JPH05170594A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPH05170594A
JPH05170594A JP25814791A JP25814791A JPH05170594A JP H05170594 A JPH05170594 A JP H05170594A JP 25814791 A JP25814791 A JP 25814791A JP 25814791 A JP25814791 A JP 25814791A JP H05170594 A JPH05170594 A JP H05170594A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
shield plate
crystal
heat shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25814791A
Other languages
Japanese (ja)
Inventor
Mizuhiro Umehara
瑞弘 梅原
Takashi Atami
貴 熱海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP25814791A priority Critical patent/JPH05170594A/en
Publication of JPH05170594A publication Critical patent/JPH05170594A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain single crystal in higher yield by pulling a high-purity compound semiconductor single crystal from a pBN crucible set in a vessel. CONSTITUTION:A susceptor 16 is installed in an outer vessel 11, and a pBN crucible 17 on the susceptor 16. The upper end of the crucible 17 is fitted with a heat shielding plate 26. At the center of the plate, a hole is provided with its diameter smaller than the inner diameter of the crucible 17 but larger than the outer diameter of a GaAs single crystal 20 to be pulled. In this state, the pBN crucible 17 is charged with a GaAs melt 7 and heated through a heater 18 in an inert gas 21; concurrently, the GaAs single crystal 20 is gradually pulled from the melt 7 using the upper revolving shaft 19, thus obtaining the objective single crystal 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱分解ボロンナイトラ
イドルツボ(以下「pBNルツボ」という)を用いて高
純度の化合物半導体単結晶を引上げる単結晶の製造方法
に係り、特に、単結晶化率の向上を可能とする単結晶の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single crystal for pulling a high-purity compound semiconductor single crystal by using a pyrolytic boron night raid crucible (hereinafter referred to as "pBN crucible"), and more particularly to a single crystal. The present invention relates to a method for producing a single crystal that can improve the conversion rate.

【0002】[0002]

【従来の技術】一般に、GaAs,InP,GaP,I
nAs,CdTe等の化合物半導体単結晶の製造方法と
しては液体カプセル引上げ法(以下「LEC法」とい
う)や蒸気圧下引上げ法(以下「PCZ法」という)が
工業的に実施されている。これらの引上げ法において原
料を収納するルツボには石英ルツボや熱分解ボロンナイ
トライドルツボ(以下、「pBNルツボ」と称する)が
用いられるが、高純度の結晶を引上げるには一般にpB
Nルツボが用いられている。
2. Description of the Related Art Generally, GaAs, InP, GaP, I
As a method for producing a compound semiconductor single crystal of nAs, CdTe or the like, a liquid capsule pulling method (hereinafter referred to as “LEC method”) and a vapor pressure pulling method (hereinafter referred to as “PCZ method”) are industrially carried out. In these pulling methods, a quartz crucible or a pyrolysis boron night raid crucible (hereinafter referred to as “pBN crucible”) is used as a crucible for containing a raw material, but pB is generally used for pulling a high-purity crystal.
N crucibles are used.

【0003】上記化合物半導体単結晶の製造方法につい
て、高純度のGaAs単結晶を製造する場合を例とし
て、LEC法について図6、PCZ法について図7を参
照しつつその概略を説明する。
An outline of the method for producing the compound semiconductor single crystal will be described with reference to FIG. 6 for the LEC method and FIG. 7 for the PCZ method, taking the case of producing a high-purity GaAs single crystal as an example.

【0004】図6は、LEC法によるGaAs単結晶の
製造状況を示すものである。密封された外容器1内には
サセプター2がその軸線を中心として回転可能に設置さ
れ、サセプター2上にはpBNルツボ3が設置されてい
る。また、pBNルツボ3の周囲はヒーター4に囲ま
れ、その周囲は更に保温筒5で覆われている。更に、p
BNルツボ3の上方には上部回転軸6がサセプター2と
同軸に回転可能で、かつ上下動可能に設置されている。
FIG. 6 shows a manufacturing state of a GaAs single crystal by the LEC method. A susceptor 2 is rotatably installed around the axis of the sealed outer container 1, and a pBN crucible 3 is installed on the susceptor 2. Further, the periphery of the pBN crucible 3 is surrounded by the heater 4, and the periphery thereof is further covered with the heat insulating cylinder 5. Furthermore, p
An upper rotary shaft 6 is installed above the BN crucible 3 so as to be coaxial with the susceptor 2 and vertically movable.

【0005】図6において、pBNルツボ3内にはGa
As融液7およびその表面を覆うカプセル剤であるB2
38が投入され、外容器1内に充填された不活性ガス
9中でpBNルツボ3をヒーター4により加熱しながら
上部回転軸6を用いてGaAs単結晶10を徐々に引上
げることによりGaAs単結晶10を製造している。
In FIG. 6, Ga is placed in the pBN crucible 3.
As melt 7 and B 2 which is a capsule covering the surface thereof
O 3 8 was introduced, and the GaAs single crystal 10 was gradually pulled up by using the upper rotary shaft 6 while heating the pBN crucible 3 by the heater 4 in the inert gas 9 filled in the outer container 1, so that the GaAs single crystal 10 was pulled up. The single crystal 10 is manufactured.

