JPH05169319A - Graphite electrode for electrochemical machining - Google Patents

Graphite electrode for electrochemical machining

Info

Publication number
JPH05169319A
JPH05169319A JP33347891A JP33347891A JPH05169319A JP H05169319 A JPH05169319 A JP H05169319A JP 33347891 A JP33347891 A JP 33347891A JP 33347891 A JP33347891 A JP 33347891A JP H05169319 A JPH05169319 A JP H05169319A
Authority
JP
Japan
Prior art keywords
electrode
graphite
electrolytic
work
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33347891A
Other languages
Japanese (ja)
Other versions
JP2867307B2 (en
Inventor
Takashi Takagi
俊 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP3333478A priority Critical patent/JP2867307B2/en
Publication of JPH05169319A publication Critical patent/JPH05169319A/en
Application granted granted Critical
Publication of JP2867307B2 publication Critical patent/JP2867307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To provide a graphite electrode for electrochemical machining used in electrochemical-machining and electrochemical-finishing a work made of metal or the like, which can finish a machined surface of a work with high accuracy and be easily handled and will not deteriorate working environment. CONSTITUTION:A coat 30 of pyrolytic carbon or vitreous carbon is formed on the surface of a graphite base material 50 used as an electrode for electrochemical machining.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属等のワークの電解
加工及び三次元形状等に加工されたワークの電解仕上げ
加工に使用される黒鉛製電解加工用電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a graphite electrolytic machining electrode used for electrolytic machining of a work such as metal and electrolytic finishing of a work machined into a three-dimensional shape.

【0002】詳細には、ワークと、このワークの加工面
に倣った電極面を有する電極とを、静止した電解液中で
所定の間隙で対設させ、その極間にパルス状電流を加え
て、ワークを光沢表面に仕上げる電解仕上げ加工におい
て、電極として使用される黒鉛製電解加工用電極に関す
る。
In detail, a work and an electrode having an electrode surface following the work surface of the work are placed in a stationary electrolyte at a predetermined gap, and a pulsed current is applied between the electrodes. The present invention relates to a graphite electrolytic processing electrode used as an electrode in electrolytic finishing for finishing a work on a glossy surface.

【0003】[0003]

【従来の技術】従来より、電解加工用電極には、電極
の製作が容易であること、電極消耗が無いこと、ワ
ークの仕上げ面の粗さが小さいこと等の性能が要求され
ていたが、近年、上記の要求性能をより満足する電極材
質として、金属に替わって黒鉛が使用されるようになっ
てきた。
2. Description of the Related Art Conventionally, an electrode for electrolytic processing has been required to have performances such as easy manufacturing of the electrode, no electrode consumption, and a small roughness of a finished surface of a work. In recent years, graphite has come to be used in place of metal as an electrode material that further satisfies the above-mentioned required performance.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、黒鉛は
製作が容易で、電極消耗が無いという点で優れているも
のの、もともと多くの気孔を有する多孔質体であるた
め、電解加工用電極として使用した場合、電極面がワー
クに形状転写され、ワークの加工面の仕上げ面粗さに限
界があった。
However, although graphite is excellent in that it is easy to manufacture and does not consume electrodes, it is originally used as an electrode for electrolytic processing because it is a porous body having many pores. In this case, the shape of the electrode surface was transferred to the work, and there was a limit to the finished surface roughness of the work surface of the work.

【0005】また、黒鉛製電極の気孔に電解液が浸透
し、乾燥後に電解液成分が結晶となって析出してくるの
で、使用後の黒鉛製電極の洗浄に手間がかかり、また、
析出物による作業環境の悪化が見られた。
Further, since the electrolytic solution permeates into the pores of the graphite electrode and the electrolytic solution components crystallize out after drying, it takes time and effort to clean the graphite electrode after use.
The work environment was deteriorated due to the deposits.

