JPS6330377B2 - - Google Patents

Info

Publication number
JPS6330377B2
JPS6330377B2 JP59025738A JP2573884A JPS6330377B2 JP S6330377 B2 JPS6330377 B2 JP S6330377B2 JP 59025738 A JP59025738 A JP 59025738A JP 2573884 A JP2573884 A JP 2573884A JP S6330377 B2 JPS6330377 B2 JP S6330377B2
Authority
JP
Japan
Prior art keywords
vibration
alloy
casting
tensile strength
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59025738A
Other languages
Japanese (ja)
Other versions
JPS60169537A (en
Inventor
Ryuzo Takeda
Yukio Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOWA KOGYO KK
RYOOBI KK
Original Assignee
DOWA KOGYO KK
RYOOBI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOWA KOGYO KK, RYOOBI KK filed Critical DOWA KOGYO KK
Priority to JP2573884A priority Critical patent/JPS60169537A/en
Publication of JPS60169537A publication Critical patent/JPS60169537A/en
Priority to JP31939587A priority patent/JPH01162740A/en
Publication of JPS6330377B2 publication Critical patent/JPS6330377B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 技術分野 本発明は防振特性に優れた高強度の亜鉛−アル
ミニウム系合金とその製造法に関するものであ
る。 (ロ) 従来技術 近年、公害関係の環境規制の強化により各種機
器、設備等からの騒音の発生防止が深刻な問題と
なつている。 このような状況下で、各種機器に使用される材
料の防振特性の改善が要求されており、この対策
として従来から多くの研究がなされ、各種の防振
合金が開発されているが、鋳鉄系のものは高温で
熱エネルギーを多用し、銅系のものはコスト高と
なり、また鉄材とプラスチツク複合材はその接着
性や耐熱性などに問題があるなど、諸種の理由か
らなかなか実用化されていないのが現状である。 (ハ) 発明の開示 本発明者らは長期にわたる研究の結果、上記の
ような問題点を解決し、防振特性に優れた合金を
開発したものであり、その製造法は極めて容易で
製造コストも安価であり、各種機器に幅広く利用
することができる防振合金を提供するものであ
る。 亜鉛−アルミニウム系合金が防振特性を有する
ためには、結晶組織の微細な共析組織を持たせな
ければならないが、通常の鋳造品は粗大な共晶組
織であつて防振性に乏しい。しかし、いつたんこ
の合金を275℃以上の温度で0.5〜2.0時間均一化
処理を施した後、急冷すると、共晶組織ではなく
て微細な共析組織にすることができ、防振特性が
向上することを本発明者等は見出した。 しかしながら、亜鉛−アルミニウム2元合金
(例えばAlが10〜20wt%含有)では、熱処理した
場合に引張り強さ(σB)が15Kg/mm2以下となり、
充分な値とはいえない。この対策として、銅を添
加すると、引張り強さは向上させることができる
が、防振特性の劣化を招くことになる。 この原因について、本発明者らは電子顕微鏡に
よる組織観察を行ない、添加するCuの影響で熱
処理前の共晶組織が熱処理後もかなり残存してお
り、防振特性の劣化がこの影響によるものである
との知見を得た。 そこで、本発明者らは亜鉛−アルミニウム系合
金の防振特性を向上させるとともに、熱処理後も
引張り強度を維持せしめ、鋳造時の共晶組織の残
存を極力抑制するために、種々な添加元素の影響
を検討した結果、更にCuに加えてB、Zr、Crお
よびTiのうちの一種類またはそれ以上の元素を
0.005〜3.0%の範囲で加えることにより、前記の
目的を充分に満足せしめる合金を開発するに至つ
た。 本明細書における防振特性値は、捩り振動法
(周波数2Hz。試験片サイズは幅10mm、長さ100
mm、厚さ1mm。)による振動減衰曲線から計算し
た内耗値(Q-1)をもつて表示した。 関係式は次の通りである。 δ=1/n・ln・Ao/An ここで、 δ:対数減衰率 Ao:減衰曲線における最初の波の振幅 An:減衰曲線におけるn番目の波の振幅 Q-1=δ/π Q-1:内耗値 π:円周率 Q-1は10-3台以上の値が望まれるが、防振合金
としては10-2台の値がより望ましいものである。 本発明に係る合金は、Al10〜25wt%、Cu0.05
〜0.30wt%、及びB、Zr、Cr、Tiの元素のうち
の少なくとも一種以上の元素を0.005〜3.0wt%含
み、残部が実質的にZnよりなる引張り強さ20
Kg/mm2以上の防振特性に優れた合金である。 従つて、次に本発明合金を構成する上記合金成
分の添加理由とその限定理由について説明する。 Alは合金の内部摩擦(Q-1)、引張り強さ
(σB)および伸び率(δ)を改善する元素であ
る。亜鉛にAlを添加した場合の内部摩擦即ち内
耗値、引張り強さ、伸びに及ぼす影響を、重力鋳
造した後放冷した鋳放し材と、熱処理(360℃で
1時間均一化処理後→水冷)材について試験した
ところ、Alの添加はその含有量が10wt%未満で
はその効果は顕著でなく、それ以上になると諸性
質における効果が明らかになつてくるが、特に内
耗値に関しては25wt%をこえると低下した。 そこで、Alを22wt%とし、Zn−Al合金の内耗
値、引張り強さ、伸びに及ぼすCu添加の影響に
ついて、重力鋳造した鋳放し材と、熱処理材
(360℃で1時間均一化処理後→水冷)について試
験した結果、内耗値は鋳放し材、熱処理材ともに
Cu添加量の増加につれて減少するが、0.3wt%以
上では熱処理材はほぼ一定となる。また、引張り
強度においても伸びにおいても0.3wt%以上では
ほぼ飽和し、0.05wt%未満では機械的性質への効
果はほとんど見られなかつた。従つて、Cuの添
加は0.05〜0.3wt%の範囲が良好である。 また、熱処理材はいづれの場合でも内耗値が大
であり、その多くが10-2台にあることが分かる。
また、引張強度はZn−Alの2元系では20Kg/mm2
以下であるが、これにCu等を添加することで20
Kg/mm2を越えるのである。また、伸びは多くの場
合それほど問題にされないが、少なくとも伸び率
3%程度以上が望まれる。 B、Zr、Cr及び又はTiの添加効果については、
Zn−20wt%Al−0.15wt%Cu合金を基本として、
各々の添加元素が内耗値、引張り強度、伸びに及
ぼす影響を調査検討したが、その結果は実施例に
示す通りであり、0.005wt%未満では上記特性の
改善効果が認められず、3.0wt%以上になるとそ
の効果が飽和する場合とか、または低下の影響を
起こすなどの影響が出る。 また、3.0wt%を越えると鋳造時の偏析が見ら
れ、伸び率が著しく減少して3%以下になる場合
が生じ、好ましい結果が得られなかつた。 なお、本発明の合金は切削性も通常で、複雑な
形に機械加工することも容易であつた。 また、本発明ではダイカスト鋳造材でもこれを
行なつたが、重力鋳造材と同様にその有効性が実
証された。 (ニ) 実施例 実施例 1 第1表のような種々の組成の合金を溶解して金
型で鋳造後、360℃で1時間均一化処理を行なつ
た後、水冷を行なつたものにつき、防振特性(内
耗値)、引張強度を測定した。その結果を併せて
示す。 試料1〜4は比較例であり、試料5〜9が本発
明合金である。