【0006】図7は、PCZ法によるGaAs単結晶2
0の製造状況を示すものである。密封された外容器11
内にはシール部12にて上下に分割可能な上部容器13
および下部容器14が設けられ、その内部には下部回転
軸15がその軸線を中心として回転可能に設置され、更
に、下部回転軸15上にはサセプター16を介してpB
Nルツボ17が設置されている。一方、上部容器13お
よび下部容器14外側にはヒーター18が設置され、p
BNルツボ17の上方には上部回転軸19がサセプター
16と同軸に回転可能で、かつ上下動可能に設置されて
いる。
FIG. 7 shows a GaAs single crystal 2 produced by the PCZ method.
0 shows the production status of 0. Sealed outer container 11
Inside, an upper container 13 that can be divided into upper and lower parts by a seal part 12
Also, a lower container 14 is provided therein, and a lower rotary shaft 15 is rotatably installed in the lower container 14 about the axis thereof. Further, on the lower rotary shaft 15, a pB via a susceptor 16 is provided.
N crucible 17 is installed. On the other hand, a heater 18 is installed outside the upper container 13 and the lower container 14,
Above the BN crucible 17, an upper rotary shaft 19 is installed coaxially with the susceptor 16 and vertically movable.

【0007】図7においては、pBNルツボ17内には
GaAs融液7のみが投入されている。加熱はヒーター
18により行い、GaAs単結晶20は上部回転軸19
を徐々に引上げることにより得られる。この場合、引上
げ雰囲気ガス21はAs蒸気を主体にしたガスで、その
圧力はヒーター22のコントロールにより保時される。
なお、上部回転軸19と上部容器13、下部回転軸15
と下部容器、およびシール部12はそれぞれB2324
によりシールされている。
In FIG. 7, only the GaAs melt 7 is put into the pBN crucible 17. Heating is performed by the heater 18, and the GaAs single crystal 20 is heated by the upper rotary shaft 19.
It is obtained by gradually pulling up. In this case, the pulling atmosphere gas 21 is a gas mainly composed of As vapor, and its pressure is maintained by the control of the heater 22.
The upper rotary shaft 19, the upper container 13, the lower rotary shaft 15
And the lower container and the seal part 12 are made of B 2 O 3 24 respectively.
It is sealed by.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、これら
従来の装置を用いて化合物半導体単結晶を製造する場
合、引上げ結晶の結晶欠陥を少なくする目的でpBNル
ツボ3,17内のGaAs融液7の横方向の温度勾配を
小さくすると、しばしばpBNルツボ3,17の内壁よ
り不必要な核あるいはこれが成長した浮遊物が発生し、
これらが引上げ結晶に付着して多結晶となり完全な単結
晶を得ることが困難となる場合があった。
However, when a compound semiconductor single crystal is manufactured by using these conventional apparatuses, the GaAs melt 7 in the pBN crucibles 3 and 17 is laterally aligned in order to reduce crystal defects in the pulled crystal. When the temperature gradient in the direction is made small, unnecessary nuclei or suspended matter in which unnecessary nuclei are often generated from the inner wall of the pBN crucibles 3, 17 are generated.
In some cases, these adhered to the pulled crystal to become a polycrystal, making it difficult to obtain a complete single crystal.

【0009】この現象は、高純度結晶を得るために用い
ているpBNルツボ3,17の熱伝導率が上下および左
右方向で異方性を示すことに起因すると考えられる。す
なわち、pBNルツボ3,17の上下方向の熱伝導率が
左右方向(幅方向)の熱伝導率に比べて約20倍程度大
きく、またGaAs結晶に比べても10〜20倍程度大
きいため、pBNルツボ3,17の上下方向への熱の放
散が大きくなってpBNルツボ3,17内壁とGaAs
融液の接点の温度が低下し、その結果GaAsの核が発
生し、更に浮遊物に成長すると推察される。
This phenomenon is considered to be due to the thermal conductivity of the pBN crucibles 3 and 17 used for obtaining high-purity crystals exhibiting anisotropy in the vertical and horizontal directions. That is, the thermal conductivity of the pBN crucibles 3, 17 in the vertical direction is about 20 times larger than that in the horizontal direction (width direction), and about 10 to 20 times larger than that of the GaAs crystal. The heat dissipation in the vertical direction of the crucibles 3, 17 becomes large, and the inner wall of the pBN crucibles 3, 17 and the GaAs
It is presumed that the temperature of the contact point of the melt is lowered and, as a result, nuclei of GaAs are generated and further grow into a suspended substance.