【0006】本発明は、このような事情に鑑みてなされ
たものであり、その目的とするところは、黒鉛製電極の
持つ電極の製作が容易であり、電極消耗が悪いという従
来の性能を備えながら、更にワークの加工面の仕上げが
高精度であり、かつ取扱いが容易であり、作業環境を悪
化することのない黒鉛製電解加工用電極を提供すること
にある。
The present invention has been made in view of such circumstances, and an object thereof is to provide the conventional performance that the electrode of the graphite electrode is easy to manufacture and the electrode consumption is poor. However, it is another object of the present invention to provide an electrode for electrolytic machining of graphite that has a highly precise finish on the machined surface of the workpiece, is easy to handle, and does not deteriorate the working environment.

【0007】[0007]

【課題を解決するための手段】以上の課題を解決するた
めに本発明が採った手段は、請求項1記載の発明による
と、「電解加工に使用される電極であって、黒鉛基材5
0の表面に、熱分解炭素の被膜30を形成して成ること
を特徴とする黒鉛製電解加工用電極10」を要旨とす
る。
According to the invention of claim 1, the means adopted by the present invention in order to solve the above-mentioned problems is that "an electrode used for electrolytic processing and a graphite substrate 5 is used.
The subject is an electrode 10 for electrolytic processing of graphite, which is characterized in that a film 30 of pyrolytic carbon is formed on the surface of 0.

【0008】次に、請求項2記載の発明によると、「電
解加工に使用される電極であって、黒鉛基材50の表面
に、ガラス状カーボンの被膜30を形成して成ることを
特徴とする黒鉛製電解加工用電極10」を要旨とする。
Next, according to the second aspect of the present invention, "It is an electrode used for electrolytic processing, in which a glassy carbon coating 30 is formed on the surface of a graphite base material 50. The subject is an electrolytic machining electrode 10 made of graphite.

【0009】[0009]

【作用】前記請求項1に記載される熱分解炭素の被膜3
0は、気孔を全く有しない非常に緻密な構造を持ってい
る。このため多孔質な黒鉛基材50の表面は完全に被覆
され、凹凸のない滑らかな電極面11を得ることができ
る。よって、前記熱分解炭素によって被膜された黒鉛製
電解加工用電極10を使用してワーク40を電解仕上げ
加工すると、ワークの加工面41を滑らかで光沢のある
面に仕上げることが可能となる。
The film 3 of pyrolytic carbon according to claim 1
0 has a very dense structure with no pores. Therefore, the surface of the porous graphite base material 50 is completely covered, and a smooth electrode surface 11 without irregularities can be obtained. Therefore, when the workpiece 40 is electrolytically finished by using the graphite electrolytic processing electrode 10 coated with the pyrolytic carbon, the processed surface 41 of the workpiece can be finished to be a smooth and glossy surface.

【0010】更に、熱分解炭素によって被膜された黒鉛
製電解加工用電極10は、黒鉛基材50の持つ気孔を当
該電極10の表面に持たないので、電解液20が浸透す
ることもない。
Further, since the graphite electrolytic processing electrode 10 coated with pyrolytic carbon does not have the pores of the graphite base material 50 on the surface of the electrode 10, the electrolytic solution 20 does not penetrate.

【0011】また、請求項2に記載されるガラス状カー
ボンの被膜30も熱分解炭素の被膜30と同様に緻密な
構造を持ち、上記同様の作用がある。
Further, the glassy carbon film 30 described in claim 2 has a dense structure like the pyrolytic carbon film 30, and has the same function as described above.