(a) Technical Field The present invention relates to a high-strength zinc-aluminum alloy with excellent anti-vibration properties and a method for producing the same. (B) Prior Art In recent years, with the tightening of environmental regulations related to pollution, preventing noise from various devices, facilities, etc. has become a serious problem. Under these circumstances, there is a need to improve the vibration-isolating properties of materials used in various devices, and as a countermeasure, much research has been conducted and various vibration-isolating alloys have been developed, but cast iron They have not been put into practical use for a variety of reasons, including those that require a lot of heat energy at high temperatures, copper-based materials that are expensive, and iron and plastic composite materials that have problems with their adhesion and heat resistance. The current situation is that there is no such thing. (C) Disclosure of the Invention As a result of long-term research, the present inventors solved the above problems and developed an alloy with excellent vibration-proofing properties.The manufacturing method is extremely easy and the manufacturing cost is low. The present invention provides an anti-vibration alloy that is also inexpensive and can be widely used in various types of equipment. In order for a zinc-aluminum alloy to have vibration-damping properties, it must have a fine eutectoid crystal structure, but ordinary cast products have a coarse eutectic structure and lack vibration-damping properties. However, if the Itsutanko alloy is homogenized at a temperature of 275℃ or higher for 0.5 to 2.0 hours and then rapidly cooled, it becomes a fine eutectoid structure instead of a eutectic structure, which improves vibration damping properties. The present inventors have found that. However, in zinc-aluminum binary alloys (for example, containing 10 to 20 wt% Al), the tensile strength (σB) becomes less than 15 Kg/mm 2 when heat treated.
This is not a sufficient value. As a countermeasure to this problem, adding copper can improve the tensile strength, but this will lead to deterioration of the vibration damping properties. As for the cause of this, the present inventors observed the structure using an electron microscope and found that the eutectic structure before heat treatment remained considerably after heat treatment due to the effect of added Cu, and the deterioration of vibration damping properties was due to this effect. We have learned that there is. Therefore, the present inventors added various additive elements in order to improve the anti-vibration properties of the zinc-aluminum alloy, maintain its tensile strength even after heat treatment, and suppress the remaining eutectic structure during casting as much as possible. As a result of examining the effects, we decided to add one or more of B, Zr, Cr, and Ti in addition to Cu.
By adding it in the range of 0.005 to 3.0%, we have developed an alloy that fully satisfies the above objectives. The vibration damping characteristic values in this specification are determined using the torsional vibration method (frequency: 2 Hz. The test piece size is 10 mm in width and 100 mm in length.
mm, thickness 1mm. ) is displayed with the internal wear value (Q -1 ) calculated from the vibration damping curve. The relational expression is as follows. δ=1/n・ln・Ao/An Where, δ: Logarithmic attenuation rate Ao: Amplitude of the first wave in the attenuation curve An: Amplitude of the nth wave in the attenuation curve Q -1 = δ/π Q -1 : Internal wear value π : Pi Q -1 is preferably in the 10 -3 range or higher, but as a vibration-proof alloy, a value in the 10 -2 range is more desirable. The alloy according to the present invention has Al10~25wt%, Cu0.05
