JPH05171228A - Production of spherical particle of metal and centrifugal spraying device - Google Patents
Production of spherical particle of metal and centrifugal spraying deviceInfo
- Publication number
- JPH05171228A JPH05171228A JP35516991A JP35516991A JPH05171228A JP H05171228 A JPH05171228 A JP H05171228A JP 35516991 A JP35516991 A JP 35516991A JP 35516991 A JP35516991 A JP 35516991A JP H05171228 A JPH05171228 A JP H05171228A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- diameter
- rotating disk
- molten metal
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は磁気冷凍機用蓄冷材、粉
末冶金用球状粉末等に有用とされる金属、合金または金
属酸化物の球状粒子の製造方法およびその遠心噴霧装置
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing spherical particles of a metal, an alloy or a metal oxide, which are useful as a regenerator material for a magnetic refrigerator, a spherical powder for powder metallurgy and the like, and a centrifugal spraying device therefor. ..
【0002】[0002]
【従来の技術】金属、または合金を球状粉末化する方法
として、回転消耗電極法、ガスアトマイズ法、水アトマ
イズ法、遠心噴霧法等が知られている。しかし、これら
の方法では粒径 500μm以下の微少な球状粉末は作製可
能であるが、2,000 〜 500μmの比較的大粒径の球状粉
末を得ることは困難であった。2. Description of the Related Art Rotating consumable electrode method, gas atomizing method, water atomizing method, centrifugal atomizing method and the like are known as methods for spheroidizing a metal or alloy. However, although fine spherical powders having a particle size of 500 μm or less can be produced by these methods, it has been difficult to obtain spherical powders having a relatively large particle size of 2,000 to 500 μm.
【0003】[0003]
【発明が解決しようとする課題】本発明は、かかる課題
を解決するために遠心噴霧法に着目し、大粒径の金属、
合金または金属酸化物の球状粒子を作製する方法と装置
を提供しようとするものである。SUMMARY OF THE INVENTION In order to solve the above problems, the present invention focuses on the centrifugal atomization method, and
The present invention seeks to provide a method and apparatus for making spherical particles of alloys or metal oxides.
【0004】[0004]
【課題を解決するための手段】本発明者は遠心噴霧法の
回転円盤形状を改良すればこれらの課題を解決し得るこ
とを見出し、諸条件を検討して本発明を完成したもの
で、その要旨は、高速回転する凸状壁を有する回転円板
の凸状壁頂部に金属または合金の溶湯を溶湯ノズルから
供給して遠心噴霧し、冷却することを特徴とする金属、
合金または金属酸化物の球状粒子の製造方法、および高
さが回転円盤直径の0.02〜 0.5倍、厚さが回転円盤直径
の0.02〜 0.2倍および直径と同じ長さの凸状壁を回転円
盤の直径方向に1ケまたは2ケ以上配設した回転円盤を
高速回転させることを特徴とする遠心噴霧装置にある。Means for Solving the Problems The present inventors have found that these problems can be solved by improving the rotating disk shape of the centrifugal atomization method, and studied the various conditions to complete the present invention. The gist is to supply a molten metal or alloy from a molten metal nozzle to the top of the convex wall of a rotating disk having a convex wall that rotates at high speed, centrifugally spray the metal, and cool the metal.
A method for producing spherical particles of an alloy or metal oxide, and a height of 0.02 to 0.5 times the diameter of the rotating disk, a thickness of 0.02 to 0.2 times the diameter of the rotating disk and a convex wall of the same length as the diameter of the rotating disk. The centrifugal spraying device is characterized in that one or more rotating disks arranged in the diameter direction are rotated at high speed.
