JPS5827325B2 - Method of manufacturing vibration damping alloy - Google Patents

Method of manufacturing vibration damping alloy

Info

Publication number
JPS5827325B2
JPS5827325B2 JP50050800A JP5080075A JPS5827325B2 JP S5827325 B2 JPS5827325 B2 JP S5827325B2 JP 50050800 A JP50050800 A JP 50050800A JP 5080075 A JP5080075 A JP 5080075A JP S5827325 B2 JPS5827325 B2 JP S5827325B2
Authority
JP
Japan
Prior art keywords
vibration damping
damping alloy
alloy
vibration
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50050800A
Other languages
Japanese (ja)
Other versions
JPS51126319A (en
Inventor
尚登 蒲原
雅俊 中川
隆 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP50050800A priority Critical patent/JPS5827325B2/en
Publication of JPS51126319A publication Critical patent/JPS51126319A/en
Publication of JPS5827325B2 publication Critical patent/JPS5827325B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は振動減衰合金の製造方法に係り、特に耐摩耗性
のすぐれた振動減衰合金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a vibration damping alloy, and more particularly to a method for producing a vibration damping alloy with excellent wear resistance.

最近公害問題として各種の機械、機器から発生する騒音
や振動が重視されている。
Recently, emphasis has been placed on noise and vibration generated from various machines and equipment as a pollution problem.

このため各種機械や機器の設計、製造に当たってはこれ
らの機械や機器から発生する騒音、振動を少しでも減少
させるよう努力も払われている。
For this reason, when designing and manufacturing various machines and equipment, efforts are made to reduce the noise and vibration generated by these machines and equipment as much as possible.

ところでこりような騒音、振動を効果的に減少させる手
段の一つに振動減衰能の大きな材料を機械や機器の構造
部材として使用し、よって騒音、振動の発生部分でこれ
を吸収させる手段がある。
By the way, one way to effectively reduce such noise and vibration is to use materials with a high vibration damping capacity as structural members of machines and equipment, so that the noise and vibration are absorbed in the parts where they are generated. .

従来このような騒音や振動を吸収する材料としてはプラ
スチックス、Ni−Ti合金、Mnを40〜90係含む
Mn−Cu合金または鋳鉄などが知られている。
Plastics, Ni--Ti alloys, Mn--Cu alloys containing 40 to 90 parts of Mn, cast iron, and the like are conventionally known as materials that absorb such noise and vibration.

しかしプラスチックスは機械的強度および耐熱性がとも
に劣っており、振動発生部の構造材料としては適さない
However, plastics are inferior in both mechanical strength and heat resistance, and are not suitable as structural materials for vibration generating parts.

この点合金系はプラスチックスに較べすぐれている(但
しMn−Cu合金系は耐摩耗性力る)が、振動減衰能の
臨界温度が50〜80℃と低いため、高温下または摩擦
発熱などにより高温化する構造部材として使用した場合
所要の振動減衰能を発揮し得ないと言う欠点がある。
In this respect, alloys are superior to plastics (however, Mn-Cu alloys have better wear resistance), but because the critical temperature for vibration damping ability is low at 50 to 80℃, When used as a structural member subject to high temperatures, it has the disadvantage that it cannot exhibit the required vibration damping ability.

ざらにNi−Ti合金は切削加工性が極端に劣るため使
用分野も限定されており、これら振動減衰合金系は例え
ばコンプレッサの弁座、ロータリコンプレッサのブレー
ド材など100℃程度の温度にさらされ、且つ耐摩耗性
の要求される場合には適さない。
In addition, Ni-Ti alloys have extremely poor machinability, so their fields of use are limited, and these vibration-damping alloys are exposed to temperatures of about 100°C, such as compressor valve seats and rotary compressor blade materials. Moreover, it is not suitable for cases where wear resistance is required.

本発明は上記の点に鑑みなされたもので切削加工も可能
で、すぐれた耐摩耗性、機械的強度を備えるとともに3
00℃程度の高温でも所要の振動減衰能を発揮維持する
振動減衰合金の製造方法を提供することを目的とする。
The present invention was developed in view of the above points, and can be machined, has excellent wear resistance and mechanical strength, and has three
It is an object of the present invention to provide a method for manufacturing a vibration damping alloy that exhibits and maintains a required vibration damping ability even at high temperatures of about 00°C.

以下本発明の詳細な説明すると本発明は重量比でA18
%を超え15饅まで、SiO,5以下Mnl係以下およ
び実質的にFeが残部を占めてなるF e −A l系
合金に焼なまし処理を施すことを特徴とする振動減衰合
金の製造方法である。
The present invention will be described in detail below.The present invention has a weight ratio of A18.
% to 15%, SiO, 5% or less, Mnl% or less, and Fe-Al series alloy having substantially the remainder occupied by Fe. It is.

本発明に係る振動減衰合金についてその組成比などが上
記の如く限定された理由は次の通りである。
The reason why the composition ratio of the vibration damping alloy according to the present invention is limited as described above is as follows.