~0.30 wt%, and 0.005 to 3.0 wt% of at least one of the elements B, Zr, Cr, and Ti, with the balance essentially consisting of Zn. Tensile strength 20
This is an alloy with excellent anti-vibration properties of Kg/mm 2 or more. Therefore, next, the reasons for adding the above-mentioned alloy components constituting the alloy of the present invention and the reasons for their limitations will be explained. Al is an element that improves the internal friction (Q −1 ), tensile strength (σB), and elongation (δ) of the alloy. The effect of adding Al to zinc on internal friction, i.e., internal wear value, tensile strength, and elongation, was investigated using as-cast materials that were left to cool after gravity casting, and heat treatment (after homogenization treatment at 360℃ for 1 hour → water cooling). Tests on aluminum materials revealed that the effect of adding Al is not significant when the content is less than 10wt%, and when the content is higher than that, the effect on various properties becomes obvious, but especially regarding the internal wear value, when the content exceeds 25wt%. and decreased. Therefore, we investigated the effects of Cu addition on the internal wear value, tensile strength, and elongation of Zn-Al alloys with Al content of 22wt%.We investigated the effects of gravity-cast as-cast material and heat-treated material (after homogenization treatment at 360℃ for 1 hour → As a result of testing for water cooling), the internal wear values for both as-cast and heat-treated materials were
It decreases as the amount of Cu added increases, but becomes almost constant above 0.3 wt%. Further, both tensile strength and elongation were almost saturated at 0.3 wt% or more, and almost no effect on mechanical properties was observed at less than 0.05 wt%. Therefore, it is preferable to add Cu in a range of 0.05 to 0.3 wt%. In addition, it can be seen that the heat-treated materials have high internal wear values in all cases, and most of them are in the 10 -2 range.
In addition, the tensile strength is 20Kg/mm 2 for the Zn-Al binary system.
However, by adding Cu etc. to this, 20
It exceeds Kg/ mm2 . Further, although elongation is not so much of a problem in many cases, an elongation rate of at least about 3% or more is desired. Regarding the effect of adding B, Zr, Cr and/or Ti,
Based on Zn-20wt%Al-0.15wt%Cu alloy,
The effects of each additive element on the internal wear value, tensile strength, and elongation were investigated and considered, and the results are as shown in the examples.At less than 0.005wt%, no improvement effect on the above properties was observed, and at 3.0wt% If the value exceeds this value, the effect may be saturated or may be degraded. Moreover, when it exceeds 3.0 wt%, segregation during casting is observed, and the elongation rate decreases markedly to 3% or less in some cases, making it impossible to obtain favorable results. The alloy of the present invention also had normal machinability and was easily machined into complex shapes. Furthermore, in the present invention, this was also carried out using die-cast materials, and its effectiveness was demonstrated as in the case of gravity-cast materials. (D) Examples Example 1 Regarding alloys of various compositions as shown in Table 1, which were melted and cast in a mold, homogenized at 360°C for 1 hour, and then cooled with water. , anti-vibration properties (internal wear value), and tensile strength were measured. The results are also shown. Samples 1 to 4 are comparative examples, and samples 5 to 9 are alloys of the present invention.

