JPH051711B2 - - Google Patents

Info

Publication number
JPH051711B2
JPH051711B2 JP20696887A JP20696887A JPH051711B2 JP H051711 B2 JPH051711 B2 JP H051711B2 JP 20696887 A JP20696887 A JP 20696887A JP 20696887 A JP20696887 A JP 20696887A JP H051711 B2 JPH051711 B2 JP H051711B2
Authority
JP
Japan
Prior art keywords
chamber
perfusion solution
temperature
perfusion
glass plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20696887A
Other languages
Japanese (ja)
Other versions
JPS6451074A (en
Inventor
Yasunori Momose
Seizo Toyotomi
Eiichi Narishige
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NARUMO KAGAKU KIKAI KENKYUSHO KK
Original Assignee
NARUMO KAGAKU KIKAI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NARUMO KAGAKU KIKAI KENKYUSHO KK filed Critical NARUMO KAGAKU KIKAI KENKYUSHO KK
Priority to JP20696887A priority Critical patent/JPS6451074A/en
Publication of JPS6451074A publication Critical patent/JPS6451074A/en
Publication of JPH051711B2 publication Critical patent/JPH051711B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、バツチクランプ法等の電気生理学、
あるいは遺伝子注入技術などによるバイオテクノ
ロジーの研究分野において、1つの細胞を倒立顕
微鏡下で観察しながら各種の処理を行う際に、細
胞が浸漬される潅流溶液の温度を自由に制御し得
る細胞処理用恒温潅流装置に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention is applicable to electrophysiology, such as
Or, in the field of biotechnology research using gene injection technology, etc., when performing various treatments while observing a single cell under an inverted microscope, it is possible to freely control the temperature of the perfusion solution in which the cells are immersed. Regarding constant temperature perfusion equipment.

「従来の技術」 一般に、パツチクランプ法等の電気生理学、あ
るいは遺伝子注入技術等によるバイオテクノロジ
ーの研究分野では、1つの細胞を倒立顕微鏡下で
観察しながら各種の処理等の実験が行われてい
る。これらの実験に用いられる培養細胞、単一細
胞、あるいは卵細胞等検体を入れるチヤンバーの
容量は、通常1〜2mlと極めて小さいために、チ
ヤンバー内に注入された生理的塩類溶液や培養液
等の溶液の温度を所望する好適な値に制御するこ
とが容易でなく、やむなく室温での実験処理をす
ることが多く行われているのが現状である。
"Prior Art" Generally, in the research field of electrophysiology such as the patch clamp method or biotechnology using gene injection technology, experiments such as various treatments are performed while observing a single cell under an inverted microscope. The capacity of the chamber used for these experiments to contain specimens such as cultured cells, single cells, or egg cells is usually extremely small, 1 to 2 ml, so solutions such as physiological saline or culture medium injected into the chamber are At present, it is not easy to control the temperature at a desired and suitable value, and experimental treatments are often carried out at room temperature unavoidably.

「発明が解決しようとする問題点」 しかしながら、細胞の種類や処理し実験する方
法によつては、生体機能あるいは反応系において
温度が一つの重要な要素になつており、例えばモ
ルモツト心室筋単一細胞を用いた実験において、
アドレナリン等の薬物反応が20℃乃至37℃に至る
高い温度での依存性を示し、このため、細胞が浸
漬されるチヤンバー内の潅流溶液の温度を高精度
に制御できる装置が望まれている。
``Problems to be solved by the invention'' However, depending on the type of cell and the method of processing and experiment, temperature may become an important factor in biological functions or reaction systems. In experiments using cells,
Drug reactions such as adrenaline are highly temperature dependent, ranging from 20°C to 37°C, and therefore a device is desired that can precisely control the temperature of the perfusion solution in the chamber in which the cells are immersed.