【0005】以下本発明を詳細に説明する。通常の遠心
噴霧法では金属または合金の溶湯を連続的に耐熱性回転
円盤の中心に滴下し、高速回転する円盤の遠心力によ
り、円盤上に一様に広がった溶湯膜が円盤の円周端で液
滴となって切線方向に噴霧飛散し、交流または並流する
冷却用ガスにより固化して球状粉末を生成するが、この
方法では液滴は一種の懸垂液滴として噴霧されるため得
られる液滴の大きさには上限が存在し、従って固化して
得られる球状粉末の大きさにも上限があり、通常 500μ
m以下であった。そこで本発明では500 〜2,000 μmの
大粒径の球状粉末を得るためには所望の粒径に近い大き
さに溶湯流を高速切断して大きな液滴を生成させれば良
いことを見出した。The present invention will be described in detail below. In the normal centrifugal atomization method, a molten metal or alloy is continuously dripped at the center of a heat-resistant rotating disk, and the centrifugal force of the disk rotating at high speed causes the molten metal film to spread evenly on the disk. It becomes droplets and is sprayed and scattered in the direction of the cutting line, and is solidified by an alternating current or a co-current cooling gas to produce spherical powder. In this method, the droplets are sprayed as a kind of suspended droplets and are obtained. There is an upper limit on the size of droplets, and therefore, there is also an upper limit on the size of spherical powder obtained by solidification, which is usually 500 μm.
It was m or less. Therefore, in the present invention, in order to obtain a spherical powder having a large particle size of 500 to 2,000 μm, it has been found that it is sufficient to cut the molten metal stream at a high speed to generate a large droplet in a size close to a desired particle size.
【0006】これを図1(a)について説明すると、回
転円盤1はその直径方向に直径と同じ長さの凸状壁2を
有し、この凸状壁の中心に向かって溶湯ノズル3から金
属または合金の溶湯4を流下すれば、溶湯流は高速回転
する凸状壁により連続的に切断され、大きな液滴となっ
て円盤円周端から切線方向に向かって飛散する。これを
交流または並流する冷却用ガスによって冷却すれば固化
した金属または合金の球状粒子が、また酸化され易い金
属または合金で空気等の酸化性雰囲気の場合には金属酸
化物の球状粒子が得られる。本法で得られる球状粒子の
粒径範囲は100〜2,000 μm程度で、形状は写真判定で
アスペクト比で99%近くに達する。This will be described with reference to FIG. 1 (a). The rotating disk 1 has a convex wall 2 having the same length as the diameter in the diametrical direction, and the metal from the molten metal nozzle 3 toward the center of the convex wall. Alternatively, when the alloy melt 4 is flowed down, the melt flow is continuously cut by the convex wall that rotates at high speed, and becomes large droplets that scatter in the cutting line direction from the circumferential edge of the disk. If this is cooled by an alternating current or a co-current cooling gas, solidified metal or alloy spherical particles are obtained, and in the case of an easily oxidizable metal or alloy in an oxidizing atmosphere such as air, spherical particles of metal oxide are obtained. Be done. The particle size range of the spherical particles obtained by this method is about 100 to 2,000 μm, and the shape reaches close to 99% in terms of aspect ratio by photographic judgment.
【0007】本発明の最大の特徴は回転円盤に凸状壁を
設けたことである。この凸状壁は処理する金属、合金お
よび金属酸化物の種類によってその材質、寸法、数を適
宜選択する必要があるが、耐熱鋼、耐熱合金、セラミッ
クス等で回転円盤と同質のものを円盤に接着、溶接、ネ
ジ止めするか、鋳型で回転円盤と同時成形すれば良い。
寸法は高温下、高速回転による円盤の変形、振動を防止
する点から高さは回転円盤の直径の0.02〜 0.5倍程度
が、厚さは回転円盤の直径の0.02〜 0.2倍程度が良い。
この凸状壁の数は円盤の直径方向に直径と同じ長さのも
の1ケで良いが、条件に応じて2ケ以上設けてもよい。
図1(b)は凸状壁1ケの場合の上面図、図1(c)は
2ケの場合の上面図である。溶湯の供給点は溶湯の先端
が回転円盤の中心にあることが望ましい。中心より凸状
壁の厚さ程度離れても良いが、その場合は得られる球状
粒子の歩留はやや悪化する。また、溶湯ノズルの先端が
凸状壁の頂上より1cm以下と低い場合には、溶湯流の先
端が回転円盤上部との間で固結することがあるので、1
cm以上の高さにあることが望ましい。冷却用ガスは、通
常Ar、He、N2等の不活性ガスを使用するが、酸素含有ガス
を用いることにより金属酸化物球状粒子を得ることがで
きる。The greatest feature of the present invention is that the rotating disk is provided with a convex wall. The material, size, and number of this convex wall must be appropriately selected according to the type of metal, alloy, and metal oxide to be treated, but heat-resistant steel, heat-resistant alloy, ceramics, etc. of the same quality as the rotating disk should be used as the disk. It may be adhered, welded, screwed, or molded simultaneously with the rotating disk in a mold.