【0010】このため、これら核発生および浮遊物を防
ぐ目的で、特開昭54−150378号公報に記載され
ている熱遮蔽板を用いる方法を検討した。ところが、p
BNルツボを用いたGaAsの引上げにおいて特開昭5
4−150378号公報記載の熱遮蔽板を用いた場合に
は、熱遮蔽板を用いない方法に比して単結晶化率が極端
に低下した。この原因を種々検討したところ、シリコン
の引上げ法とGaAsの引上げ法では熱遮蔽板の効果が
全く違うことが判明した。
Therefore, for the purpose of preventing these nucleation and suspended matter, a method using a heat shield plate described in JP-A-54-150378 was examined. However, p
In pulling up GaAs using a BN crucible
When the heat shield plate described in JP-A-4-150378 was used, the single crystallization rate was extremely reduced as compared with the method in which the heat shield plate was not used. As a result of various studies on the cause, it was found that the effect of the heat shield plate was completely different between the silicon pulling method and the GaAs pulling method.

【0011】シリコンの引上げにおける熱遮蔽板の効果
は、特開昭54−150378号公報にも詳細記載され
ているように、引上げ操作中に生成する一酸化ケイ素凝
縮物が凝固面に達しないように引上げ雰囲気を形成して
いる不活性ガスの流路を形成することと、引上げ操作中
におけるルツボ壁および溶融物表面からの引上げ結晶へ
の熱の照射を防ぐ点である。すなわち、引上げ操作中に
おける結晶の温度を低くすることにより引上げ温度を大
きくし、結果として酸素の取り込みに起因する積層欠陥
(OSF)を減少させることにある。
The effect of the heat shield plate in pulling up silicon is that the silicon monoxide condensate formed during the pulling operation does not reach the solidification surface, as described in detail in JP-A-54-150378. This is to form a flow path of an inert gas that forms a pulling atmosphere in and to prevent the pulling crystal from being irradiated with heat from the crucible wall and the surface of the melt during the pulling operation. That is, by lowering the temperature of the crystal during the pulling operation, the pulling temperature is increased, and as a result, stacking faults (OSF) due to oxygen uptake are reduced.

【0012】一方、単結晶の引き上げにおいて、結晶温
度を低くすることは固液界面の形状が結晶側に対し凸形
あるいはM字形になることを意味するが、シリコンの引
き上げにおいてはこの状態でも単結晶の引き上げが可能
であるのに対し、GaAsの引き上げにおいては、固液
界面の形状が結晶側に対し凸形あるいはM字形になる状
態での引き上げは結晶化率が低く、工業的にはほぼ不可
能となっている。
On the other hand, in pulling a single crystal, lowering the crystal temperature means that the shape of the solid-liquid interface becomes convex or M-shaped with respect to the crystal side. Crystals can be pulled up. On the other hand, in the case of GaAs pulling, the crystallization rate is low when the solid-liquid interface is convex or M-shaped with respect to the crystal side. It is impossible.

【0013】その理由は、シリコンでは臨界剪断応力が
大きいため結晶欠陥のひとつである転移が生じないが、
GaAsでは臨界剪断応力が小さいため転移を完全に防
止することが難しく、引き上げ結晶の表面温度を低くし
て固液界面の形状を結晶側に凸形あるいはM字形とする
と局部的な転移の集中が起こり、いわゆるリネージから
多結晶へと発展して単結晶の引き上げが不可能となるた
めである。
The reason is that since silicon has a large critical shear stress, dislocation, which is one of crystal defects, does not occur.
In GaAs, it is difficult to completely prevent the transition because the critical shear stress is small, and if the surface temperature of the pulled crystal is lowered to make the shape of the solid-liquid interface convex toward the crystal side or M-shaped, the local concentration of the transition occurs. This is because the so-called lineage develops into a polycrystal, making it impossible to pull a single crystal.

【0014】従って、GaAsの引き上げにおいては、
引き上げ結晶の表面温度、特に固液界面近傍での結晶の
表面温度を高くし、固液界面の形状を融液側に凸形ある
いは平坦にする必要があり、その結果、シリコンの引き
上げで使用される熱遮蔽板は、その作用が思想的に異な
るGaAsの引き上げには使用できないことが判明し
た。
Therefore, when pulling up GaAs,
It is necessary to raise the surface temperature of the pulled crystal, especially the surface temperature of the crystal near the solid-liquid interface, and make the shape of the solid-liquid interface convex or flat on the melt side. It has been found that the heat shield plate as described above cannot be used for pulling up GaAs, which has an ideologically different action.