そこで、本発明は、上記事情に鑑み、細胞が浸
漬される小容量のチヤンバー内の潅流溶液を所望
する温度に自由自在にかつ高精度に温度制御がで
き、しかもその制御温度の下において、倒立顕微
鏡により観察しながら各種の処理ができる細胞処
理用恒温潅流装置を提供せんとするものである。
In view of the above-mentioned circumstances, the present invention has been devised to make it possible to freely and precisely control the temperature of the perfusion solution in a small volume chamber in which cells are immersed to a desired temperature, and furthermore, at that controlled temperature, it is possible to It is an object of the present invention to provide a constant temperature perfusion device for cell processing, which allows various treatments to be performed while observing with a microscope.

「発明が解決しようとする手段」 本発明は、上記目的を達成するために、透明ガ
ラス板に形成されてかつ通電量が制御される透明
導電膜より成る加温ガラス板を備え、該加温ガラ
ス板上に、リング状の潅流溶液加温装置を載置
し、潅流溶液加温装置のリング孔内に、卵細胞等
の検体が収納されるチヤンバー部材を装着し、か
つ上記潅流溶液加温装置の内部を中空に形成し、
該内部に加温用液体を充填させておき、潅流溶液
注入用のチユーブを外部から加温用液体内を挿通
させてチヤンバー部材のチヤンバーに臨むノズル
に配管し、かつチヤンバー部材のチヤンバーに
は、常時内部の潅流溶液量を一定値に保持するた
めの排液用のインジエクシヨンチユーブの吸入口
を臨ませた細胞処理用恒温潅流装置を特徴とする
ものである。
"Means to be Solved by the Invention" In order to achieve the above object, the present invention includes a heated glass plate made of a transparent conductive film formed on a transparent glass plate and in which the amount of electricity supplied is controlled; A ring-shaped perfusion solution heating device is placed on a glass plate, a chamber member in which a sample such as an egg cell is stored is attached to the ring hole of the perfusion solution heating device, and the above-mentioned perfusion solution heating device is installed. The inside of is formed hollow,
The interior is filled with a heating liquid, and a tube for injecting a perfusion solution is inserted into the heating liquid from the outside and connected to a nozzle facing the chamber of the chamber member, and the chamber of the chamber member is provided with: This device is characterized by a constant temperature perfusion device for cell processing that faces the inlet of the injection tube for drainage to maintain the amount of perfusion solution at a constant value.

「作用」 本発明は、上記手段において、加温ガラス板の
透明導電膜に通電させて、該加温ガラス板の加熱
により潅流溶液加温装置内の加温用液体に熱を加
えて、加温用液体内に挿通するチユーブ内の潅流
溶液を所定温度に上昇させ、又加温ガラス板によ
りチヤンバー内の上記チユーブから注入される潅
流溶液を加温し、かつ透明導電膜への通電量の制
御によりチヤンバー内の潅流溶液を所定の温度に
保持し、斯る制御温度の下で、倒立顕微鏡等で観
察しながらチヤンバー内の細胞等検体に各種の処
理を施すことができるようにしたものである。
"Function" In the above means, the present invention applies electricity to the transparent conductive film of the heated glass plate, and heats the heating liquid in the perfusion solution heating device by heating the heated glass plate. The perfusion solution in the tube inserted into the heating liquid is raised to a predetermined temperature, and the perfusion solution injected from the tube in the chamber is heated by a heating glass plate, and the amount of current applied to the transparent conductive film is controlled. The perfusion solution inside the chamber is kept at a predetermined temperature by control, and various treatments can be applied to specimens such as cells inside the chamber while observing them with an inverted microscope etc. under this controlled temperature. be.