It is recommended that the height is about 0.02 to 0.5 times the diameter of the rotating disk and the thickness is about 0.02 to 0.2 times the diameter of the rotating disk in order to prevent deformation and vibration of the disk due to high speed rotation under high temperature.
The number of the convex walls may be one with the same length as the diameter in the diameter direction of the disk, but two or more may be provided depending on the conditions.
FIG. 1B is a top view in the case of one convex wall, and FIG. 1C is a top view in the case of two convex walls. It is desirable that the molten metal supply point be such that the tip of the molten metal is at the center of the rotating disk. It may be separated from the center by the thickness of the convex wall, but in that case, the yield of the spherical particles obtained is slightly deteriorated. When the tip of the molten metal nozzle is lower than the top of the convex wall by 1 cm or less, the tip of the molten metal flow may be solidified with the upper part of the rotating disk.
It is desirable that the height is at least cm. As the cooling gas, an inert gas such as Ar, He or N 2 is usually used, but the metal oxide spherical particles can be obtained by using the oxygen-containing gas.
【0008】本発明が適用される金属は、希土類金属と
してYを含む La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,T
m,YbおよびLu、遷移金属等としてFe,Co,Ni,Al,Si,Cr,M
n,Zn,Zr,Nb,Rh,Ag,Sn,Sb,Au,Pb の内から選ばれる金属
であり、これらの内、一種もしくは二種以上を原料とし
て供給することによりこれら金属、およびこれらの内二
種以上から成る合金、並びにそれらの酸化物の球状粒子
が得られる。上記の内、希土類金属また遷移金属が用途
が広い、製造の容易さ等の点で好ましい。The metal to which the present invention is applied is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, T containing Y as a rare earth metal.
Fe, Co, Ni, Al, Si, Cr, M as m, Yb and Lu, transition metals, etc.
n, Zn, Zr, Nb, Rh, Ag, Sn, Sb, Au, Pb is a metal selected from among these, by supplying one or more of these as a raw material, these metals, and these Alloys consisting of two or more of them, and spherical particles of their oxides are obtained. Of the above, rare earth metals and transition metals are preferred because of their versatility and ease of production.
【0009】[0009]
【実施例】以下、本発明の実施態様を実施例により具体
的に説明するが、本発明はこれらにより限定されるもの
ではない。 (実施例1)Er3Ni 合金インゴット2,000gを溶解し、図
1の様な凸状壁2付き回転円盤1を用いて、溶湯温度約
950℃で遠心噴霧を行った。回転円盤:36mmφ×10mmT
、凸状壁:3mmH × 10mmT×36mmL 、溶湯ノズル径:
3mmφ、回転円盤回転数:10,000rpm 、冷却ガス雰囲
気:Ar 1atm の条件下に行った結果、粒径2,000 〜 5
00μmの球状粒子を 380g 得た。EXAMPLES Hereinafter, the embodiments of the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto. (Example 1) Melt 2,000 g of Er 3 Ni alloy ingot, and use a rotating disk 1 with a convex wall 2 as shown in FIG.
Centrifugal spraying was performed at 950 ° C. Rotating disk: 36mmφ × 10mmT
, Convex wall: 3mmH x 10mmT x 36mmL, Molten nozzle diameter:
3 mmφ, rotating disk rotation speed: 10,000 rpm, cooling gas atmosphere: Ar 1 atm, as a result, particle size 2,000-5
380 g of 00 μm spherical particles were obtained.