【0015】本発明の目的は、引き上げによる化合物半
導体単結晶の製造において、pBNルツボ3,17壁と
GaAs融液の接点における核あるいは核が成長してな
る浮遊物の発生を抑制すると同時に、引上げ結晶の表面
温度、特に固液界面近傍における結晶の表面温度を高く
し、固液界面の形状を融液側に対して凸形あるいは平坦
として単結晶化率を向上させることにある。
The object of the present invention is to suppress the generation of nuclei or floating substances formed by the growth of nuclei at the contact points between the pBN crucible 3,17 wall and the GaAs melt in the production of a compound semiconductor single crystal by pulling, and at the same time, pulling up. The purpose is to raise the surface temperature of the crystal, especially the surface temperature of the crystal in the vicinity of the solid-liquid interface, and make the shape of the solid-liquid interface convex or flat with respect to the melt side to improve the single crystallization rate.

【0016】[0016]

【課題を解決するための手段】本発明は高純度の化合物
半導体を得るため、pBNルツボを用いた引き上げによ
る単結晶製造方法において、前記pBNルツボ上端部か
らの熱の放散を抑制するとともに引上げ結晶の表面温度
特に固液界面近傍での結晶の表面温度を高くし、固液界
面の形状を融液側に対し凸形あるいは平坦とする目的
で、前記pBNルツボ上端に熱遮蔽板を取り付け化合物
半導体単結晶を引上げることにしたものである。
In order to obtain a high-purity compound semiconductor, the present invention is a method for producing a single crystal by pulling using a pBN crucible, in which heat dissipation from the upper end of the pBN crucible is suppressed and the pulled crystal is used. For the purpose of increasing the surface temperature of the crystal, especially the surface temperature of the crystal near the solid-liquid interface, and making the shape of the solid-liquid interface convex or flat with respect to the melt side, a heat shield plate is attached to the upper end of the pBN crucible to provide a compound semiconductor. It was decided to pull up a single crystal.

【0017】[0017]

【作用】上述したように、化合物半導体単結晶を引上げ
る際に用いるpBNルツボの上端に熱遮蔽板を取り付け
ることにより、前記pBNルツボの上方からの熱の放散
は前記熱遮蔽板により抑制され、その結果、引上げ結晶
を取り巻くルツボ壁の温度低下が防止されるとともに、
前記pBNルツボ壁と化合物半導体融液との接点および
固液界面近傍での結晶の単表面における温度低下が防止
される。従って、不必要な核あるいはこれが成長した浮
遊物の発生がなくなるとともに固液界面の形状を融液側
に凸型あるいは平坦にすることが可能となり、単結晶化
率が向上する。
As described above, by attaching the heat shield plate to the upper end of the pBN crucible used when pulling up the compound semiconductor single crystal, heat dissipation from above the pBN crucible is suppressed by the heat shield plate, As a result, it is possible to prevent the temperature of the crucible wall surrounding the pulled crystal from decreasing, and
It is possible to prevent a temperature drop on the single surface of the crystal near the contact point between the pBN crucible wall and the compound semiconductor melt and near the solid-liquid interface. Therefore, generation of unnecessary nuclei or suspended matter in which they grow can be eliminated, and the shape of the solid-liquid interface can be made convex or flat on the melt side, and the single crystallization rate is improved.

【0018】[0018]

【実施例】以下、図面に基づき、本発明の実施例につい
て、更に詳しく説明する。図1は本発明のLEC法の一
例として、GaAs単結晶引上げ装置を示すもので、図
6に示した従来例と同一部分には同一符号を用いてその
説明を省略する。
Embodiments of the present invention will now be described in more detail with reference to the drawings. FIG. 1 shows a GaAs single crystal pulling apparatus as an example of the LEC method of the present invention. The same parts as those of the conventional example shown in FIG.

【0019】図1に示す装置において、pBNルツボ3
の上端には熱遮蔽板25が取り付けられている。この熱
遮蔽板25は不透明石英製の円盤状のもので、その中央
部にはpBNルツボ3の内径未満でかつ引き上げられる
GaAs単結晶10の外径より大径である穴が形成され
ている。
In the device shown in FIG. 1, pBN crucible 3
A heat shield plate 25 is attached to the upper end of the. The heat shield plate 25 is a disc-shaped plate made of opaque quartz, and a hole having a diameter smaller than the inner diameter of the pBN crucible 3 and larger than the outer diameter of the pulled GaAs single crystal 10 is formed in the center thereof.

【0020】pBNルツボ3内にGaAs融液7および
その表面を覆うB238を投入し、不活性ガス9中でp
BNルツボ3をヒーター4により加熱しながら上部回転
軸6を用いてGaAs融液7からGaAs単結晶10を
徐々に引き上げたところ、結晶化率がほぼ90%の割合
でGaAs単結晶10が得られた。熱遮蔽板25を用い
ない通常のLEC法における単結晶化率は約50%であ
るので、熱遮蔽板25の使用により単結晶化率は著しく
向上したといえる。
A GaAs melt 7 and B 2 O 3 8 covering the surface of the GaAs melt 7 are charged into the pBN crucible 3 and the p is added in an inert gas 9.
While heating the BN crucible 3 with the heater 4, the GaAs single crystal 10 was gradually pulled up from the GaAs melt 7 using the upper rotary shaft 6, and the GaAs single crystal 10 was obtained at a crystallization rate of about 90%. It was Since the single crystallization rate in the ordinary LEC method without using the heat shield plate 25 is about 50%, it can be said that the use of the heat shield plate 25 significantly improved the single crystallinity ratio.