「実施例」 以下に、本発明に係る細胞処理用恒温潅流装置
の一実施例を図面に基づき説明する。第1図乃至
第3図において、1は基台である。該基台1は、
第3図に示す如く、倒立顕微鏡2のステージ3上
面に有する円形の凹陥部4内に嵌合できる形状に
形成されている。該基台1はポリカーボネイト製
で、中央に孔5が開口されたドーナツ形状に形成
されており、上面の孔5の周辺には凹陥部6を有
している。又基台1には複数のネジ孔1aを形成
する。該基台1の凹陥部6には、シリコーンゴム
より成る平パツキン7を介在させて、下面に透明
な加温ガラス板8が添着された支持台9をビス1
0で嵌着する。支持台9は、中央に孔11を有す
るドーナツ形状に形成し、かつ孔11の下面を閉
塞する如く上記加温ガラス板8を接着させてあ
る。加温ガラス板8は、第4図に示す如く、ガラ
ス基板12の下面に真空蒸着により透明導電膜1
3を形成する。ガラス基板12としては、肉厚が
0.3mm程度の薄いもので、歪みが無く、しかも幾
何学的に上下両面が平行でかつ平面であり、又強
度も充分にある石英ガラスを用いる。一方、透明
導電膜13は、現在ITO膜と称せられるものと
SnO2膜との2種類が知られている。該ITO膜は、
In2O3とSnO2との混合物から成るもので、抵抗値
が最小で5Ω/cm2程度のものが製作可能であるの
に対し、SnO2膜では最小値が300Ω/cm2と高い値
を呈している。従つて、本実施例では、低電圧で
駆動でき、発熱のばらつき所謂ノイズの発生も少
ないITO膜を使用している。ITO膜による上記透
明導電膜13は、In2O3とSnO2との混合比を選定
して、抵抗値が約30Ω/cm2程度になるように設定
してある。上記透明導電膜13の対向する周辺位
置の2箇所に、導電性塗料14,15を塗布し、
該導電性塗料14,15に陰陽のリード線16,
17の一端を導電性接着剤で接続する。各リード
線16,17の他端は、ターミナル18,19に
接続する。ターミナル18,19は、上記支持台
9に螺着する。上記ガラス基板12の周縁上面
は、支持台9の孔縁下面に接着する。ガラス基板
12の透明導電膜13が形成された面には、リー
ド線16,17の一端が接続された箇所を除いて
保護ガラス20を添着する。保護ガラス20は、
肉厚が0.3mm程度で、両面が平行な上記ガラス基
板12と同一条件の石英ガラスが好適である。リ
ード線16,17の一端と透明導電膜13との接
続箇所、及びリード線16,17の他端とターミ
ナル18,19との接続箇所は、基台1とガラス
基板12との関の空隙乃至基台1と支持台9との
間の空隙21に位置させ、かつ基台1の孔縁上面
と保護ガラス20の下面との間に介在させた平パ
ツキン7により水等の浸入から防護されている。
空隙21は、上記支持台9の下面に凹陥部を形成
して該凹陥部内にガラス基板12を嵌着させ、又
上記基台1の凹陥部6の存在により形成する。支
持台9の孔11には、脱着自在に潅流溶液加温装
置22を嵌入させる。潅流溶液加温装置22は、
真鍮製で、上面側が開口しる断面コ字状のものを
リング状に形成したものである。潅流溶液加温装
置22の底面は加温ガラス板8の上面に密接でき
るようになつている。潅流溶液加温装置22は内
部に純水やシリコーンオイル等の加温用液体を注
入し、上面開口にアクリル樹脂製の蓋23を被着
させてある。蓋23の内縁側の角は、細胞を処理
するピペツト類を操作し易いようにテーパ状に切
削させてある。潅流溶液加温装置22内には、純
水やシリコーンオイル等の加温用液体に浸漬され
た状態でチユーブ24を1回程度巻回させて、内
面側壁部の挿通孔25から外部のリング孔26に
引き出す。リング孔26に引き出されたチユーブ
24の一端にはガラス製でL字形状に曲折された
ノズル27に接続する。チユーブ24の他端は、
蓋23の有する挿通孔28から外部に引き出して
潅流溶液のタンク等供給装置41に接続する。潅
流溶液加温装置22のリング孔26内には脱着自
在にかつ上記加温ガラス板8上に密接させてチヤ
ンバー部材29を嵌入する。チヤンバー部材29
は、透明なポリカーボネイト製のデイスク状基体
30と、該デイスク状基体30の底面に接着され
る透明な石英製等の肉厚を除いて上記ガラス基板
12と同一条件のガラス板31とから成つてい
る。デイスク状基体30は、中央部にチヤンバー
32となる長孔と該長孔の両側に注入孔33及び
吸入孔34となる貫通孔がそれぞれ穿設され、か
つ下面に長孔及び貫通孔を連通させる溝が形成さ
れている。そして、デイスク状基体30の下面に
ガラス板31を接着すると、チヤンバー32、注
入孔33及び吸入孔34が形成され、又上記溝が
チヤンバー32と注入孔33及び吸入孔34との
間を連通させる連通孔35となる。チヤンバー3
2の上部孔縁は、ピペツト類の操作が容易なよう
に、テーパ状の切削させてある。上記ノズル27
はチヤンバー部材29の注入孔33の上方に臨ま
せておく。吸入孔34内にはインジエクシヨンチ
ユーブ36の吸入口を臨ませておく。インジエク
シヨンチユーブ36の吸入口は、ガラス板31の
上面つまり吸入孔34の底面との間の間隙を可変
させて、チヤンバー32内の潅流溶液の深さ即ち
容量を所定に値に調節可能に上下動自在にしてお
く。インジエクシヨンチユーブ36の他端は、シ
リンジ及びピストン、若しくはポンプ等から成る
インジエクシヨン装置42に接続する。潅流溶液
は、生理的塩類溶液や培養液などを用い、上記チ
ヤンバー32内を介在させて循環させる形式の
他、循環させることなく、チヤンバー部材29の
吸入孔34内から吸入した潅流溶液を単に回収す
る形式の何れでも採用できる。上記チヤンバー3
2内の潅流溶液中には熱電対37を挿入する。熱
電対37は、チヤンバー32内の潅流溶液を正確
に測定できるように、デイスク状基体30やガラ
ス板31に接触しないように潅流溶液中に挿入す
る。尚、基台1、支持台9及びデイスク状基体3
0は、非導電性、加工し易さ、耐熱、耐薬品性な
どの観点からポリカーボネイトを用いたものであ
る。
“Example” An example of the thermostatic perfusion device for cell treatment according to the present invention will be described below with reference to the drawings. In FIGS. 1 to 3, 1 is a base. The base 1 is
As shown in FIG. 3, it is formed in a shape that can be fitted into a circular recess 4 formed on the upper surface of the stage 3 of the inverted microscope 2. The base 1 is made of polycarbonate and has a donut shape with a hole 5 in the center, and has a recess 6 around the hole 5 on the top surface. Further, a plurality of screw holes 1a are formed in the base 1. A flat packing 7 made of silicone rubber is interposed in the concave portion 6 of the base 1, and a support base 9 having a transparent heating glass plate 8 attached to the lower surface is attached to the screw 1.