【0010】(実施例2)Tb 85-Fe 15 重量%合金イン
ゴット2,000gを溶解し、図1の様な凸状壁2付き回転円
盤1を用いて、溶湯温度約1,000 ℃で遠心噴霧を行っ
た。回転円盤:36mmφ×10mmT 、凸状壁:3mmH ×8mm
T ×36mmL 、溶湯ノズル径:3mmφ、回転円盤回転数:
7,500rpm、冷却ガス雰囲気:Ar 1atm の条件下に行っ
た結果、粒径2,000 〜 500μmの球状粒子を 250g 得
た。(Example 2) 2,000 g of Tb 85-Fe 15 wt% alloy ingot was melted, and centrifugal spraying was performed at a molten metal temperature of about 1,000 ° C. using a rotating disk 1 with a convex wall 2 as shown in FIG. It was Rotating disk: 36mmφ × 10mmT, convex wall: 3mmH × 8mm
T × 36mmL, Molten Nozzle Diameter: 3mmφ, Rotating Disc Rotation Speed:
As a result of carrying out under the conditions of 7,500 rpm and cooling gas atmosphere: Ar 1 atm, 250 g of spherical particles having a particle diameter of 2,000 to 500 μm were obtained.
【0011】(実施例3)Tb 85-Fe 15 重量%合金イン
ゴット2,000gを溶解し、回転円盤回転数を5,000rpmとし
た以外は実施例2と同様の条件で処理した結果、粒径2,
000 〜 500μmの球状粒子を 890g 得た。Example 3 Tb 85-Fe 15 wt% alloy ingot 2,000 g was melted, and the treatment was carried out under the same conditions as in Example 2 except that the rotating disc rotation speed was 5,000 rpm.
890 g of spherical particles of 000 to 500 μm were obtained.
【0012】(実施例4)Pb 98-Sb 15 重量%合金イン
ゴット2,000gを溶解し、図1の様な凸状壁2付き回転円
盤1を用いて、溶湯温度約 480℃で遠心噴霧を行った。
回転円盤:36mmφ×10mmT 、凸状壁:2mmH ×8mmT ×
36mmL 、溶湯ノズル径:3mmφ、回転円盤回転数:8,00
0rpm、冷却ガス雰囲気:Ar 1atm の条件下に行った結
果、粒径2,000 〜 500μmの球状粒子を 420g 得た。(Example 4) 2,000 g of Pb 98-Sb 15 wt% alloy ingot was melted, and centrifugal spraying was performed at a molten metal temperature of about 480 ° C. using a rotating disk 1 with a convex wall 2 as shown in FIG. It was
Rotating disk: 36 mmφ x 10 mmT, convex wall: 2 mmH x 8 mmT x
36mmL, Molten Nozzle Diameter: 3mmφ, Rotating Disk Rotation Speed: 8,000
As a result of carrying out under the conditions of 0 rpm, cooling gas atmosphere: Ar 1 atm, 420 g of spherical particles having a particle diameter of 2,000 to 500 μm were obtained.
【0013】(実施例5)Laメタルインゴット2,000gを
溶解し、図1の様な凸状壁2付き回転円盤1を用いて、
溶湯温度約 980℃で遠心噴霧を行った。回転円盤:36mm
φ×8mmT 、凸状壁:10mmH ×6mmT ×36mmL 、溶湯ノ
ズル径:3mmφ、回転円盤回転数:7,000rpm、冷却ガス
雰囲気:Ar 1atm の条件下に行った結果、粒径2,000
〜 500μmの球状粒子を 510g 得た。(Embodiment 5) La metal ingot (2,000 g) was melted, and a rotary disk 1 with a convex wall 2 as shown in FIG. 1 was used.
Centrifugal spraying was performed at a melt temperature of about 980 ° C. Rotating disk: 36 mm
φ × 8mmT, convex wall: 10mmH × 6mmT × 36mmL, melt nozzle diameter: 3mmφ, rotating disk rotation speed: 7,000rpm, cooling gas atmosphere: Ar 1atm, the result was particle size 2,000
510 g of spherical particles of ˜500 μm were obtained.