先ずA7ff分は振動減衰能と耐摩耗性との向上に寄与
するもので8係以下では耐摩耗性の向上が充分でなく、
また15係を超えると振動減衰能が充分でなく振動減衰
機能を充分に果し得ない。
First of all, A7ff contributes to improving vibration damping ability and wear resistance, and if it is less than 8 coefficients, the improvement in wear resistance is not sufficient.
Further, if the number exceeds 15, the vibration damping ability is insufficient and the vibration damping function cannot be fully achieved.

さらにSiおよびMnの同成分は脱硫、脱酸のため添加
含有せしめたものであり、その量は0.5係以下および
1φ以下に選ばれる。
Further, the same components of Si and Mn are added for desulfurization and deoxidation, and the amount thereof is selected to be 0.5 coefficient or less and 1φ or less.

しかして残部を占めるFeは不可避的な不純物(例えば
C9Pなど)を含有していても差支えない。
However, the remaining Fe may contain unavoidable impurities (for example, C9P, etc.).

またこのAl−Fe系合金に実用上充分な振動減衰能を
発揮させるため焼なまし処理は振動減衰能を得るため必
要であり、この焼なまし処理温度は600〜1200℃
の温度で選択するのが好しい。
In addition, in order to make this Al-Fe alloy exhibit sufficient vibration damping ability for practical use, annealing treatment is necessary to obtain vibration damping ability, and the annealing treatment temperature is 600 to 1200°C.
It is preferable to select at a temperature of

即ちこの焼なまし処理により上記合金の内部応力の除去
と結晶性の成長とが促進され磁壁の移動性が高められも
って振動減衰能が向上するに至る。
That is, this annealing treatment promotes the removal of internal stress in the alloy and the growth of crystallinity, thereby increasing the mobility of the domain wall and thereby improving the vibration damping ability.

しかして、この焼なまし処理は温度と時間との**関数
である故−概に決められないが実用上有効な振動減衰能
をうるためには厚さ1r/L7nの板で、時間30分と
した場合約600〜1100℃の範囲が適当であった。
However, since this annealing treatment is a function of temperature and time, it cannot be determined generally, but in order to obtain a practically effective vibration damping ability, it is necessary to use a plate with a thickness of 1r/L7n for 30 minutes. When measured in minutes, a range of about 600 to 1100°C was appropriate.

次に本発明の実施例を記載する。Next, examples of the present invention will be described.

表に示す組成(重量饅)で、真空鋳造によって得た鋳造
材を3種用意した。
Three types of casting materials obtained by vacuum casting were prepared with the compositions (weights) shown in the table.

これらの鋳造材から厚さ1關、幅107ILrIL1長
さ100mmの試験片をそれぞれ切り出し、600〜1
100℃で熱処理を施し焼なまして振動減衰合金を得た
Test pieces with a thickness of 1 mm, a width of 107 ILrIL, and a length of 100 mm were cut out from these cast materials.
A vibration damping alloy was obtained by heat treatment and annealing at 100°C.

かくして得た振動減衰合金片に同一条件で折曲げ振動を
与えて対数減衰率(δ)を測定した結果を焼なまし条件
とともに表に併せて示した。
The results of measuring the logarithmic damping ratio (δ) of the thus obtained vibration damping alloy piece by subjecting it to bending vibration under the same conditions are shown in the table together with the annealing conditions.

尚、対数減衰率(δ)の値は炭素鋼540Cの冷間圧延
材の対数減衰率(δ)の値を10とした場合の数値であ
る。
Note that the value of the logarithmic damping rate (δ) is a value when the value of the logarithmic damping rate (δ) of the cold-rolled carbon steel 540C material is set to 10.

この測定結果から明らかなように本発明に係る振動減衰
合金の場合は炭素鋼板の場合に較べ著しくすぐれている
As is clear from the measurement results, the vibration damping alloy according to the present invention is significantly superior to the carbon steel plate.

また本発明に係る振動減衰合金と、Ni−Ti系振動減
衰合金について室温乃至350℃下における振動減衰率
を測定した。
Furthermore, the vibration damping ratios of the vibration damping alloy according to the present invention and the Ni-Ti vibration damping alloy at room temperature to 350° C. were measured.

Ni−Ti系振動減衰合金は室温附近ではすぐれた振動
減衰能を示すがioo℃前後で著しく劣化する。
The Ni-Ti vibration damping alloy exhibits excellent vibration damping ability near room temperature, but deteriorates significantly at around 100°C.

このためNi−Ti系の場合は大きな荷重を受は応力ひ
ずみ曲線で大きなヒステリスを描き振動する部材(温度
上昇を招き易い)としては信頼性の点から適さないと言
うことになる。
For this reason, in the case of a Ni-Ti system, it is not suitable from the viewpoint of reliability as a vibrating member (which tends to cause a rise in temperature) and exhibits a large hysteresis in the stress-strain curve when subjected to a large load.