Fits at 0. The support base 9 is formed into a donut shape with a hole 11 in the center, and the heated glass plate 8 is adhered so as to close the bottom surface of the hole 11. As shown in FIG. 4, the heated glass plate 8 has a transparent conductive film 1 formed on the lower surface of the glass substrate 12 by vacuum deposition.
form 3. The glass substrate 12 has a wall thickness of
It is made of quartz glass, which is about 0.3 mm thin, has no distortion, is geometrically parallel and flat on both the top and bottom, and has sufficient strength. On the other hand, the transparent conductive film 13 is what is currently called an ITO film.
Two types are known: SnO 2 film. The ITO film is
It is made of a mixture of In 2 O 3 and SnO 2 , and can be manufactured with a minimum resistance value of about 5Ω/cm 2 , whereas a SnO 2 film has a minimum resistance value as high as 300Ω/cm 2 It shows. Therefore, in this embodiment, an ITO film is used, which can be driven at a low voltage and generates little variation in heat generation, so-called noise. The transparent conductive film 13 made of an ITO film has a resistance value of about 30Ω/cm 2 by selecting a mixing ratio of In 2 O 3 and SnO 2 . Applying conductive paints 14 and 15 to two opposing peripheral positions of the transparent conductive film 13,
The conductive paints 14 and 15 have Yin and Yang lead wires 16,
Connect one end of 17 with conductive adhesive. The other end of each lead wire 16, 17 is connected to a terminal 18, 19. The terminals 18 and 19 are screwed onto the support base 9. The upper surface of the periphery of the glass substrate 12 is adhered to the lower surface of the hole edge of the support base 9 . A protective glass 20 is attached to the surface of the glass substrate 12 on which the transparent conductive film 13 is formed, except for the areas where one ends of the lead wires 16 and 17 are connected. The protective glass 20 is
It is preferable to use quartz glass having a wall thickness of about 0.3 mm and having parallel surfaces on the same conditions as the glass substrate 12 described above. The connection points between one end of the lead wires 16 and 17 and the transparent conductive film 13 and the connection points between the other ends of the lead wires 16 and 17 and the terminals 18 and 19 are located in the gap between the base 1 and the glass substrate 12. It is protected from the intrusion of water etc. by a flat packing 7 located in the gap 21 between the base 1 and the support 9 and interposed between the upper surface of the hole edge of the base 1 and the lower surface of the protective glass 20. There is.
The gap 21 is formed by forming a recess in the lower surface of the support base 9 and fitting the glass substrate 12 into the recess, and by the presence of the recess 6 in the base 1. A perfusion solution warming device 22 is removably fitted into the hole 11 of the support base 9. The perfusion solution warming device 22 includes:
It is made of brass and has a U-shaped cross section that is open at the top and is formed into a ring shape. The bottom surface of the perfusion solution warming device 22 can be brought into close contact with the top surface of the heating glass plate 8. The perfusion solution heating device 22 has a heating liquid such as pure water or silicone oil injected therein, and a lid 23 made of acrylic resin is attached to the top opening. The inner corner of the lid 23 is cut into a tapered shape so that pipettes for treating cells can be easily operated. Inside the perfusion solution heating device 22, the tube 24 is wound around once while immersed in a heating liquid such as pure water or silicone oil, and the tube 24 is inserted into the external ring hole from the insertion hole 25 in the inner side wall. Pull out on the 26th. One end of the tube 24 drawn out into the ring hole 26 is connected to a nozzle 27 made of glass and bent into an L-shape. The other end of the tube 24 is
It is pulled out from the insertion hole 28 of the lid 23 and connected to a supply device 41 such as a tank for irrigation solution. A chamber member 29 is fitted into the ring hole 26 of the perfusion solution heating device 22 so as to be detachable and in close contact with the heating glass plate 8 . Chamber member 29
consists of a disk-shaped substrate 30 made of transparent polycarbonate, and a glass plate 31 made of transparent quartz or the like that is adhered to the bottom surface of the disk-shaped substrate 30 and is made of the same conditions as the glass substrate 12 except for the thickness. There is. The disc-shaped base 30 has a long hole in the center that becomes a chamber 32 and through holes that become an injection hole 33 and a suction hole 34 on both sides of the long hole, and the long hole and the through hole communicate with each other on the lower surface. Grooves are formed. Then, when the glass plate 31 is adhered to the lower surface of the disk-shaped base 30, a chamber 32, an injection hole 33, and a suction hole 34 are formed, and the grooves communicate between the chamber 32 and the injection hole 33 and suction hole 34. This becomes a communication hole 35. chamber 3
The upper hole edge of No. 2 is cut into a tapered shape for easy operation with pipettes. The above nozzle 27
faces above the injection hole 33 of the chamber member 29. The suction port of the injection tube 36 is made to face inside the suction hole 34. By varying the gap between the suction port of the injection tube 36 and the top surface of the glass plate 31, that is, the bottom surface of the suction hole 34, the depth or volume of the irrigation solution in the chamber 32 can be adjusted to a predetermined value. Allow it to move up and down freely. The other end of the injection tube 36 is connected to an injection device 42 consisting of a syringe and a piston, a pump, or the like. The perfusion solution may be a physiological saline solution, a culture solution, or the like, and may be circulated through the chamber 32, or the perfusion solution inhaled from the suction hole 34 of the chamber member 29 may be simply collected without circulation. Any format can be adopted. Chamber 3 above
A thermocouple 37 is inserted into the perfusion solution in 2. The thermocouple 37 is inserted into the perfusion solution so as not to come into contact with the disk-shaped substrate 30 or the glass plate 31 so that the perfusion solution within the chamber 32 can be accurately measured. In addition, the base 1, the support 9, and the disk-shaped base 3
No. 0 uses polycarbonate from the viewpoints of non-conductivity, ease of processing, heat resistance, chemical resistance, etc.

