg,Mn,Znの元素の少なく
とも一種を含有せしめた合金をもって構成したものであ
る。上記のMg,Mn,Znの各々の元素は、既に知ら
れているように(特開昭60−158650)、熱間加工性を阻
害するS元素をトラップし熱間加工性を向上させる働き
があり、この他に、Ti元素の酸化を抑制してCu−T
i系化合物やCu−Ti−Fe系化合物等の化合物をよ
り効率よく形成する作用を果たすものである。又使用環
境においてダンパ用屈曲部材の表面に密着性の良い緻密
な酸化皮膜を形成し、酸化膜剥離による酸化の拡大を防
ぎ、強度及び耐振動性の低下を阻止する作用を果たし、
更にMg,Mn,Znの各々の元素はダンパ用屈曲部材
と異種金属材料との結合部の健全性を保つ働きをも有す
る。而してMg,Mn,Znの各々の元素及び合計の含
有量を前述の如く限定した理由は、前記限定値を下回る
とその作用が十分に果たされず、又前記限定値を上回る
と鋳造時の溶湯の湯流れ性が低下し又ガスが溶湯中に大
量に含有されて、鋳造欠陥や圧延欠陥が生じ易くなる為
である。
The invention member according to claim 3 is constituted by an alloy in which at least one element of Mg, Mn and Zn is further added to the constituent alloy of the invention member according to claim 1. As already known (Japanese Patent Laid-Open No. 60-158650), each element of Mg, Mn, and Zn has a function of trapping an S element that inhibits hot workability and improving hot workability. In addition to this, Cu-T by suppressing the oxidation of Ti element
It serves to more efficiently form compounds such as i-based compounds and Cu-Ti-Fe-based compounds. Also, in the environment of use, it forms a dense oxide film with good adhesion on the surface of the bending member for damper, prevents the expansion of oxidation due to peeling of the oxide film, and prevents the deterioration of strength and vibration resistance.
Further, each element of Mg, Mn, and Zn also has a function of maintaining the soundness of the joint between the bending member for damper and the dissimilar metal material. The reason why the contents of each element of Mg, Mn, and Zn and the total content thereof are limited as described above is that the effect is not sufficiently exerted when the content is less than the above-mentioned limit value, and the content at the time of casting is exceeded when the above-mentioned limit value is exceeded. This is because the flowability of the molten metal is lowered and a large amount of gas is contained in the molten metal, so that casting defects and rolling defects are likely to occur.

【0011】請求項4の発明部材は、請求項3の発明部
材を構成する合金に、更に請求項2で用いた副成分を含
有させてその結晶粒度を10μm以下に調整した合金をも
って構成したものである。而してこの副成分の作用及び
その組成範囲の限定理由は、請求項2の発明部材の場合
と同様である。前述の請求項1と請求項3の発明部材の
構成合金の結晶粒度を15μm以下に、又請求項2と請求
項4の発明部材の結晶粒度を10μm以下にそれぞれ限定
した理由は、結晶粒度が前記限定値を超えると耐振動性
及び耐応力緩和特性等が急激に低下する為である。尚、
上記合金の結晶粒度は、通常の製造方法をとることによ
り、自ずと15μm又は10μm以下にそれぞれ調整される
ものである。
The invention member according to claim 4 is constituted by an alloy which constitutes the invention member according to claim 3 and further contains the subcomponent used in claim 2 to adjust the grain size to 10 μm or less. Is. The action of this subcomponent and the reason for limiting the composition range are the same as in the case of the invention member of claim 2. The reason why the grain sizes of the constituent alloys of the invention members of claims 1 and 3 are limited to 15 μm or less, and the grain sizes of the invention members of claims 2 and 4 are limited to 10 μm or less, respectively. This is because if it exceeds the above-mentioned limit value, the vibration resistance, stress relaxation resistance and the like are sharply lowered. still,
The crystal grain size of the above alloy is naturally adjusted to 15 μm or 10 μm or less, respectively, by the usual production method.