【0012】次に、上記熱分解炭素及びガラス状カーボ
ンの被膜30を、黒鉛基材50の表面に形成する方法に
ついて述べる。まず、前記熱分解炭素の被膜30を黒鉛
基材50の表面に形成する方法としては、通常用いられ
る各種化学蒸着法(CVD)により行なうことができ、
黒鉛基材50上を800〜2600℃に加熱しておき、
炭化水素を水素ガスもしくはアルゴンガス共存下で黒鉛
基材50と接触させ、多数の気孔を有する黒鉛基材50
上に熱分解炭素の緻密な層を形成させる。これらの反応
は常圧もしくは減圧下で行なわれるが、熱分解炭素被膜
の均一性、平滑性を考えると減圧下、特に300Tor
r以下で行なうことが望ましい。また、熱分解炭素被膜
の厚みは10μm〜500μmが望ましい。その理由
は、10μm以下では、電極面11としての十分な平滑
性と、黒鉛基材50を保護する被膜30としての不浸透
性が得られないからであり、500μm以上では、被膜
30の表面にクラックを生じる可能性が大きいからであ
る。
Next, a method for forming the coating film 30 of pyrolytic carbon and glassy carbon on the surface of the graphite substrate 50 will be described. First, as a method for forming the pyrolytic carbon coating 30 on the surface of the graphite substrate 50, various chemical vapor deposition methods (CVD) that are commonly used can be used.
The graphite substrate 50 is heated to 800 to 2600 ° C.,
A graphite base material 50 having a large number of pores by bringing a hydrocarbon into contact with the graphite base material 50 in the presence of hydrogen gas or argon gas.
Form a dense layer of pyrolytic carbon on top. These reactions are carried out under normal pressure or reduced pressure, but considering the uniformity and smoothness of the pyrolytic carbon coating, under reduced pressure, especially 300 Tor.
It is desirable to carry out at r or less. The thickness of the pyrolytic carbon coating is preferably 10 μm to 500 μm. The reason is that if the thickness is 10 μm or less, sufficient smoothness as the electrode surface 11 and the impermeability as the coating film 30 for protecting the graphite base material 50 cannot be obtained. This is because there is a high possibility that cracks will occur.

【0013】また、ガラス状カーボンの被膜30を黒鉛
基材50の表面に形成させる方法としては、炭素化時に
おける流動、発泡が小さく、炭素化収率の高い熱硬化性
樹脂を溶剤に溶解させ、その溶液を黒鉛基材50の表面
に含浸あるいは刷毛塗り、スプレー等によって塗布し、
乾燥、硬化後、不活性ガス雰囲気下で700〜2600
℃で加熱処理することにより行なうことができる。
Further, as a method for forming the glassy carbon coating 30 on the surface of the graphite base material 50, a thermosetting resin having a small flow and foaming during carbonization and a high carbonization yield is dissolved in a solvent. , The solution is applied to the surface of the graphite base material 50 by impregnation, brush coating, spraying, or the like,
After drying and curing, 700-2600 in an inert gas atmosphere
It can be carried out by heat treatment at ℃.

【0014】前記熱硬化性樹脂としては、ジビニルベン
ゼン樹脂、フラン樹脂、フェノール樹脂、あるいはコプ
ナ樹脂が用いられる。コプナ樹脂は、石炭系もしくは石
油系のタール、ピッチ、あるいはナフタレン、アントラ
セン、フェナントレン、ピレン、クリセン、ナフタセ
ン、アセナフタセン、ベリレン、コロネン及びこれらを
主骨格とする誘導体の中から選ばれる一種又は二種以上
の混合物からなる縮合多環芳香属化合物が、ヒドロキシ
メチル基、ハロメチル基のいずれか少なくとも一種の基
を二個以上有する一環又は二環以上の芳香環からなる芳
香属化合物(p−キシレンジクロライド、p−キシレン
グリコール(1,4−ベンゼンジメタノール)、ジメチ
ル−p−キシレングリコール、ジメチル−m−キシレン
グリコール、等)によって架橋された構造をもつもので
ある。これらのうちガラス状カーボンの被膜30の形成
には前記コプナ樹脂が、炭素化収率が高く、炭素化時に
おける流動、発泡が小さいので、良好な結果を得ること
ができる。
As the thermosetting resin, divinylbenzene resin, furan resin, phenol resin, or copuna resin is used. Copna resin is one or more selected from coal-based or petroleum-based tar, pitch, or naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, acenaphthacene, berylene, coronene and derivatives having these as the main skeletons. The condensed polycyclic aromatic compound consisting of a mixture of the above-mentioned is an aromatic compound (p-xylene dichloride, p having an aromatic ring of one or more rings having at least one group of at least one of a hydroxymethyl group and a halomethyl group). -Xylene glycol (1,4-benzenedimethanol), dimethyl-p-xylene glycol, dimethyl-m-xylene glycol, etc.). Out of these, the Copuna resin has a high carbonization yield for forming the glassy carbon coating 30, and the flow and foaming during carbonization are small, so that good results can be obtained.