上記透明導電膜13への通電量を制御する電気
回路は、第5図に示す如くなつている。即ち、上
記ターミナル18,19に、電流制御回路38を
介在させて直流電源39を接続する。一方、上記
熱電対37は、自由に温度設定ができる温度調節
器40を介して上記電流制御回路38に接続す
る。
The electric circuit for controlling the amount of current applied to the transparent conductive film 13 is as shown in FIG. That is, a DC power source 39 is connected to the terminals 18 and 19 with a current control circuit 38 interposed therebetween. On the other hand, the thermocouple 37 is connected to the current control circuit 38 via a temperature regulator 40 that can freely set the temperature.

上記構成の細胞処理用恒温潅流装置は、まずチ
ヤンバー32内に潅流溶液を注入した後、処理し
実験すべき細胞を浸漬する。次に、チヤンバー3
2内の潅流溶液の所望する温度を温度調節器40
に設定し、第5図の電気回路の電源を投入する。
電流制御回路38は、熱電対37で測定したチヤ
ンバー32内の温度が温度調節器40に設定した
温度に常時保持するように、透明導電膜13への
通電量を制御する。透明導電膜13は、チヤンバ
ー32内の潅流溶液のみならず、潅流溶液加温装
置22内の加温用液体を設定温度になるように加
温する。従つて、潅流溶液は、チユーブ24から
ノズル27に至るまでの間に、潅流溶液加温装置
22内の純水やシリコーンオイル等の加温用液体
により設定温度に加温された後、ノズル27から
注入孔33に注入され、連通孔35内を経てチヤ
ンバー32内に導入される。このため、潅流溶液
は、潅流溶液加温装置22で予め設定温度に加温
された後、チヤンバー32内に導入される結果、
チヤンバー32内の温度変化が極めて少なく、温
度制御が正確にできる。一方、インジエクシヨン
チユーブ36は、常時吸入孔34内の潅流溶液を
吸入して、チヤンバー32内の潅流溶液の容量を
一定に保持する。この状態で、倒立顕微鏡2によ
り観察しながら、チヤンバー32内の細胞をピペ
ツト類で処理し実験をする。
In the constant-temperature perfusion apparatus for cell treatment having the above configuration, a perfusion solution is first injected into the chamber 32, and then cells to be treated and experimented are immersed therein. Next, chamber 3
Temperature controller 40 controls the desired temperature of the perfusion solution in 2.
, and turn on the power to the electric circuit shown in Figure 5.
The current control circuit 38 controls the amount of current applied to the transparent conductive film 13 so that the temperature inside the chamber 32 measured by the thermocouple 37 is always maintained at the temperature set in the temperature regulator 40. The transparent conductive film 13 heats not only the perfusion solution in the chamber 32 but also the warming liquid in the perfusion solution heating device 22 to a set temperature. Therefore, the irrigation solution is heated to a set temperature by a heating liquid such as pure water or silicone oil in the irrigation solution heating device 22 while reaching the nozzle 27 from the tube 24 . The liquid is injected into the injection hole 33 and introduced into the chamber 32 through the communication hole 35 . Therefore, the perfusion solution is heated to a preset temperature by the perfusion solution heating device 22 and then introduced into the chamber 32.
Temperature changes within the chamber 32 are extremely small, allowing accurate temperature control. On the other hand, the injection tube 36 constantly sucks in the perfusion solution in the suction hole 34 to keep the volume of the perfusion solution in the chamber 32 constant. In this state, while observing with the inverted microscope 2, the cells in the chamber 32 are treated with a pipette to conduct an experiment.