【0012】[0012]

【実施例】以下に、本発明を実施例により詳細に説明す
る。 実施例1 表1に示した組成の合金のうち、合金NoA〜Nの合金を
溶解,鋳造して鋳塊となし、この鋳塊を 950℃で熱間圧
延して厚さ10mmの圧延材となした。次にこの圧延材を表
面研削したのち、冷間圧延により厚さ0.8mm の板材に加
工した。しかるのち、この板材に 850℃×60秒の中間加
熱処理を施し、前記加熱処理温度から急冷し、次にこれ
を酸洗研磨したのち冷間圧延して厚さ0.5mm の板材に仕
上げ、更に前記板材に 450℃×2時間の加熱処理を施し
て供試材となした。 比較例1 実施例1において、表1に示した合金のうちのNoB,
D,G,Kの合金について、0.8 mm厚さの板材の中間
加熱処理を 930℃で 0.5時間と通常より高温度で長時間
行った他は、実施例1と同じ方法により供試材を作製し
た。 比較例2 実施例1において、表1に示した合金のうちのNoO〜R
の合金を用いた他は、実施例1と同じ方法により供試材
を作製した。 従来例1 実施例1において、表1に示した合金のうちのNoS,T
の合金を用いた他は、実施例1と同じ方法により供試材
を作製した。このようにして得られた各々の供試材につ
いて、引張強度,耐振動性,耐環境性を調査した。結果
は結晶粒度を併記して表2に示した。尚、引張試験は、
JIS-Z2241 に準拠して行った。耐振動性は、供試材から
幅10mm,長さ 100mmの短冊片を切出し、その中央部を曲
率5mmで90度曲げし、一端を固定し他端に振幅30mm,周
期 0.1秒の曲げ振動を繰り返し与えて試験した。試験時
間は最大24時間とし、破断までの時間で示した。耐環境
性は応力緩和試験と耐食性試験により評価した。応力緩
和試験は、供試材から幅10mm、長さ 200mmの短冊片を切
出し、この短冊片を負荷応力が 500N/mm2 になるよう
に撓ませた状態で 150℃× 500時間保持し、負荷応力開
放後に残存する撓み量を百分率で求めた。耐食性試験
は、振動試験で用いたのと同じ短冊片に、「10%NaClの
塩水噴霧中に15分間保持→40℃の 100%RH雰囲気中に
30分間保持→80℃の30%RH雰囲気中に60分間保持」の
腐食サイクルを30回繰り返し施したのち、前述と同じ条
件で振動試験を行って評価した。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 Of the alloys having the compositions shown in Table 1, alloys No. A to N were melted and cast into ingots, and the ingots were hot-rolled at 950 ° C. to obtain rolled materials having a thickness of 10 mm. Done Next, after surface-grinding the rolled material, it was cold-rolled into a plate having a thickness of 0.8 mm. After that, this plate material is subjected to intermediate heat treatment at 850 ° C x 60 seconds, quenched from the heat treatment temperature, pickled and polished, and then cold rolled to a plate thickness of 0.5 mm. The plate material was heat-treated at 450 ° C. for 2 hours to prepare a test material. Comparative Example 1 In Example 1, NoB among the alloys shown in Table 1,
For the D, G, and K alloys, test materials were prepared by the same method as in Example 1 except that the intermediate heat treatment of 0.8 mm thick plate material was performed at 930 ° C. for 0.5 hours at a higher temperature than usual for a long time. did. Comparative Example 2 In Example 1, NoO to R of the alloys shown in Table 1 were used.
A test material was produced by the same method as in Example 1 except that the alloy of No. 1 was used. Conventional Example 1 In Example 1, among the alloys shown in Table 1, NoS, T
A test material was produced by the same method as in Example 1 except that the alloy of No. 1 was used. The tensile strength, vibration resistance, and environment resistance of each of the test materials thus obtained were investigated. The results are shown in Table 2 together with the grain size. The tensile test is