【表】 実施例 2 第2表のような組成の合金につき、防振特性
(内耗値)、引張強度を測定した。その結果を併せ
て表示する。本試験の測定サンプルは、鋳型温度
300℃でダイカスト鋳造後直ちに水冷したもので
ある。 試料1は比較例であり、試料2〜5が本発明合
金である。
[Table] Example 2 The anti-vibration properties (internal wear value) and tensile strength of alloys having the compositions shown in Table 2 were measured. The results will also be displayed. The measurement sample for this test was the mold temperature
It was die-cast at 300℃ and immediately cooled with water. Sample 1 is a comparative example, and samples 2 to 5 are alloys of the present invention.

【表】 実施例 3 第3表のような組成の合金につき、防振特性
(内耗値)、引張強度を測定した。その結果を併せ
て表示する。本試験の測定サンプルは、鋳型温度
150℃でダイカスト鋳造後、360℃で1時間均一化
処理し、水冷したものである。 試料1は比較例であり、試料2〜5が本発明合
金である。
[Table] Example 3 The anti-vibration properties (internal wear value) and tensile strength of alloys having the compositions shown in Table 3 were measured. The results will also be displayed. The measurement sample for this test was the mold temperature
After die-casting at 150°C, it was homogenized at 360°C for 1 hour and cooled with water. Sample 1 is a comparative example, and samples 2 to 5 are alloys of the present invention.

【表】 (ホ) 発明の効果 これらの実施例から分る通り、ダイカストの場
合は鋳型を高温に保持しておき、鋳造後水冷する
ことにより微小共析組織を出すことができるの
で、熱経済上有利である。また、重力鋳造物の再
加熱の場合は30分以上所定の高温に保持すること
により、共晶組織の消失による均一組織が得ら
れ、これよりも短時間であると均一化処理の不十
分な例が認められた。 以上のように、本発明合金は重力鋳造で内耗値
が3.59×10-2以上、引張り強さが20Kg/mm2以上の
材料を、またダイカスト鋳造では熱処理の有無に
かかわらず、内耗値が1.25×10-2以上、引張り強
さが28Kg/mm2以上の材料を容易に製造することが
でき、各種機器及び設備材料として広く用いるこ
とができる利点を有する。
[Table] (e) Effects of the invention As can be seen from these examples, in the case of die casting, a micro eutectoid structure can be produced by keeping the mold at a high temperature and cooling it with water after casting, which improves thermoeconomics. It is advantageous. Furthermore, in the case of reheating gravity castings, by holding the specified high temperature for 30 minutes or more, a uniform structure can be obtained due to the disappearance of the eutectic structure, and if the time is shorter than this, the homogenization process may be insufficient. Examples were recognized. As described above, the alloy of the present invention has an internal wear value of 3.59 × 10 -2 or more and a tensile strength of 20 Kg/mm 2 or more in gravity casting, and an internal wear value of 1.25 in die casting, regardless of heat treatment. ×10 -2 or more, and the tensile strength is 28 Kg/mm 2 or more. It has the advantage that it can be easily produced and can be widely used as a material for various equipment and equipment.