【0021】図2は本発明のPCZ法の一例として、G
aAs単結晶引上装置を示すもので、図7に示した従来
例と同一部分には同一符号を用いてその説明を省略す
る。
FIG. 2 shows G as an example of the PCZ method of the present invention.
7 shows an aAs single crystal pulling apparatus, and the same parts as those of the conventional example shown in FIG.

【0022】図2に示す装置において、pBNルツボ1
7の上端には熱遮蔽板26が取り付けられている。この
熱遮蔽板26は熱分解ボロンナイトライド製の円盤状の
もので、その中央部にはpBNルツボ17の内径未満で
かつ引き上げられるGaAs単結晶20の外径より大径
である穴が形成されている。
In the apparatus shown in FIG. 2, pBN crucible 1
A heat shield plate 26 is attached to the upper end of 7. The heat shield plate 26 is a disk-shaped one made of pyrolytic boron nitride, and a hole having a diameter smaller than the inner diameter of the pBN crucible 17 and larger than the outer diameter of the pulled GaAs single crystal 20 is formed in the center thereof. ing.

【0023】pBNルツボ17内にGaAs融液7を投
入し、引上げ雰囲気ガス21中でpBNルツボ17をヒ
ーター18により加熱しながら上部回転軸19を用いて
GaAs単結晶20を徐々に引上げたところ、単結晶化
率がほぼ90%の割合でGaAs単結晶20が得られ
た。熱遮蔽板26を用いない通常のPCZ法における単
結晶化率は約40%であるので、本発明により単結晶化
率は著しく向上したといえる。
When the GaAs melt 7 was put into the pBN crucible 17 and the pBN crucible 17 was heated by the heater 18 in the pulling atmosphere gas 21, the GaAs single crystal 20 was gradually pulled up by using the upper rotary shaft 19. A GaAs single crystal 20 was obtained with a single crystallization rate of about 90%. Since the single crystallization rate in the normal PCZ method without using the heat shield plate 26 is about 40%, it can be said that the present invention significantly improves the single crystallization rate.

【0024】また、pBNルツボ17からの熱の放散を
更に効率よく抑えるために、図3に示すように内周を下
方に折り曲げ、その折り曲げ長さLを6mm、折り曲げ
角θを90度にした熱遮蔽板27を用い、同様にGaA
s単結晶20の引上げを行ったところ、単結晶化率が9
0〜100%の割合でGaAs単結晶20が得られ、熱
遮蔽板27の効果が向上した。更に折り曲げ角θを12
0度の熱遮蔽板27を用いてGaAs結晶を引上げたと
ころ、単結晶化率は40〜50%と悪くなった。すなわ
ち、折り曲げ角θにはある制限があることが判別した。
Further, in order to more efficiently suppress the dissipation of heat from the pBN crucible 17, the inner circumference is bent downward as shown in FIG. 3, and the bending length L is 6 mm and the bending angle θ is 90 degrees. Using the heat shield plate 27, similarly
When the s single crystal 20 was pulled up, the single crystallization rate was 9
The GaAs single crystal 20 was obtained at a ratio of 0 to 100%, and the effect of the heat shield plate 27 was improved. Furthermore, the bending angle θ is 12
When the GaAs crystal was pulled up using the 0 degree heat shield plate 27, the single crystallization rate was deteriorated to 40 to 50%. That is, it was determined that the bending angle θ has a certain limit.

【0025】また、熱遮蔽板27の水平部とpBNルツ
ボ17上端との距離Ymmあるいは熱遮蔽板の折り曲げ
部の最下端とpBNルツボ17内壁との距離Xmmある
いは折り曲げ部の長さLmmをさまざま変化させて引上
げを行ったところ、これらの間にもある制約があること
が明かとなった。前記折り曲げ部の長さL=6mmを一
定として、折り曲げ角θを横軸に、単結晶化率を縦軸に
した一連の実験結果を図4に示す。
Further, the distance Ymm between the horizontal portion of the heat shield plate 27 and the upper end of the pBN crucible 17 or the distance Xmm between the bottom end of the bent portion of the heat shield plate and the inner wall of the pBN crucible 17 or the length Lmm of the bent portion is changed. After raising the price, it became clear that there were some restrictions between them. FIG. 4 shows a series of experimental results in which the length L of the bent portion is fixed at 6 mm and the bending angle θ is taken as the horizontal axis and the single crystallization rate is taken as the vertical axis.