It was performed according to JIS-Z2241. For vibration resistance, a strip of 10 mm in width and 100 mm in length was cut out from the test material, the center part was bent 90 degrees with a curvature of 5 mm, one end was fixed, and the other end was subjected to bending vibration with an amplitude of 30 mm and a cycle of 0.1 seconds. It was repeatedly given and tested. The maximum test time was 24 hours, and the time until breakage was shown. The environmental resistance was evaluated by a stress relaxation test and a corrosion resistance test. For the stress relaxation test, a strip of 10 mm in width and 200 mm in length was cut out from the test material, and the strip was bent at a load stress of 500 N / mm 2 and held at 150 ° C for 500 hours, and then loaded. The amount of bending remaining after the stress was released was calculated as a percentage. Corrosion resistance test was carried out on the same strip as used in the vibration test, “Keep it in salt water spray of 10% NaCl for 15 minutes → in 100% RH atmosphere at 40 ° C.
A corrosion cycle of "hold for 30 minutes → hold for 60 minutes in a 30% RH atmosphere at 80 ° C" was repeated 30 times, and then a vibration test was performed under the same conditions as described above for evaluation.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】表2より明らかなように、本発明のダンパ
用屈曲部材(試料No1〜14)は、引張強度,耐振動性,
応力緩和特性,耐食性のすべての試験項目において、良
好な成績を示した。これに対し、比較例品のNo15〜18は
0.8mm厚さの板材の加熱処理を通常より高温度で長時
間行った為、結晶粒度が15又は10μmを超え、その結果
耐振動性及び耐応力緩和特性が特に低下した。又比較例
品のNo19はTiの含有量が限定値未満の為、全般に特性
が低い値のものとなった。又No20は、Tiの含有量が限
定値を超えた為、引張強度は高かったが、Cu−Ti化
合物が多量に生成して耐振動性,耐応力緩和特性,耐食
性が低下した。又No21はMnとMgの含有量が限定値を
超えた為、又No22は副成分のVとNbの含有量が限定値
を超えた為溶湯の湯流れ性が悪化し又溶湯中にガスが多
量に吸収されて鋳造性が低下して、いずれも鋳造又は熱
間加工時に割れを生じ、供試材を得ることができなかっ
た。又従来材のNo23と24は、本発明のダンパ用屈曲部材
に較べて、耐振動性,耐応力緩和性,耐食性が極めて低
い上、引張強度も不十分なものであった。
As is clear from Table 2, the bending member for a damper (Sample Nos. 1 to 14) of the present invention has tensile strength, vibration resistance, and
Good results were shown in all test items of stress relaxation characteristics and corrosion resistance. On the other hand, the comparative example products No. 15-18
Since the heat treatment of the 0.8 mm-thick plate material was carried out at a higher temperature than usual for a long time, the grain size exceeded 15 or 10 μm, and as a result, the vibration resistance and the stress relaxation resistance were particularly deteriorated. In addition, since the content of Ti was less than the limited value in No. 19 of the comparative example product, the properties were generally low. Further, No. 20 had a high tensile strength because the content of Ti exceeded the limit value, but a large amount of Cu-Ti compound was formed and the vibration resistance, stress relaxation resistance, and corrosion resistance deteriorated. In addition, No21 had Mn and Mg contents exceeding the limits, and No22 had V and Nb contents exceeding the limits, which deteriorated the flowability of the molten metal and caused no gas in the molten metal. A large amount was absorbed and the castability deteriorated, and in both cases, cracking occurred during casting or hot working, and the test material could not be obtained. Further, the conventional materials No. 23 and 24 had extremely low vibration resistance, stress relaxation resistance and corrosion resistance as compared with the bending member for a damper of the present invention, and also had insufficient tensile strength.