Claims (1)

【特許請求の範囲】 1 Al10〜25wt%、Cu0.05〜0.30wt%およびB、
Zr、Cr、Tiのうちの少なくとも一種以上の元素
を0.005〜3.0wt%含み、残部が実質的にZnよりな
る亜鉛−アルミニウム系高強度防振合金。 2 Al10〜25wt%、Cu0.05〜0.30wt%およびB、
Zr、Cr、Tiのうちの少なくとも一種以上の元素
を0.005〜3.0wt%含み、残部が実質的にZnよりな
る合金を鋳造後275℃以上の温度で0.5時間以上均
一化処理をした後、急冷することを特徴とする亜
鉛−アルミニウム系高強度防振合金の製造法。 3 前記鋳造が重力鋳造あるいはダイカスト鋳造
のいずれかである特許請求の範囲第2項記載の亜
鉛−アルミニウム系高強度防振合金の製造法。
[Claims] 1 Al 10-25wt%, Cu 0.05-0.30wt% and B,
A zinc-aluminum high-strength anti-vibration alloy containing 0.005 to 3.0 wt% of at least one element selected from Zr, Cr, and Ti, with the remainder substantially consisting of Zn. 2 Al10-25wt%, Cu0.05-0.30wt% and B,
After casting an alloy containing 0.005 to 3.0 wt% of at least one element among Zr, Cr, and Ti, with the balance essentially consisting of Zn, it is homogenized at a temperature of 275°C or higher for 0.5 hours or more, and then rapidly cooled. A method for producing a zinc-aluminum-based high-strength anti-vibration alloy. 3. The method for producing a zinc-aluminum high strength vibration damping alloy according to claim 2, wherein the casting is either gravity casting or die casting.
JP2573884A 1984-02-14 1984-02-14 High-strength vibration-damping zinc-aluminum alloy and its manufacture Granted JPS60169537A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2573884A JPS60169537A (en) 1984-02-14 1984-02-14 High-strength vibration-damping zinc-aluminum alloy and its manufacture
JP31939587A JPH01162740A (en) 1984-02-14 1987-12-17 Zinc-aluminum high strength and high damping alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2573884A JPS60169537A (en) 1984-02-14 1984-02-14 High-strength vibration-damping zinc-aluminum alloy and its manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP31939587A Division JPH01162740A (en) 1984-02-14 1987-12-17 Zinc-aluminum high strength and high damping alloy and its manufacture

Publications (2)

Publication Number Publication Date
JPS60169537A JPS60169537A (en) 1985-09-03
JPS6330377B2 true JPS6330377B2 (en) 1988-06-17

Family

ID=12174156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2573884A Granted JPS60169537A (en) 1984-02-14 1984-02-14 High-strength vibration-damping zinc-aluminum alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS60169537A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2599614B2 (en) * 1988-04-06 1997-04-09 日鉱金属株式会社 Anti-vibration alloy
CA1319280C (en) * 1988-10-04 1993-06-22 Robert J. Barnhurst Creep resistant zinc-aluminum based casting alloy
CN103866160B (en) * 2014-02-26 2017-05-03 常州大学 Method for modifying zinc alloy by using Al-Ti-B-RE alloy
CN103866146B (en) * 2014-02-26 2016-06-08 常州大学 A kind of method of Al-RE alloy modification kirsite
CN103952591A (en) * 2014-05-12 2014-07-30 王新海 Titaniferous rare-earth Al-Zn alloy
CN107058925A (en) * 2017-06-08 2017-08-18 安阳工学院 It is a kind of to improve the superplastic method of allumen by being heat-treated