【0026】その結果、図4から明らかなように、pB
Nルツボ17上端からの熱の放散を防止するためには、
前記折り曲げ部の最下端とpBNルツボ17内壁との距
離Xmmと熱遮蔽板27の水平部とpBNルツボ17上
端との距離Ymmのどちらかが5mm以下であり、更に
折り曲げ角θは110度より小さく、望ましくは90度
以下にすることが必要である。これは、距離Xmmと距
離Ymmのどちらかが5mm以下であると、熱遮蔽板2
7とpBNルツボ17との間の熱の流れが充分防止され
るためで、距離Xmmと距離Ymmを共に5mm大きく
すると、熱の流れが容易となりpBNルツボ17上端か
らの熱の放散が大きくなる。
As a result, as is clear from FIG. 4, pB
To prevent heat dissipation from the upper end of the N crucible 17,
Either the distance Xmm between the lowermost end of the bent portion and the inner wall of the pBN crucible 17 or the distance Ymm between the horizontal portion of the heat shield plate 27 and the upper end of the pBN crucible 17 is 5 mm or less, and the bending angle θ is smaller than 110 degrees. It is desirable that the angle be 90 degrees or less. This is because if either the distance Xmm or the distance Ymm is 5 mm or less, the heat shield plate 2
This is because heat flow between 7 and the pBN crucible 17 is sufficiently prevented. Therefore, if the distance Xmm and the distance Ymm are both increased by 5 mm, the heat flow becomes easy and the heat dissipation from the upper end of the pBN crucible 17 increases.

【0027】また、折り曲げ角θが110度より大きく
なると同じ折り曲げ部に沿っての熱の流れが強くなり、
pBNルツボ17上端からの熱の放散を助けることにな
る。更に、折り曲げ部の長さLmmを変えて実験を行っ
たところ、単結晶化率は折り曲げ部の長さLmmにはあ
まり影響されず、引上げ中における折り曲げ部先端の位
置に大きく依存することが明かとなった。
When the bending angle θ is larger than 110 degrees, the heat flow along the same bending portion becomes strong,
It helps dissipate heat from the upper end of the pBN crucible 17. Further, when an experiment was performed while changing the length Lmm of the bent portion, it was found that the single crystallization rate was not significantly affected by the length Lmm of the bent portion and was largely dependent on the position of the tip of the bent portion during pulling. It became

【0028】この現象を図5を用いて説明する。折り曲
げ部の先端がpBNルツボ17の先端Aと引上げ結晶の
固液界面の最外部Bとを結んだ仮想線ABよりも上方に
あれば、引上げ結晶の結晶表面はpBNルツボ17の壁
と融液表面からの放熱で充分高い温度に保つことが可能
であるが、折り曲げ部の先端が仮想線ABよりも下方と
なると、折り曲げ部によりpBNルツボ17の壁と融液
表面からの放熱が妨げられ、引上げ結晶の表面温度が低
くなり、その結果結晶の最外部が早く固まり、固液界面
形状は図4のようにM字型となる。
This phenomenon will be described with reference to FIG. If the tip of the bent portion is above a virtual line AB connecting the tip A of the pBN crucible 17 and the outermost portion B of the solid-liquid interface of the pulled crystal, the crystal surface of the pulled crystal is the wall of the pBN crucible 17 and the melt. It is possible to maintain a sufficiently high temperature by radiating heat from the surface, but when the tip of the bent portion is below the imaginary line AB, the bent portion hinders heat radiation from the wall of the pBN crucible 17 and the melt surface, The surface temperature of the pulled crystal is lowered, and as a result, the outermost portion of the crystal is solidified quickly, and the solid-liquid interface shape becomes M-shaped as shown in FIG.

【0029】GaAs結晶はシリコン結晶と違い、臨界
剪断応力が小さいため転位が入りやすく、この転位は固
液界面に垂直に成長し、結晶のC部に集中する。このた
め、結晶のC部では転位が集中した結果リネージに発展
し、最後的にはリネージから多結晶化が進展し、単結晶
を得ることができなくなる。
Unlike a silicon crystal, a GaAs crystal has a small critical shear stress and is likely to have dislocations. This dislocation grows perpendicularly to the solid-liquid interface and concentrates at the C portion of the crystal. For this reason, dislocations concentrate in the C portion of the crystal, resulting in the development of lineage, and finally polycrystallization progresses from the lineage, making it impossible to obtain a single crystal.

【0030】なお、図4において、折り曲げ角θが11
0度の場合よりも折り曲げ角θが0度の場合の方が単結
晶化率が良いのは、折り曲げ角θが110度の場合には
pBNルツボ17上端からの熱の放散は折り曲げ角θが
0度の場合とほぼ同じ程度の効果を示すが、折り曲げ角
θが110度となると、折り曲げた部分が引上げた結晶
の先端を冷却する効果が加わるため折り曲げ角θが0度
の場合よりも単結晶化率が低下するためである。
In FIG. 4, the bending angle θ is 11
The single crystallization rate is better when the bending angle θ is 0 ° than when it is 0 °, because when the bending angle θ is 110 °, heat is dissipated from the upper end of the pBN crucible 17 at the bending angle θ. Although the effect is almost the same as when the bending angle θ is 0 degree, when the bending angle θ becomes 110 degrees, the effect of cooling the tip of the crystal pulled by the bent portion is added, so that the bending angle θ is more than that when the bending angle θ is 0 degree. This is because the crystallization rate decreases.