しかるに本発明に係る振動減衰合金は350℃程度の高
温でもすぐれた振動減衰能を維持するためこの点大きな
利点をもたらすと言える。
However, the vibration damping alloy according to the present invention maintains excellent vibration damping ability even at high temperatures of about 350° C., so it can be said that it provides a great advantage in this respect.

また本発明に係る振動減衰合金ではAl成分を8〜15
重量係と最多度としたことにより、耐摩耗性の点ですぐ
れた特性を示した。
In addition, in the vibration damping alloy according to the present invention, the Al content is 8 to 15
By setting the weight ratio to the maximum, it showed excellent properties in terms of wear resistance.

以上説明したように本発明に係る振動減衰合金は350
℃程度の高温でもすぐれた振動減衰能を維持するととも
に耐摩耗性や硬度の点でもすぐれている。
As explained above, the vibration damping alloy according to the present invention has 350
It maintains excellent vibration damping ability even at temperatures as high as ℃, and has excellent wear resistance and hardness.

かくして本発明の振動減衰合金は機械加工性の良さ、従
って構造材乃至部品化の容易さと相俟って実用上すぐれ
た振動減衰合金と言える。
Thus, the vibration damping alloy of the present invention can be said to be a practically excellent vibration damping alloy due to its good machinability, and therefore the ease of making it into structural materials or parts.

尚、本発明の振動減衰合金はさらに機械加工性を改善す
るため例えばS 、Sb、Caなとの元素、耐食性を一
層向上させるためNi、Cuなと添加含有せしめても差
支えない。
The vibration damping alloy of the present invention may further contain elements such as S, Sb, and Ca to improve machinability, and Ni and Cu to further improve corrosion resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比でA78を越え15係まで、Si0.5係以
下、Mn1%以下および実質的にFeが残部を占めてな
るF e−A l系合金に焼なまし処理を施すことを特
徴とする振動減衰合金の製造方法。
1. Annealing treatment is applied to an Fe-Al alloy having a weight ratio of more than A78 and up to 15%, Si of 0.5% or less, Mn of 1% or less, and Fe substantially occupying the balance. Method of manufacturing vibration damping alloy.
JP50050800A 1975-04-28 1975-04-28 Method of manufacturing vibration damping alloy Expired JPS5827325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50050800A JPS5827325B2 (en) 1975-04-28 1975-04-28 Method of manufacturing vibration damping alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50050800A JPS5827325B2 (en) 1975-04-28 1975-04-28 Method of manufacturing vibration damping alloy

Publications (2)

Publication Number Publication Date
JPS51126319A JPS51126319A (en) 1976-11-04
JPS5827325B2 true JPS5827325B2 (en) 1983-06-08

Family

ID=12868846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50050800A Expired JPS5827325B2 (en) 1975-04-28 1975-04-28 Method of manufacturing vibration damping alloy

Country Status (1)

Country Link
JP (1) JPS5827325B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102089U (en) * 1990-02-07 1991-10-24
JP5136196B2 (en) * 2008-05-14 2013-02-06 新日鐵住金株式会社 Damping steel plate and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101714A (en) * 1975-03-06 1976-09-08 Tokyo Shibaura Electric Co KASETSURO KOTAI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101714A (en) * 1975-03-06 1976-09-08 Tokyo Shibaura Electric Co KASETSURO KOTAI

Also Published As

Publication number Publication date
JPS51126319A (en) 1976-11-04

Similar Documents

Publication Publication Date Title
RU2201990C2 (en) Alloy iron-cobalt
JP3049767B2 (en) Ti alloy with excellent heat resistance
CA1038205A (en) Low expansion iron-nickel based alloys
JP2536255B2 (en) Damping alloy
JPH0321622B2 (en)
JPH05255813A (en) High strength alloy excellent in workability and damping capacity
JPH0542493B2 (en)
JPS5817805B2 (en) Method of manufacturing vibration damping alloy
JPS5827325B2 (en) Method of manufacturing vibration damping alloy
JP2536256B2 (en) High strength damping alloy
JPS6363617B2 (en)
JPH04235256A (en) Ferritic stainless steel excellent in condensed water corrosion resistance and low in yield strength
JPS5944383B2 (en) Shindougensuigoukin
JP2721192B2 (en) Corrosion resistant soft magnetic material
JPS62250136A (en) Copper alloy terminal and connector
JPS6330377B2 (en)
JPS591784B2 (en) Alloys used as vibration and noise prevention members
JPS6059980B2 (en) Anti-vibration steel with high vibration damping ability and its manufacturing method
JP2792364B2 (en) High strength, high toughness damping alloy
JPS5827326B2 (en) Manufacturing method for anti-vibration castings
JPH0480347A (en) Stainless steel excellent in corrosion resistance
JP3604719B2 (en) High damping cast alloy
JPS5930783B2 (en) vibration absorbing alloy
JPH06100986A (en) High damping alloy
EP0603413B1 (en) Induced rotors for electromagnetic speed reducers fabricated with ferritic nodular cast iron