【0014】(実施例6)Alペレット2,000gを溶解し、
図1の様な凸状壁2付き回転円盤1を用いて、溶湯温度
約 800℃で遠心噴霧を行った。回転円盤:36mmφ×10mm
T 、凸状壁:3mmH ×8mmT ×36mmL 、溶湯ノズル径:
3mmφ、回転円盤回転数:8,000rpm、冷却ガス雰囲気:
Ar+O2 40容量% 1atm の条件下に行った結果、粒径
2,000 〜 500μmの球状アルミナ(Al2O3) 粒子を280g得
た。(Example 6) Dissolving 2,000 g of Al pellets,
Centrifugal spraying was performed at a molten metal temperature of about 800 ° C. using a rotating disk 1 with a convex wall 2 as shown in FIG. Rotating disk: 36mmφ × 10mm
T, convex wall: 3 mmH x 8 mmT x 36 mmL, melt nozzle diameter:
3 mmφ, rotating disk rotation speed: 8,000 rpm, cooling gas atmosphere:
Ar + O 2 40 vol% 1atm As a result, the particle size
280 g of spherical alumina (Al 2 O 3 ) particles of 2,000 to 500 μm were obtained.
【0015】(比較例)図2に示した凸状壁のない従来
の遠心噴霧法装置で遠心噴霧した以外は実施例1と同様
の条件で処理した結果、粒径2,000 〜 500μmの球状粒
子は5g しか得られなかった。(Comparative Example) As a result of treating under the same conditions as in Example 1 except that centrifugal spraying was carried out by the conventional centrifugal spraying apparatus having no convex wall shown in FIG. 2, spherical particles having a particle diameter of 2,000 to 500 μm were found. Only 5g was obtained.
【0016】[0016]
【発明の効果】本発明により金属、合金、または金属酸
化物の粒径2000〜 500μm程度の真球度の高い球状粉末
を歩留良く遠心噴霧法により作製可能となり、工業上そ
の利用価値は極めて高い。Industrial Applicability According to the present invention, a spherical powder having a high sphericity of a metal, an alloy, or a metal oxide having a particle diameter of about 2000 to 500 μm can be produced with a good yield by a centrifugal atomization method, and its industrial utility is extremely high. high.
【図1】(a)は本発明の実施態様の一例を示す側面説
明図。(b)は同上面図。(c)は本発明の他の実施態
様を示す上面図。FIG. 1A is a side view illustrating an example of an embodiment of the present invention. (B) is the same top view. FIG. 6C is a top view showing another embodiment of the present invention.
【図2】従来の遠心噴霧装置を示す側面説明図。FIG. 2 is a side view showing a conventional centrifugal spraying device.
1 回転円盤 2 凸状壁 3 溶湯ノズル 4 溶湯 1 rotating disk 2 convex wall 3 molten metal nozzle 4 molten metal
Claims (2)
状壁頂部に金属または合金の溶湯を溶湯ノズルから供給
して遠心噴霧し、冷却することを特徴とする金属、合金
または金属酸化物の球状粒子の製造方法。1. A metal, an alloy or a metal, characterized in that a melt of a metal or an alloy is supplied from a melt nozzle to the top of the convex wall of a rotating disk having a convex wall rotating at a high speed, centrifugally sprayed and cooled. Method for producing spherical particles of oxide.