【0015】なお、熱分解炭素による被膜30は、ガラ
ス状カーボンによる被膜30に比べると、構造が緻密で
あり、より滑らかな電極面11を形成することが可能と
なる。一方、ガラス状カーボンによる被膜30は、剥離
しにくいので、前記ガラス状カーボンによって被膜され
た黒鉛製電解加工用電極10は、長期間の使用に耐える
ことができる。
The coating 30 made of pyrolytic carbon has a denser structure than the coating 30 made of glassy carbon and can form a smoother electrode surface 11. On the other hand, since the coating film 30 made of glassy carbon is difficult to peel off, the graphite electrolytic processing electrode 10 coated with the glassy carbon can withstand long-term use.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいて説明する。
また実施例に対する比較例についても説明する。実施例1 まず、黒鉛基材50としては等方性黒鉛基材を使用し、
図1に示すように、外径100mmφ、高さ50mmで
あって、下部に半径100mmの曲部を持つ筒状物を作
製した。次に、これをCVD炉に入れ、1400℃に加
熱し、水素ガスをキャリアとし、メタンを炉内に供給
し、黒鉛基材50上に厚さ50μmの熱分解炭素被膜を
形成させた黒鉛製電解加工用電極10を作製した。
EXAMPLES The present invention will be described below based on examples.
A comparative example with respect to the example will also be described. Example 1 First, an isotropic graphite base material is used as the graphite base material 50.
As shown in FIG. 1, a cylindrical product having an outer diameter of 100 mmφ, a height of 50 mm, and a curved portion with a radius of 100 mm at the bottom was manufactured. Next, this was placed in a CVD furnace, heated to 1400 ° C., hydrogen gas was used as a carrier, methane was supplied into the furnace, and a pyrolytic carbon coating having a thickness of 50 μm was formed on the graphite base material 50. An electrode 10 for electrolytic processing was produced.

【0017】この当該電極10を、図2に示すように、
電解仕上げ加工機の電極固定装置12に固定し、これと
対設させてワーク固定装置42にワーク40を固定し
て、加工槽21内を電解液20である硝酸ナトリウム溶
液で満たし、電源装置から電流密度40A/平方センチ
メートルの設定でパルス状電流を供給して、取りしろ1
00μmワーク40の加工面41の電解仕上げ加工を行
った。なお、ワーク材としては、SKD−61を使用
し、あらかじめRmax30μmまで放電加工により加
工をしたワークを用いた。
This electrode 10 is, as shown in FIG.
It is fixed to the electrode fixing device 12 of the electrolytic finishing machine, the work 40 is fixed to the work fixing device 42 in opposition thereto, and the inside of the processing tank 21 is filled with the sodium nitrate solution that is the electrolytic solution 20. Supply a pulsed current at a current density setting of 40 A / square centimeter and remove it 1
Electrolytic finishing of the processed surface 41 of the 00 μm workpiece 40 was performed. As the work material, SKD-61 was used, and the work that had been processed by electric discharge machining up to Rmax 30 μm in advance was used.

【0018】このようにして電解仕上げ加工されたワー
ク40の加工面41について、その加工精度を測定する
ために、加工面41の粗さを測定した。また、使用、乾
燥後の黒鉛製電解加工用電極10の電極面11に析出し
た結晶の量を、重量にて測定した。結果を表1に示す。
The roughness of the machined surface 41 of the workpiece 40 electrolytically machined in this way was measured in order to measure the machining accuracy. Further, the amount of crystals deposited on the electrode surface 11 of the electrolytic electrode 10 made of graphite after use and drying was measured by weight. The results are shown in Table 1.

【0019】実施例2 まず、実施例1と同様の等方性黒鉛材の筒状物を作製し
た。次に、軟化点80℃の石油系ピッチのベンゼン可溶
分(平均分子量340)とp−キシレングリコールをモ
ル比1:2の割合で混合し、1wt%のp−トルエンス
ルホン酸を加え、130℃、40分間反応させたコプナ
樹脂を溶剤に溶解させ、その溶液を前記筒状物にスプレ
ーで塗布し、乾燥後、180℃で硬化させた後、炉内に
入れ、アルゴンガス雰囲気中で2000℃に加熱処理
し、厚さ5μmのガラス状炭素被膜を形成させた黒鉛製
電解加工用電極10を作製した。
Example 2 First, a cylindrical material of isotropic graphite material similar to that of Example 1 was produced. Next, benzene-soluble matter (average molecular weight 340) of petroleum pitch having a softening point of 80 ° C. and p-xylene glycol are mixed at a molar ratio of 1: 2, and 1 wt% of p-toluenesulfonic acid is added, Copna resin reacted at 40 ° C for 40 minutes was dissolved in a solvent, and the solution was spray-coated on the cylindrical material, dried and cured at 180 ° C, then placed in a furnace and placed in an argon gas atmosphere at 2000 The electrode 10 for electrolytic processing of graphite having a glassy carbon coating with a thickness of 5 μm was prepared by heat treatment at 0 ° C.