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169049A (en) * 1981-04-08 1982-10-18 Tamagawa Kikai Kinzoku Kk Zn alloy for audio parts with superior damping capacity and high strength
JPS57200537A (en) * 1981-06-05 1982-12-08 Mitsubishi Metal Corp Preparation of vibration dampening zinc alloy member
JPS59113155A (en) * 1982-12-20 1984-06-29 Mitsubishi Metal Corp Vibrationproof zn alloy having excellent ordinary and high temperature strength
JPS59113153A (en) * 1982-12-20 1984-06-29 Mitsubishi Metal Corp Vibrationproof zn alloy for casting having excellent ordinary and high-temperature strength
JPS59197550A (en) * 1983-04-21 1984-11-09 Mitsubishi Metal Corp Preparation of vibration dampening zn-alloy member excellent in strength

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169049A (en) * 1981-04-08 1982-10-18 Tamagawa Kikai Kinzoku Kk Zn alloy for audio parts with superior damping capacity and high strength
JPS57200537A (en) * 1981-06-05 1982-12-08 Mitsubishi Metal Corp Preparation of vibration dampening zinc alloy member
JPS59113155A (en) * 1982-12-20 1984-06-29 Mitsubishi Metal Corp Vibrationproof zn alloy having excellent ordinary and high temperature strength
JPS59113153A (en) * 1982-12-20 1984-06-29 Mitsubishi Metal Corp Vibrationproof zn alloy for casting having excellent ordinary and high-temperature strength
JPS59197550A (en) * 1983-04-21 1984-11-09 Mitsubishi Metal Corp Preparation of vibration dampening zn-alloy member excellent in strength

Also Published As

Publication number Publication date
JPS60169537A (en) 1985-09-03

Similar Documents

Publication Publication Date Title
RU2109835C1 (en) Low-density aluminum-based alloy and material of manufacturing product therefrom
EP1329530B1 (en) High temperature resistant magnesium alloys
CA2135790C (en) Low density, high strength al-li alloy having high toughness at elevated temperatures
JP3204572B2 (en) Heat resistant magnesium alloy
JPS63286557A (en) Production of article from al base alloy
US4752343A (en) Al-base alloys containing lithium, copper and magnesium and method
US5587029A (en) Machineable aluminum alloys containing In and Sn and process for producing the same
DE102004007704A1 (en) Production of a material based on an aluminum alloy used for producing motor vehicle engine components comprises forming an aluminum base alloy containing silicon and magnesium, hot deforming and heat treating
JPS6330377B2 (en)
JPS6256940B2 (en)
JPH04120237A (en) Aluminum base high damping material and its manufacture
JPS62149839A (en) Wear resistant aluminum alloy for working excellent in strength
US4808243A (en) High damping zinc alloy with good intergranular corrosion resistance and high strength at both room and elevated temperatures
JPH01162740A (en) Zinc-aluminum high strength and high damping alloy and its manufacture
US4714588A (en) Aluminum alloy having improved properties
JPS607016B2 (en) Anti-vibration Zn alloy with excellent strength at room and high temperatures
JPH01255654A (en) Manufacture of high damping aluminum alloy member
US5071620A (en) High creep strength zinc alloys
US3322533A (en) Aluminum base casting alloys
JPS6256131A (en) Vibrationproof member made of zn-al group alloy having excellent vibrationproof characteristic
JPS607014B2 (en) Anti-vibration Zn alloy for casting with excellent strength at room and high temperatures
JPH01108339A (en) Aluminum alloy for piston combining heat resistance with high strength
JPS5993848A (en) Damping alloy
JPH09209068A (en) High strength aluminum alloy excellent in hardenability
JPS6139389B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term