が回転円盤直径の0.02〜 0.2倍および直径と同じ長さの
凸状壁を回転円盤の直径方向に1ケまたは2ケ以上配設
した回転円盤を高速回転させることを特徴とする遠心噴
霧装置。2. A convex wall having a height of 0.02 to 0.5 times the diameter of the rotating disk, a thickness of 0.02 to 0.2 times the diameter of the rotating disk, and a length equal to the diameter of one or two diametrical directions of the rotating disk. A centrifugal spraying device, characterized in that the rotating disk provided above is rotated at high speed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35516991A JPH05171228A (en) | 1991-12-20 | 1991-12-20 | Production of spherical particle of metal and centrifugal spraying device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35516991A JPH05171228A (en) | 1991-12-20 | 1991-12-20 | Production of spherical particle of metal and centrifugal spraying device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05171228A true JPH05171228A (en) | 1993-07-09 |
Family
ID=18442346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35516991A Pending JPH05171228A (en) | 1991-12-20 | 1991-12-20 | Production of spherical particle of metal and centrifugal spraying device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05171228A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011024757A1 (en) * | 2009-08-25 | 2011-03-03 | 株式会社東芝 | Rare-earth cold storage material particle, rare-earth cold storage material particles, refrigerator utilizing same, measuring device, and method for producing same |
-
1991
- 1991-12-20 JP JP35516991A patent/JPH05171228A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011024757A1 (en) * | 2009-08-25 | 2011-03-03 | 株式会社東芝 | Rare-earth cold storage material particle, rare-earth cold storage material particles, refrigerator utilizing same, measuring device, and method for producing same |
JP5656842B2 (en) * | 2009-08-25 | 2015-01-21 | 株式会社東芝 | Rare earth regenerator material particles, rare earth regenerator material particles, refrigerator using the same, measuring device, and method for producing the same |
EP2472201A4 (en) * | 2009-08-25 | 2015-10-21 | Toshiba Kk | Rare-earth cold storage material particle, rare-earth cold storage material particles, refrigerator utilizing same, measuring device, and method for producing same |
US9556374B2 (en) | 2009-08-25 | 2017-01-31 | Kabushiki Kaisha Toshiba | Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same |
US9719004B2 (en) | 2009-08-25 | 2017-08-01 | Kabushiki Kaisha Toshiba | Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same |
EP3285024A1 (en) * | 2009-08-25 | 2018-02-21 | Kabushiki Kaisha Toshiba | Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same |
US10024583B2 (en) | 2009-08-25 | 2018-07-17 | Kabushiki Kaisha Toshiba | Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same |
US10040982B2 (en) | 2009-08-25 | 2018-08-07 | Kabushiki Kaisha Toshiba | Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same |
US10385248B2 (en) | 2009-08-25 | 2019-08-20 | Kabushiki Kaisha Toshiba | Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same |
EP3663674A1 (en) * | 2009-08-25 | 2020-06-10 | Kabushiki Kaisha Toshiba | Refrigerator using rare-earth regenerator material particles |
US10907081B2 (en) | 2009-08-25 | 2021-02-02 | Kabushiki Kaisha Toshiba | Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same |
EP3933299A1 (en) * | 2009-08-25 | 2022-01-05 | Kabushiki Kaisha Toshiba | Cryopump using rare-earth regenerator material particles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6242705B2 (en) | ||
US4435342A (en) | Methods for producing very fine particle size metal powders | |
JP4264873B2 (en) | Method for producing fine metal powder by gas atomization method | |
JPH07179912A (en) | Production of globular metallic grain | |
JPH0149769B2 (en) | ||
JPH05171228A (en) | Production of spherical particle of metal and centrifugal spraying device | |
JPH09248665A (en) | Manufacture of al base alloy ingot containing high melting point metal by spray forming method | |
JPH0754019A (en) | Production of powder by multistage fissure and quenching | |
US3532775A (en) | Method for producing aluminum particles | |
JPH05171229A (en) | Production of spherical particle of metal, alloy or metal oxide | |
JPH0321602B2 (en) | ||
JPH0754018A (en) | Production of spherical particle of metal | |
JPH11323411A (en) | Low melting point metal powder and its production | |
JPS60190503A (en) | Production of metallic powder | |
JP2695894B2 (en) | Metal foil strip and manufacturing method thereof | |
JP4960551B2 (en) | A method for producing fine spherical metal particles. | |
JPH07173510A (en) | Production of globular metal fine particle | |
JPH024906A (en) | Manufacture of flaky rapidly cooling solidified metal powder | |
JP2928965B2 (en) | Injection molding method for ultra heat resistant and difficult to process materials | |
JPS61143502A (en) | Production of granular material of lead alloy | |
JPH08209207A (en) | Production of metal powder | |
JPS63223109A (en) | Apparatus for producing metal powder | |
JPH02290907A (en) | Method and apparatus for manufacturing solder fine powder | |
JPH01142005A (en) | Manufacture of rapidly cooled high purity metal atomized powder | |
JPH02145710A (en) | Manufacture of metal fine powder |