【0020】次に、実施例1と同条件で電解仕上げ加工
を行い、実施例1と同様の試験を行った。結果を表1に
示す。
Next, electrolytic finishing was performed under the same conditions as in Example 1, and the same test as in Example 1 was performed. The results are shown in Table 1.

【0021】比較例 次に、本実施例に対する比較例について述べる。まず、
実施例1及び2と同様の等方性黒鉛材の筒状物を作成
し、これを表面処理せずに、そのまま黒鉛製電解加工用
電極10として実施例1及び2と同条件で電解仕上げ加
工を行い、実施例1及び2と同様の試験を行った。結果
を表1に示す。
Comparative Example Next, a comparative example to this embodiment will be described. First,
Cylindrical materials of isotropic graphite materials similar to those in Examples 1 and 2 were prepared and subjected to electrolytic finishing under the same conditions as those in Examples 1 and 2 as the electrode 10 for graphite electrolytic processing as it is without surface treatment. The same test as in Examples 1 and 2 was performed. The results are shown in Table 1.

【0022】 [0022]

【0023】表1の結果から、実施例1及び2の黒鉛製
電解加工用電極10は、比較例の黒鉛製電解加工用電極
と比較すると、滑らかで光沢のある加工面となってお
り、かつ電解液20が黒鉛基材50の気孔に浸透して、
電極が乾燥した時に電極面11に結晶が析出することも
なかった。
From the results shown in Table 1, the graphite electrolytic processing electrodes 10 of Examples 1 and 2 have a smooth and glossy processed surface as compared with the graphite electrolytic processing electrode of the Comparative Example, and The electrolyte solution 20 penetrates into the pores of the graphite base material 50,
No crystal was deposited on the electrode surface 11 when the electrode was dried.

【0024】[0024]

【発明の効果】以上説明したように、請求項1又は2記
載の発明に係る黒鉛製電解加工用電極にあっては、これ
を構成する黒鉛基材の表面に熱分解炭素被膜又はガラス
状カーボン被膜を形成したことにより、電極面が緻密
な構造の表面層を有し、ワークの加工面を高精度に仕上
げ加工することができ、更に、電解液が黒鉛製電解加
工用電極に浸透して、当該電極の電極面に結晶が析出す
ることがなく、作業環境が悪化することもなくなった。
As described above, in the graphite electrolytic processing electrode according to the invention described in claim 1 or 2, the surface of the graphite base material constituting the electrode is a pyrolytic carbon coating or glassy carbon. By forming a coating, the electrode surface has a dense surface layer, and the work surface of the workpiece can be finished with high accuracy, and the electrolytic solution penetrates into the graphite electrolytic processing electrode. No crystal was deposited on the electrode surface of the electrode and the working environment was not deteriorated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る黒鉛製電解加工用電極の一実施例
を示す概略断面図である。
FIG. 1 is a schematic sectional view showing an embodiment of a graphite electrolytic processing electrode according to the present invention.

【図2】本発明に係る黒鉛製電解加工電極を使用した電
解仕上げ加工機を示す概略断面図である。
FIG. 2 is a schematic cross-sectional view showing an electrolytic finishing machine using a graphite electrolytic machining electrode according to the present invention.