尚、熱電対37は、潅流溶液加温装置22内に
挿入して純水やシリコーンオイルなどの加温用液
体の温度を測定し、これにより潅流溶液の温度制
御をすることも可能である。
The thermocouple 37 can also be inserted into the perfusion solution heating device 22 to measure the temperature of a heating liquid such as pure water or silicone oil, thereby controlling the temperature of the perfusion solution.

「発明の効果」 以上の如く、本発明に係る細胞処理用恒温潅流
装置によれば、透明導電膜に通電させてチヤンバ
ー内の細胞が浸漬された潅流溶液を所定の設定温
度になるように加温し制御するので、チヤンバー
内の潅流溶液が小容量であつても設定温度に高精
度に調節でき、小型でかつ加温ガラス板が透明で
あるので、倒立顕微鏡のステージに装着し、細胞
が浸漬されたチヤンバー内の潅流溶液を温度制御
した状態で、斯る細胞を倒立顕微鏡で観察しなが
ら各種の処理を施すのに頗る便利である。
"Effects of the Invention" As described above, according to the constant temperature perfusion device for cell treatment according to the present invention, the transparent conductive film is energized to heat the perfusion solution in which the cells in the chamber are immersed to a predetermined set temperature. Since the temperature is controlled, even if the volume of perfusion solution in the chamber is small, it can be adjusted to the set temperature with high precision.Since it is small and the heated glass plate is transparent, it can be attached to the stage of an inverted microscope and cells can be It is very convenient to perform various treatments while observing the cells with an inverted microscope while controlling the temperature of the perfusion solution in the immersed chamber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る細胞処理用恒温潅流装置
の一例を示す分解斜視図、第2図はその細胞処理
用恒温潅流装置の平面図、第3図は2図の縦断面
図、第4図は細胞処理用恒温潅流装置における加
温ガラス板の構造を示す要部断面図、第5図は細
胞処理用恒温潅流装置の電気回路図である。 1……基台、8……加温ガラス板、9……支持
台、12……ガラス基板、13……透明導電膜、
16,17……リード線、18,19……ターミ
ナル、20……保護ガラス、22……潅流溶液加
温装置、24……チユーブ、27……ノズル、2
9……チヤンバー部材、32……チヤンバー、3
3……注入孔、34……吸入孔、35……連通
孔、36……インジエクシヨンチユーブ。
FIG. 1 is an exploded perspective view showing an example of the constant temperature perfusion device for cell treatment according to the present invention, FIG. 2 is a plan view of the constant temperature perfusion device for cell treatment, FIG. 3 is a vertical sectional view of FIG. 2, and FIG. The figure is a sectional view of a main part showing the structure of a heated glass plate in a constant temperature perfusion device for cell treatment, and FIG. 5 is an electric circuit diagram of the constant temperature perfusion device for cell treatment. DESCRIPTION OF SYMBOLS 1... Base, 8... Heated glass plate, 9... Support stand, 12... Glass substrate, 13... Transparent conductive film,
16, 17... Lead wire, 18, 19... Terminal, 20... Protective glass, 22... Perfusion solution warming device, 24... Tube, 27... Nozzle, 2
9...Chamber member, 32...Chamber, 3
3...Injection hole, 34...Suction hole, 35...Communication hole, 36...Injection tube.

Claims (1)