【0031】[0031]

【発明の効果】以上説明したように、本発明の単結晶製
造方法においては、化合物半導体単結晶を引上げる際に
用いるpBNルツボの上端に熱遮蔽板を取り付けること
により、前記pBNルツボの上方からの熱の放散は前記
熱遮蔽板により抑制され、前記pBNルツボ壁と化合物
半導体融液との接点での温度低下が防止される。従っ
て、核発生および浮遊物の発生がなくなるとともに、引
上げ結晶の表面温度、特に固液界面近傍での結晶の表面
温度が高められ、固液界面の形状が融液側に凸型あるい
は平坦となるため、単結晶化率が向上する。
As described above, in the method for producing a single crystal of the present invention, the heat shield plate is attached to the upper end of the pBN crucible used for pulling up the compound semiconductor single crystal, so that the pBN crucible can be removed from above. Of the heat is suppressed by the heat shield plate, and the temperature drop at the contact point between the pBN crucible wall and the compound semiconductor melt is prevented. Therefore, the generation of nuclei and floating substances are eliminated, and the surface temperature of the pulled crystal, especially the surface temperature of the crystal near the solid-liquid interface is increased, and the shape of the solid-liquid interface becomes convex or flat on the melt side. Therefore, the single crystallization rate is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるLEC法を用いた単結晶製造方
法の一例を示す説明図である。
FIG. 1 is an explanatory view showing an example of a method for producing a single crystal using the LEC method in the present invention.

【図2】本発明におけるPCZ法を用いた単結晶製造方
法の一例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of a single crystal production method using the PCZ method in the present invention.

【図3】本発明に係る熱遮蔽板と引上げ結晶との関係を
示す説明図である。
FIG. 3 is an explanatory diagram showing a relationship between a heat shield plate and a pulled crystal according to the present invention.

【図4】熱遮蔽板の折り曲げ部の長さを一定とした場合
における、熱遮蔽板の折り曲げ角と単結晶化率との関係
を示す図である。
FIG. 4 is a diagram showing the relationship between the bending angle of the heat shield plate and the single crystallization rate when the length of the bent portion of the heat shield plate is constant.

【図5】本発明に係る熱遮蔽板と引上げ中の結晶の固液
界面上との関係を示す説明図である。
FIG. 5 is an explanatory diagram showing the relationship between the heat shield plate according to the present invention and the solid-liquid interface of the crystal being pulled.

【図6】従来のLEC法を用いた単結晶製造方法の一例
を示す説明図である。
FIG. 6 is an explanatory diagram showing an example of a conventional single crystal manufacturing method using the LEC method.

【図7】従来のPCZ法を用いた単結晶製造方法の一例
を示す説明図である。
FIG. 7 is an explanatory view showing an example of a conventional single crystal manufacturing method using the PCZ method.

【符号の説明】[Explanation of symbols]