【符号の説明】[Explanation of symbols]

10 黒鉛製電解加工用電極 11 電極面 20 電解液 21 加工槽 30 被膜 40 ワーク 41 加工面 50 黒鉛基材 10 Electrodes for Electrolytic Machining of Graphite 11 Electrode Surface 20 Electrolyte 21 Processing Tank 30 Coating 40 Work 41 Machining Surface 50 Graphite Base Material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解加工に使用される電極であって、黒
鉛基材の表面に、熱分解炭素の被膜を形成して成ること
を特徴とする黒鉛製電解加工用電極。
1. An electrode used for electrolytic processing, comprising a graphite base material and a pyrolytic carbon coating formed on the surface of the graphite base material.
【請求項2】 電解加工に使用される電極であって、黒
鉛基材の表面に、ガラス状カーボンの被膜を形成して成
ることを特徴とする黒鉛製電解加工用電極。
2. An electrode used for electrolytic processing, wherein a graphite-like carbon film is formed on the surface of a graphite base material, and the electrode for electrolytic processing is made of graphite.
JP3333478A 1991-12-17 1991-12-17 Graphite electrolytic electrode Expired - Lifetime JP2867307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3333478A JP2867307B2 (en) 1991-12-17 1991-12-17 Graphite electrolytic electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3333478A JP2867307B2 (en) 1991-12-17 1991-12-17 Graphite electrolytic electrode

Publications (2)

Publication Number Publication Date
JPH05169319A true JPH05169319A (en) 1993-07-09
JP2867307B2 JP2867307B2 (en) 1999-03-08

Family

ID=18266521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3333478A Expired - Lifetime JP2867307B2 (en) 1991-12-17 1991-12-17 Graphite electrolytic electrode

Country Status (1)

Country Link
JP (1) JP2867307B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504920A (en) * 2003-05-16 2007-03-08 ブルー メンブレーンス ゲーエムベーハー Biocompatible coated medical implant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912230U (en) * 1972-05-10 1974-02-01
JPS58114820A (en) * 1981-12-26 1983-07-08 Ibiden Co Ltd Graphite electrode for die-sinking by wire-cut electric discharge machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912230U (en) * 1972-05-10 1974-02-01
JPS58114820A (en) * 1981-12-26 1983-07-08 Ibiden Co Ltd Graphite electrode for die-sinking by wire-cut electric discharge machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504920A (en) * 2003-05-16 2007-03-08 ブルー メンブレーンス ゲーエムベーハー Biocompatible coated medical implant

Also Published As

Publication number Publication date
JP2867307B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
US5110422A (en) Method for producing an adherent metal deposit on carbon, and mirror obtained by this method
US6093644A (en) Jig for semiconductor wafers and method for producing the same
US8226806B2 (en) Electrode for electrolysis
KR101573178B1 (en) A fabrication method of DLC/Ti electrode with multi-interface layers for water treatment
GB2060701A (en) Electrode coating with platinum- group metal catalyst and semiconducting polymer
JP2867307B2 (en) Graphite electrolytic electrode
US3972797A (en) Electrode for electrochemical machining
JP2876095B2 (en) Graphite electrolytic electrode
JPS6242995B2 (en)
US3462522A (en) Deposition of pyrolytic material
CN112756238A (en) Method for preparing silicon dioxide hydrogen-resistant coating on inner wall of 316L stainless steel pipeline
JPS5910954B2 (en) Method for manufacturing silicon carbide bodies for semiconductor manufacturing
JPH05310487A (en) Production of sic-coated graphite material
Pushpavanam et al. Morphology of (Ru-Ti-Sn) mixed-oxide coatings
JP2517392B2 (en) Electrode plate for plasma etching
RU2711072C1 (en) Method of electrochemical deposition of silicon-carbon films on dielectric substrates
JPH04280809A (en) Production of highly conductive hollow carbon
JPH0721830A (en) Manufacture of solid electrolytic membrane
JP2955968B2 (en) Graphite electrolytic electrode
JP2609932B2 (en) Electrode plate for plasma etching
JPH0718013B2 (en) Method for producing glassy carbon coating
JPS63186865A (en) Crucible for vapor deposition
JP2003293196A (en) Electrode for electrolysis and production method therefor
JPH0714806B2 (en) Carbon film coated graphite material
JPH02229785A (en) Gas flow regulating member for single crystal pulling-up device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091225

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101225

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101225

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111225

Year of fee payment: 13

EXPY Cancellation because of completion of term