【0016】[0016]

【効果】以上述べたように、本発明のダンパ用屈曲部材
は、強度,耐振動性,耐環境性に優れ、且つ周波数の異
なる種々の振動を吸収し得るもので、工業上顕著な効果
を奏する。
[Effect] As described above, the bending member for a damper of the present invention is excellent in strength, vibration resistance, and environment resistance, and can absorb various vibrations having different frequencies, and has a remarkable industrial effect. Play.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Ti 0.5〜4.5 wt%を含み、更にFe
0.5〜4.5 wt%,Ni0.5〜5.5 wt%、Sn 0.5〜4.5 wt
%の元素群から一種又は二種以上の元素を合計で 0.5〜
6.0 wt%含み、残部Cuと不可避的不純物からなる銅合
金により構成され、前記銅合金の結晶粒度が15μm以下
であることを特徴とするダンパ用屈曲部材。
1. Including 0.5 to 4.5 wt% of Ti and further Fe
0.5-4.5 wt%, Ni 0.5-5.5 wt%, Sn 0.5-4.5 wt%
% Or more of one or more elements in total from 0.5%
A bending member for a damper, comprising a copper alloy containing 6.0 wt% and a balance of Cu and unavoidable impurities, wherein the crystal grain size of the copper alloy is 15 μm or less.
【請求項2】 Ti 0.5〜4.5 wt%を含み、更にFe
0.5〜4.5 wt%,Ni0.5〜5.5 wt%、Sn 0.5〜4.5 wt
%の元素群から一種又は二種以上の元素を合計で 0.5〜
6.0 wt%含み、更にZr0.005 〜0.3 wt%、Cr 0.005
〜0.35wt%、Y 0.005〜0.05wt%、La 0.005〜0.05wt
%、V0.005 〜0.1 wt%、Nb 0.005〜0.05wt%の元素
群より一種又は二種以上の元素を合計で 0.005〜0.5 wt
%含み、残部Cuと不可避的不純物からなる銅合金によ
り構成され、前記銅合金の結晶粒度が10μm以下である
ことを特徴とするダンパ用屈曲部材。
2. Ti 0.5-4.5 wt% is included, and further Fe
0.5-4.5 wt%, Ni 0.5-5.5 wt%, Sn 0.5-4.5 wt%
% Or more of one or more elements in total from 0.5%
6.0 wt% included, Zr 0.005 to 0.3 wt%, Cr 0.005
~ 0.35wt%, Y 0.005 ~ 0.05wt%, La 0.005 ~ 0.05wt%
%, V 0.005 to 0.1 wt%, Nb 0.005 to 0.05 wt%, and 0.005 to 0.5 wt in total of one or more elements.
%, The balance is made of a copper alloy consisting of Cu and unavoidable impurities, and the grain size of the copper alloy is 10 μm or less.
【請求項3】 Ti 0.5〜4.5 wt%を含み、更にFe
0.5〜4.5 wt%,Ni0.5〜5.5 wt%、Sn 0.5〜4.5 wt
%の元素群より一種又は二種以上の元素を合計で 0.5〜
6.0 wt%を含み、更にMg0.005 〜0.50wt%、Mn0.01
〜1.0 wt%、Zn0.05〜2.0 wt%の元素群より一種又は
二種以上の元素を合計で 0.005〜3.5wt%含み、残部C
uと不可避的不純物からなる銅合金により構成され、前
記銅合金の結晶粒度が15μm以下であることを特徴とす
るダンパ用屈曲部材。
3. Fe containing Ti 0.5-4.5 wt%, and Fe
0.5-4.5 wt%, Ni 0.5-5.5 wt%, Sn 0.5-4.5 wt%
% Or more of one or more elements in total from 0.5%
Including 6.0 wt%, Mg0.005-0.50 wt%, Mn0.01
〜1.0 wt%, Zn 0.05-2.0 wt%, 0.005 to 3.5 wt% total of one or more elements from the element group, balance C
A bending member for a damper, which is composed of a copper alloy containing u and unavoidable impurities and has a crystal grain size of 15 μm or less.
【請求項4】 Ti 0.5〜4.5 wt%を含み、更にFe
0.5〜4.5 wt%,Ni0.5〜5.5 wt%、Sn 0.5〜4.5 wt
%の元素群より一種又は二種以上の元素を合計で 0.5〜
6.0 wt%を含み、更にMg 0.005〜0.50wt%、Mn0.01
〜1.0 wt%、Zn0.05〜2.0 wt%の元素群より一種又は
二種以上の元素を合計で 0.005〜3.5wt%含み、更にZ
r 0.005〜0.3 wt%、Cr 0.005〜0.35wt%、Y 0.005
〜0.05wt%、La 0.005〜0.05wt%、V 0.005〜0.1 wt
%、Nb 0.005〜0.05wt%の元素群より一種又は二種以
上の元素を合計で 0.005〜0.5 wt%含み、残部Cuと不
可避的不純物からなる銅合金により構成され、前記銅合
金の結晶粒度が10μm以下であることを特徴とするダン
パ用屈曲部材。
4. Ti 0.5 to 4.5 wt% is included, and Fe is further included.
0.5-4.5 wt%, Ni 0.5-5.5 wt%, Sn 0.5-4.5 wt%
% Or more of one or more elements in total from 0.5%
Including 6.0 wt%, Mg 0.005-0.50 wt%, Mn0.01
-1.0 wt%, Zn 0.05-2.0 wt%, and one or more elements in total 0.005-3.5 wt%, and further Z
r 0.005 to 0.3 wt%, Cr 0.005 to 0.35 wt%, Y 0.005
~ 0.05wt%, La 0.005-0.05wt%, V 0.005-0.1wt%
%, Nb 0.005 to 0.05 wt%, a total of 0.005 to 0.5 wt% of one or more elements from the element group, and the balance Cu and inevitable impurities. A bending member for a damper, which is 10 μm or less.
JP35375991A 1991-12-17 1991-12-17 Flexing member for damper Pending JPH05171316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35375991A JPH05171316A (en) 1991-12-17 1991-12-17 Flexing member for damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35375991A JPH05171316A (en) 1991-12-17 1991-12-17 Flexing member for damper