【特許請求の範囲】[Claims] 1 透明ガラス板に形成されてかつ通電量が制御
される透明導電膜より成る加温ガラス板を備え、
該加温ガラス板上に、リング状の潅流溶液加温装
置を載置し、潅流溶液加温装置のリング孔内に、
卵細胞等の検体が収納されるチヤンバー部材を装
着し、かつ上記潅流溶液加温装置の内部を中空に
形成し、該内部に加温用液体を充填させておき、
潅流溶液注入用のチユーブを外部から加温用液体
内を挿通させてチヤンバー部材のチヤンバーに臨
むノズルに配管し、かつチヤンバー部材のチヤン
バーには、常時内部の潅流溶液量を一定値に保持
するための排液用のインジエクシヨンチユーブの
吸入口を臨ませてなることを特徴とする細胞処理
用恒温潅流装置。
1. Equipped with a heated glass plate made of a transparent conductive film formed on a transparent glass plate and in which the amount of electricity is controlled,
A ring-shaped perfusion solution heating device is placed on the heated glass plate, and inside the ring hole of the perfusion solution heating device,
A chamber member in which a specimen such as an egg cell is stored is attached, and the inside of the perfusion solution heating device is formed hollow, and the inside is filled with a heating liquid,
A tube for injecting the irrigation solution is inserted into the heating liquid from the outside and connected to a nozzle facing the chamber of the chamber member, and the chamber of the chamber member is provided with a tube for maintaining the amount of irrigation solution inside at a constant value at all times. A constant-temperature perfusion device for cell processing, characterized in that the inlet of an injection tube for draining fluid faces the inlet.
JP20696887A 1987-08-20 1987-08-20 Thermostatic perfusion apparatus for cell treatment Granted JPS6451074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20696887A JPS6451074A (en) 1987-08-20 1987-08-20 Thermostatic perfusion apparatus for cell treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20696887A JPS6451074A (en) 1987-08-20 1987-08-20 Thermostatic perfusion apparatus for cell treatment

Publications (2)

Publication Number Publication Date
JPS6451074A JPS6451074A (en) 1989-02-27
JPH051711B2 true JPH051711B2 (en) 1993-01-08

Family

ID=16531985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20696887A Granted JPS6451074A (en) 1987-08-20 1987-08-20 Thermostatic perfusion apparatus for cell treatment

Country Status (1)

Country Link
JP (1) JPS6451074A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206069A (en) * 2002-10-31 2004-07-22 Tokai Hit:Kk Heating device for microscopic observation
WO2005028612A1 (en) * 2003-09-22 2005-03-31 Hirata Corporation Solution temperature control device in biological cell observing chamber
JP2009118808A (en) * 2007-11-16 2009-06-04 Olympus Corp Lid for culture vessel
CN102174365B (en) * 2010-12-30 2013-01-09 唐明 Constant temperature perfusion experimental table of cells or tissues
CN109907037B (en) * 2019-04-10 2022-02-01 广东顺德工业设计研究院(广东顺德创新设计研究院) Constant temperature perfusion type isolated organ perfusion container

Also Published As

Publication number Publication date
JPS6451074A (en) 1989-02-27

Similar Documents

Publication Publication Date Title
CN110178029B (en) System for observing cell cultures under a microscope while applying TTfields
US4974952A (en) Live cell chamber for microscopes
US6555365B2 (en) Microincubator comprising a cell culture apparatus and a transparent heater
US7718409B2 (en) Controlled electroporation and mass transfer across cell membranes
US5451524A (en) In vitro chamber for human organ tissue samples
Seo et al. Integrated multiple patch-clamp array chip via lateral cell trapping junctions
JP4562165B2 (en) Microscope incubator
JPH01126538A (en) Electrophoretic apparatus
JPH0648260B2 (en) Horizontal gel electrophoresis device
CN104974935A (en) device with annular micro-channel chip for cell culture
RU2515207C2 (en) Device to measure concentration of charged particles
JPH051711B2 (en)
US10591439B2 (en) Gel electrophoresis system for single cell gel electrophoresis
WO2008005998A2 (en) Centimeter-scale, integrated diagnostics incubator for biological culturing
KR101706153B1 (en) Microfluidic chip-based cell cultivation system
CN112203765A (en) Device for making electrical measurements
WO2005098408A1 (en) Multi function gel electrophoresis and apparatus
WO2019183239A1 (en) Dual-purpose viral transduction and electroporation device
US5882495A (en) Electrophoresis system
JP3893381B2 (en) Measuring device and measuring method for measuring an electrical signal emitted from a biological sample
WO2018154306A1 (en) Diffusion test system
CN209423673U (en) A kind of small-size multifunction experiment porch
JP2004206069A (en) Heating device for microscopic observation
CN109433294A (en) A kind of small-size multifunction experiment porch
Hugo et al. A twin-jet technique for thinning metals for transmission electron microscopy