1,11 外容器 2,16 サセプター 3,17 pBNルツボ 4,18,22 ヒーター 5 保温筒 6,19 上部回転軸 7 GaAs融液 8,24 B23 9 不活性ガス 10,20 GaAs単結晶 12 シール部 13 上部容器 14 下部容器 15 下部回転軸 21 雰囲気ガス 25,26,27 熱遮蔽板 A…pBNルツボ先端 B…引上げ結晶の固液界面の最外部 C…結晶の転位が集中する部分 X…熱遮蔽板の折り曲げ部の最下端とpBNルツボ内壁
との距離 Y…熱遮蔽板の水平部とpBNルツボ上端との距離 L…熱遮蔽板の折り曲げ長さ θ…熱遮蔽板の水平部と折り曲げられた部分との角度
1,11 Outer container 2,16 Susceptor 3,17 pBN crucible 4,18,22 Heater 5 Insulating cylinder 6,19 Upper rotating shaft 7 GaAs melt 8,24 B 2 O 3 9 Inert gas 10,20 GaAs single crystal 12 Seal part 13 Upper container 14 Lower container 15 Lower rotating shaft 21 Atmosphere gas 25, 26, 27 Heat shield plate A ... pBN crucible tip B ... Outermost part of solid-liquid interface of pulled crystal C ... Part where crystal dislocation concentrates X … The distance between the lowermost end of the bent part of the heat shield plate and the inner wall of the pBN crucible Y… The distance between the horizontal part of the heat shield plate and the upper end of the pBN crucible L… The bent length of the heat shield plate θ… The horizontal part of the heat shield plate Angle with the folded part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱分解ボロンナイトライドルツボ(pB
Nルツボ)を用いて化合物半導体単結晶を引き上げる単
結晶製造方法において、 前記ルツボの上端部に、このルツボの内径未満でかつ引
上げ結晶の外径より大径である穴が形成された熱遮蔽板
を取り付け、この穴を介して化合物半導体単結晶の引き
上げを行うことを特徴とする単結晶製造方法。
1. A pyrolytic boron night raidle crucible (pB).
N crucible) for pulling a compound semiconductor single crystal, wherein the crucible has a hole at the upper end thereof having a diameter smaller than the inner diameter of the crucible and larger than the outer diameter of the pulled crystal. Is attached and the compound semiconductor single crystal is pulled up through this hole.
【請求項2】 前記熱遮蔽板に形成された穴の内周囲が
下方に折り曲げられ、かつ熱遮蔽板の水平部と折り曲げ
られた部分との角度が0度より大きく、かつ110度未
満であることを特徴とする請求項1記載の単結晶製造方
法。
2. The inner periphery of the hole formed in the heat shield plate is bent downward, and the angle between the horizontal portion and the bent portion of the heat shield plate is greater than 0 degrees and less than 110 degrees. The method for producing a single crystal according to claim 1, wherein
【請求項3】 下方に折り曲げられた前記熱遮蔽板の折
り曲げ部のいずれかの部分とpBNルツボ内壁との距離
から5mm以内あるいは前記熱遮蔽板の水平部とpBN
ルツボ上端との距離が5mm以内であることを特徴とす
る請求項1ないし請求項2記載の単結晶製造方法。
3. The distance between any one of the bent portions of the heat shield plate bent downward and the inner wall of the pBN crucible is within 5 mm or the horizontal portion of the heat shield plate and pBN.
The method for producing a single crystal according to claim 1 or 2, wherein the distance from the upper end of the crucible is within 5 mm.
【請求項4】 下方に折り曲げられた前記熱遮蔽板の折
り曲げ部の最下端が、引上げ中の結晶の固液界面の最外
部とルツボ最上端とを結ぶ線よりも下方にならないこと
を特徴とする請求項1ないし請求項3記載の単結晶製造
方法。
4. The lower end of the bent portion of the heat shield plate bent downward is not lower than the line connecting the outermost part of the solid-liquid interface of the crystal being pulled and the uppermost end of the crucible. The method for producing a single crystal according to claim 1, wherein
JP25814791A 1991-10-04 1991-10-04 Production of single crystal Withdrawn JPH05170594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25814791A JPH05170594A (en) 1991-10-04 1991-10-04 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25814791A JPH05170594A (en) 1991-10-04 1991-10-04 Production of single crystal

Publications (1)

Publication Number Publication Date
JPH05170594A true JPH05170594A (en) 1993-07-09

Family

ID=17316180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25814791A Withdrawn JPH05170594A (en) 1991-10-04 1991-10-04 Production of single crystal

Country Status (1)

Country Link
JP (1) JPH05170594A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787351A (en) * 2011-05-20 2012-11-21 昭和电工株式会社 Monocrystal producing device, monocrystal producing method and monocrystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787351A (en) * 2011-05-20 2012-11-21 昭和电工株式会社 Monocrystal producing device, monocrystal producing method and monocrystal

Similar Documents

Publication Publication Date Title
CN108823636A (en) Monocrystalline silicon growing device and monocrystalline silicon growing method
JPS6168389A (en) Apparatus for growing single crystal
KR20000075400A (en) Czochralski Pullers and Pulling Methods for Manufacturing Monocrystalline Silicon Ingots by Controlling Temperature Gradients at the Center and Edge of an Ingot-Melt Interface
JPS6117798B2 (en)
JPH05170594A (en) Production of single crystal
JP2553485B2 (en) Method for producing gallium arsenide single crystal
JP3018738B2 (en) Single crystal manufacturing equipment
JP2690419B2 (en) Single crystal growing method and apparatus
JP2755452B2 (en) Silicon single crystal pulling equipment
JP2758038B2 (en) Single crystal manufacturing equipment
JP2612897B2 (en) Single crystal growing equipment
JP2814796B2 (en) Method and apparatus for producing single crystal
JPS62119198A (en) Device for rotating and pulling up single crystal provided with magnetic field impressing device
JPH02102196A (en) Method for pulling up single crystal
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JPH08104591A (en) Apparatus for growing single crystal
JPS606916B2 (en) Method for manufacturing compound semiconductor single crystal
JP2637210B2 (en) Single crystal growth method and apparatus
JPH09315881A (en) Production of semiconductor crystal
JPS63107887A (en) Crucible for pulling up single crystal
JPS58151391A (en) Ampoule for producing semiconductor crystal
JPS6042299A (en) Manufacture of single crystal
JPH08259369A (en) Crystal pulling-up device
JPS62119189A (en) Device for producing single crystal
JPS60176988A (en) Production unit for single crystal of semiconductor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107