Publications (1)

Publication Number Publication Date
JPH05171316A true JPH05171316A (en) 1993-07-09

Family

ID=18433028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35375991A Pending JPH05171316A (en) 1991-12-17 1991-12-17 Flexing member for damper

Country Status (1)

Country Link
JP (1) JPH05171316A (en)

Similar Documents

Publication Publication Date Title
JP3594272B2 (en) High strength aluminum alloy for welding with excellent stress corrosion cracking resistance
JPS6182992A (en) Al alloy brazing sheet
JP2541995B2 (en) High strength Al alloy composite brazing sheet for Al heat exchanger structural member
JPH05255813A (en) High strength alloy excellent in workability and damping capacity
JP2536255B2 (en) Damping alloy
JP3454755B2 (en) Shock absorbing member with excellent pressure-resistant cracking resistance
JP2774709B2 (en) Sulfuric acid dew point corrosion resistant stainless steel with excellent hot workability
JPH05171316A (en) Flexing member for damper
JPH05171319A (en) Flexing member for damper
JPH05156392A (en) Bent member for damper
JP3297011B2 (en) High strength titanium alloy with excellent cold rollability
JPH05156391A (en) Bent member for damper
JP3073197B1 (en) Shock absorbing member in automobile frame structure
JPH05295473A (en) Bent member for damper
JP3297012B2 (en) High strength titanium alloy with excellent cold rollability
JPH04246141A (en) Copper-base alloy for heat exchanger
JPS5944383B2 (en) Shindougensuigoukin
JP2914736B2 (en) Heat resistant stainless steel foil for combustion exhaust gas purification catalyst carrier with heat fatigue resistance
JPH07188822A (en) Al alloy clad material for structural member of automotive heat exchanger excellent in pitting corrosion resistance
JPH0441648A (en) High strength aluminum alloy for forming, excellent in baking hardenability
JPH01148489A (en) Al alloy brazing sheet for heat exchanger having excellent corrosion resistance at fillet forming part
JPH03285017A (en) Production of resistance welded tube having high vibration damping property
JPS5827325B2 (en) Method of manufacturing vibration damping alloy
JPH0219180B2 (en)
JPS58171546A (en) Al alloy as fin material for heat exchanger with superior drooping resistance and sacrificial anode effect